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Background: Numerous studies have confirmed that gut microbiota plays a

crucial role in the progression of cirrhosis. However, the contribution of gut fungi

in cirrhosis is often overlooked due to the relatively low abundance.

Methods: We employed 16S ribosomal RNA sequencing, internal transcribed

spacer sequencing, and untargeted metabolomics techniques to investigate the

composition and interaction of gut bacteria, fungi, and metabolites in cirrhotic

patients.

Results: Cirrhotic patients exhibited significant di�erences in the diversity

and composition of gut microbiota and their metabolites in cirrhotic patients

compared to healthy individuals. Increase in pathogenic microbial genera and

a decrease in beneficial microbial genera including bacteria and fungi were

observed. Various clinical indexes were closely connected with these increased

metabolites, bacteria, fungi. Additionally, endoscopic treatment was found to

impact the gut microbiota and metabolites in cirrhotic patients, although it

did not significantly alter the gut ecology. Finally, we constructed a cirrhosis

diagnosticmodel based on di�erent features (bacteria, fungi,metabolites, clinical

indexes) with an AUC of 0.938.

Conclusion: Our findings revealed the characteristics of gut microbial

composition and their intricate internal crosstalk in cirrhotic patients, providing

cutting-edge explorations of potential roles of gut microbes in cirrhosis.

KEYWORDS
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Introduction

Human gastrointestinal tracts harbor trillions of microbes (about 1012-1014), including

bacteria, fungi, archaea, and viruses, which are involved in many physiological functions

and disease pathogenesis (Gomaa, 2020). In recent years, the importance of intestines

to human health and dysregulation of the gut microbes in different diseases has been

implicated based on high-throughput sequencing technology (Lynch et al., 2016). Due to

its unique anatomical location, the liver is regarded as the first organ to encounter gut
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microbes and their products through the gut epithelial barrier.

The blood supply to the liver comes from the hepatic artery and

portal vein. Portal blood contributes to 75% of the total blood

flow to the liver and transfers nutrients, enteric-borne microbes,

and pathogen-associated molecular patterns to liver originating

from the intestine (Llorente and Schnabl, 2015; Hsu and Schnabl,

2023). Thus, the liver and gastrointestinal tract are interconnected,

known as the gut-liver axis (Tripathi et al., 2018). Appreciable

evidence suggests that gut microbes play a central role in the gut-

liver axis and are closely related to liver diseases (Schnabl and

Brenner, 2014; Pabst et al., 2023). However, the contributions of gut

microbes to the occurrence and progression of liver diseases and the

feasibility of clinical applications targeting gut microbes have yet to

be fully elucidated.

Liver cirrhosis (LC) is a common outcome of chronic liver

diseases, characterized by tissue fibrosis and the transformation

of normal liver architecture into abnormal nodules (Kisseleva and

Brenner, 2020). LC progression eventually leads to the development

of portal hypertension and its associated complications with high

mortality, accounting for 1.2 million deaths per year and nearly

3.5% of global mortality (Moon et al., 2020). The gut microbes

have been proven to be related to the induction and progression

of liver injury (Yan et al., 2011). Gut bacterial dysbiosis may

adversely disorder liver homeostasis, leading to the progression

and complications of LC (Qin et al., 2014; Lachar and Bajaj,

2016). Accumulating studies have revealed significant microbial

dysbiosis with substantially decreased richness, diversity, and

altered composition of the gut bacteria translocation in LC patients

compared with healthy individuals (Bajaj et al., 2014; Shao et al.,

2018).

In addition, bacterial and fungal communities do have

significant impacts on the homeostasis of the intestinal

microecosystem, although colonizing fungi account for a

minor component of the gut microbiota (Dworecka-Kaszak

et al., 2016). Traditional culture-dependent methods can only

detect small proportions of fungi. With the development of high-

throughput sequencing technology, fungal sequencing methods,

including 18S ribosomal RNA sequencing and fungal-specific

internal transcribed spacer DNA sequencing, have gradually

replaced traditional methods for studying fungi. With the growing

knowledge of the characteristics and species of fungi, complex

relationships between gut fungi and human health were discovered,

and the alterations of fungal communities may contribute to the

occurrence of liver diseases (Zeng and Schnabl, 2022). Clinical

studies suggested that fungal colonization and translocation could

increase the mortality rate of LC patients in intensive care unit

(ICU; Theocharidou et al., 2016; Verma et al., 2022). Consistently,

a cross-sectional study has revealed the presence of dysregulated

intestinal fungi in cases of cirrhosis and hepatocellular carcinoma

by ITS (internal transcribed spacer) DNA sequencing (Bajaj

et al., 2018; Zhang et al., 2023). Although bacteria and fungi

are dysregulated in cirrhosis, previous efforts mainly focused on

bacteria, the impact of the differences in fungi and the crosstalk

between fungi and bacteria in patients with cirrhosis is barely

known, especially in those with endoscopic treatment.

In the present study, we performed 16S ribosomal RNA and

ITS sequencing, liquid chromatography coupled to tandem mass

spectrometry (LC-MS/MS) technology to reveal gut microbial

characteristics and explore the connections among intestinal

bacteria, fungi, and metabolites in patients with liver cirrhosis.

Our study reveals the complex interactions within the intestinal

microbiota of cirrhotic patients, providing new insights for the

diagnosis and treatment of liver cirrhosis.

Materials and methods

Patients and sample collection

A total of 45 patients with decompensated liver cirrhosis

who were admitted to the Department of Gastroenterology and

Hepatology of Beijing You’an Hospital affiliated with Capital

Medical University from January to May 2023 were enrolled,

while another 30 healthy people without any chronic diseases

were selected as control group. Patients were diagnosed with

liver cirrhosis in terms of clinical symptoms, medical history,

laboratory tests, imaging tests, or histological examinations, and

complications included esophagogastric varices (EGV), ascites,

hepatic encephalopathy (HE), portal vein thrombosis (PVT). The

demographic and clinical data of the subjects involved were

collected through the electronic medical record system. Exclusion

criteria included the following conditions: aged< 18 or >75;

ursodeoxycholic acid, probiotics, or antibiotics treatment before

sample collection; hepatic encephalopathy > grade 2 and/or other

cognitive disorders not allowing for informed consent; suffered

frommalignant cancers including hepatocellular carcinoma, severe

cardiopulmonary failure, and other diseases (gastrointestinal

intestinal polyps, inflammatory bowel disease, necrotizing enteritis,

diabetes, etc.). Feces samples were collected in the morning after

an overnight fast, delivered to the laboratory within 2 h on dry

ice, and stored at −80◦C until further analyses. In addition, to

further explore the short-term effects of endoscopic treatment

of esophagogastric variceal on the gastrointestinal flora, we also

collected the feces of patients who underwent endoscopic treatment

10–14 days. The Ethics Committee of Beijing You’an Hospital

authorized the project (LL-2022-065-K), and Informed consent was

obtained from all individual participants included in the study.

Clinical data analysis

Descriptive and comparative statistics were used to assess

and compare clinical data between two groups. Quantitative data

were represented as Mean ± SE (standard error) and categorical

variables were represented by the number of cases and percentage.

Continuous data was performed by using t-test, the chi-square test

and the Fisher’s precision probability test for categorical variables.

P-value < 0.05 was considered statistically significant.

DNA extraction, PCR amplification, and
sequencing

Genomic DNA was extracted using the DNeasy Power

Water DNA Isolation Kit (Qiagen, Germany, Cat: 14900-100-

NF) according to the manufacturer’s instructions with minor
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modifications for separate extraction of bacterial and fungal

genomic DNA.

Equal concentrations of bacterial and fungal DNA (∼10

ng) were used for PCR amplification of the bacterial 16S

rRNA V4 hypervariable region and fungal ITS2 region. The

V4 primers are forward 5′ -GTGCCAGCMGCCGCGGTAA-3′

and reverse 5′-GGACTACHVGGGTWTCTAAT-3′ (Sun et al.,

2013). For fungi, the ITS2 intergenic region were amplified

using the forward primer (5′-GCATCGATGAAGAACGCAGC-3′)

and reverse (5′-TCCTCCGCTTATTGATATGC-3′; Zhang et al.,

2023). 16S rRNA V4 hypervariable region and ITS2 region were

amplified used the specific primer with the barcode. Sequencing

libraries were generated using Illumina TruSeq DNA PCR-Free

Library Preparation Kit (Illumina, USA) following manufacturer’s

recommendations and index codes were added. The library quality

was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific)

and Agilent Bioanalyzer 2100 system. At last, the library was

sequenced on an IlluminaNovaSeq platform and 250 bp paired-end

reads were generated.

Bioinformatics and statistical analysis

Raw bacterial and fungal amplicon sequences were processed

and analyzed with the EasyAmplicon (Liu et al., 2023) pipeline

(version 1.19, https://github.com/YongxinLiu/EasyAmplicon).

First, FastQC (version 0.12.1) was used to control the raw

data quality and confirm the absence of primers. Subsequently,

the software VSEARCH (Rognes et al., 2016; version 2.22.1)

was used to merge pair-end reads (-fastq_mergepairs), filter

(-fastq_maxee_rate 0.01), and dereplicate (-derep_fulllength).

The obtained high-quality, unique sequences were denoised into

amplicon sequence variants (ASVs) with the software USEARCH

(Edgar, 2010; version 11.0.667). Chimeras were identified and

removed from the bacterial and fungal data using VSEARCH(-

uchime_ref) against the SILVA (Quast et al., 2012) v123 database

and UNITE (Abarenkov et al., 2023) v9.0 database, respectively.

Finally, based on the chimera-free ASVs, we constructed feature

tables using VSEARCH (-usearch_global). Species classification

of bacterial and fungal ASVs was done based on the RDP

(Cole et al., 2014) v18 database and UNITE v9.0 database, with

USEARCH (-sintax), respectively. Bacterial and fungal sequences

of all samples were rarefied to 62,889 and 5,766 for downstream

analysis, respectively.

Alpha diversity of bacterial and fungal communities was

calculated using USEARCH (-alpha_div) based on the richness

index. The differences between groups were assessed using

Tukey’s HSD test. Beta diversity was calculated using USEARCH

(-cluster_agg, -beta_div) through principal coordinate analysis

(PCoA) based on the Bray-Curtis distance. Permutational

multivariate analysis of variance (PERMANOVA) with the

ADONIS test was used to assess the differences between groups.

Linear discriminant analysis (LDA) effect size (LEfSe) was used

to determine biomarkers at the genus level between groups

(LDA score>3). The functional composition of bacterial and

fungal communities was predicted based on the MetaCyc (Caspi

et al., 2018) database (https://metacyc.org/) using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States (PICRUSt2; Douglas et al., 2020) software. The P-values

of metabolic pathways differing between groups were calculated

by Welch’s t-test and corrected using the Benjamini-Hochberg

false discovery rate (FDR). Orthogonal partial least squares

discriminant analysis (OPLS-DA) was used to determine the

differences in metabolite composition among samples. The

screening criteria for differential metabolites were: P-value of

Student’s t-test < 0.05, Variable Importance in the Projection

(VIP) values obtained from the OPLS -DA model was >1, and

the absolute value of log2(fold change) was >0. The VIP values

were used to assess the contribution of the different metabolites to

the differences between groups. Pathway enrichment analysis of

differential metabolites was done based on the Kyoto Encyclopedia

of Genes and Genomes (Kanehisa, 2000) pathway database.

Metabolic pathways that were significantly enriched (P-value <

0.05) were identified by the hypergeometric test.

Associations among differential bacteria-clinical indexes,

differential fungi-clinical indexes, and differential metabolite-

clinical indexes, as well as bacteria-fungi-differential metabolites in

liver cirrhotic patients, were determined based on the Spearman’s

correlation analysis (correlation coefficient > 0.4, P-value <

0.05). The random forest model used to distinguish liver cirrhosis

patients from healthy individuals was constructed using the R

package “randomForest.” The specific construction process of the

model is as follows. The first step is to determine the training and

test sets. The training set consisted of 34 liver cirrhosis patients

and 23 healthy individuals. The test set consisted of 11 liver

cirrhosis patients and seven healthy individuals. Random forest

models were then constructed using the training set (ntree =

1,000) and the importance of different features (bacteria, fungi,

metabolites or clinical indexes) was evaluated (importance =

TRUE). Subsequently, the optimal number of features to use

was determined based on the 10-fold cross-validation results

and models were further optimized to select the best mtry value.

Finally, the prediction accuracy was tested in the test set and area

under curve (AUC) values were calculated. All above Bioinformatic

analysis results were visualized using the Wekemo Bioincloud

(Gao et al., 2024; https://www.bioincloud.tech), ImageGP (Chen T.

et al., 2022), STAMP (Parks et al., 2014; version 2.1.3), R packages

“ggplot2” (https://ggplot2.tidyverse.org), “circlize” (http://cran.r-

project.org/web/packages/circlize/), and “pheatmap” (https://cran.

r-project.org/web/packages/pheatmap/).

Untargeted metabolomic data preparation
and analysis

100 µL of sample was taken, mixed with 400 µL of extraction

solution [MeOH: ACN, 1:1 (v/v)], the extraction solution contains

deuterated internal standards, the mixed solution was vortexed

for 30 s, sonicated for 10min in 4◦C water bath, and incubated

for 1 h at −40◦C to precipitate proteins. Then the samples were

centrifuged at 12,000 rpm (RCF = 13,800 (×g), R= 8.6 cm) for

15min at 4◦C. The supernatant was transferred to a fresh glass

vial for analysis. The quality control (QC) sample was prepared by

mixing an equal aliquot of the supernatant of samples.
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LC-MS/MS analyses were performed using an UHPLC system

(Vanquish, Thermo Fisher Scientific) with a Waters ACQUITY

UPLC BEH Amide (2.1 × 50mm, 1.7µm) coupled to Orbitrap

Exploris 120 mass spectrometer (Orbitrap MS, Thermo). The

mobile phase consisted of 25 mmol/L ammonium acetate and

25 mmol/L ammonia hydroxide in water (pH = 9.75) (A) and

acetonitrile (B). The auto-sampler temperature was 4◦C, and the

injection volume was 2 µL. The Orbitrap Exploris 120 mass

spectrometer was used for its ability to acquire MS/MS spectra

on information-dependent acquisition (IDA) mode in the control

of the acquisition software (Xcalibur, Thermo). In this mode,

the acquisition software continuously evaluates the full scan MS

spectrum. The ESI source conditions were set as following: sheath

gas flow rate as 50 Arb, Aux gas flow rate as 15 Arb, capillary

temperature 320◦C, full MS resolution as 60,000,MS/MS resolution

as 15,000, collision energy: SNCE 20/30/40, spray voltage as 3.8 kV

(positive) or−3.4 kV (negative), respectively.

The raw data were converted to the mzXML format using

ProteoWizard and processed with an in-house program, which

was developed using R and based on XCMS, for peak detection,

extraction, alignment, and integration. Then a MS2 database was

applied in metabolite annotation. The cutoff for annotation was set

at 0.3.

Results

Clinical characteristics of participants

A total of 75 participants were included in this study: 45 liver

cirrhotic patients and 30 healthy controls. The baseline clinical and

demographic data for all groups were shown in Table 1. Age (P =

0.067) and gender (P = 0.745) were matched without significant

differences between LC and C groups. Serum levels of ALT, TBIL,

PT, and INR were elevated, whereas WBC, HB, PLT, ALB, and PTA

were decreased in the LC group compared with healthy controls

(P < 0.05). In cirrhotic patients, the median CTP scores and

MELD scores were five and nine, respectively. The distribution of

etiologies of LC was as follows: HBV/HCV, 25 patients; ALD, ten

patients; NAFLD, five patients; AIH, five patients. Additionally, 15

patients were accompanied by EGV complications and underwent

endoscopic treatment.

Characterization of the intestinal
microbiome and mycobiome in
decompensated liver cirrhotic patients

A total of 10,274,244 high-quality 16S rRNA reads were

obtained from fecal samples of 45 patients with liver cirrhosis

(LC group) and 30 healthy individuals (C group). After

sequence processing, the final number of 6,861 ASVs was

obtained. The rarefaction curve of richness indicates that

the current sample was sequenced at a reasonable depth

(Supplementary Figure 1A). One hundred and twenty-five

and 102 ASVs were specific to cirrhotic patients and healthy

individuals, respectively (Supplementary Figure 1B). In terms

of alpha diversity, the Shannon index was significantly lower

in cirrhotic patients than in healthy individuals (P < 0.01,

Tukey’s HSD test; Figure 1A). In terms of beta diversity, the

results of principal coordinate analysis (PCoA) based on

Bray-Curtis distance showed that the gut bacterial community

structure of cirrhotic patients was significantly different from

that of healthy individuals (P = 0.001, PERMANOVA with

ADONIS test; Figure 1B). After alignment with the RDP

database, 6,861 ASVs were annotated to a total of 6 phyla,

12 classes, 19 orders, 33 families, and 83 genera. On average,

more than half of the bacteria in different subgroups were

from Firmicutes (Figure 1C). Faecalibacterium, Blautia, and

Bifidobacterium were the three genera with the highest average

relative abundance (Figure 1D). Subsequently, LEfSe was used

to further identify bacterial genera with significant differences

in abundance across subgroups (Figure 1E). There were 17

and 25 bacterial genera enriched (LDA score > 3) in cirrhotic

patients and healthy individuals, respectively. Among them,

Streptococcus, Akkermansia, Ligilactobacillus, Pseudescherichia

were signifantly enriched in liver cirrhotic patients, while

Blautia, Anaerobutyricum, Gemmiger, Ruminococcus, and

Dorea were markedly decresed (LDA score >4). In addition,

the functional composition of the bacterial communities

was enriched in bacterial-associated metabolic pathways

(Supplementary Figure 1C). Several metabolic pathways

differed significantly from LC and healthy individuals

(Supplementary Figure 1D).

In terms of gut mycobiome, a total of 9,594,331 high-

quality ITS rRNA reads were obtained from fecal samples of

45 cirrhotic patients and 30 healthy individuals. After sequence

processing, the final number of ASVs was 901. The rarefaction

curve of richness indicates that the current sample was sequenced

at a reasonable depth (Supplementary Figure 2A). There were

18 and 60 ASVs specific to cirrhotic patients and healthy

individuals, respectively (Supplementary Figure 2B). The Shannon

index was significantly lower in cirrhotic patients than in

healthy individuals (P < 0.01, Tukey’s HSD test; Figure 2A).

The results of PCoA showed that the gut fungal community

structure of cirrhotic patients was significantly different from

that of healthy individuals (P = 0.004, PERMANOVA with

ADONIS test; Figure 2B). After alignment with the UNITE

database, 901 ASVs were annotated to a total of 8 phyla, 20

classes, 51 orders, 101 families, 116 genera, and 125 species.

On average, more than 80% of the fungi in the different

subgroups were from Ascomycota (Figure 2C). Saccharomyces,

Candida, and Aspergillus were the three genera with the

highest average relative abundance (Figure 2D). Subsequently,

LEfSe analysis indicated that the Saccharomyces was significantly

increased and Aspergillus, Penicillium, Auricularia, as well as

Cladosporium were reduced in cirrhotic patients (LDA score >4).

In addition, we analyzed the functional composition of the fungal

communities (Supplementary Figure 2C) and predicted 69 fungal-

related metabolic pathways. There were 15 metabolic pathways

with mean relative abundance differences >0.3% between groups,

of which six were enriched in liver cirrhotic patients, including

aerobic respiration II (cytochrome c; yeast), aerobic respiration

I (cytochrome c), pentose phosphate pathway, glycolysis III

(from glucose), CDP-diacylglycerol biosynthesis I, and adenosine

ribonucleotides de novo biosynthesis (Supplementary Figure 2D).
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TABLE 1 Demographics and clinical characteristics of subjects.

Clinical variables LC (n = 45) C (n = 30) t/χ2-value P-value

Age 56.2± 1.6 51.6± 2.0 −1.86 0.067

Gender, male, n (%) 33 (73.3) 23 (76.7) 0.11 0.745

WBC (109/L) 3.3± 0.3 6± 0.3 6.53 <0.001

Hb (g/L) 110± 4.2 153± 2.6 8.61 <0.001

PLT (109/L) 95.9± 13.3 240± 11.3 7.67 <0.001

ALT (U/L) 22.5± 1.7 27.6± 2.7 1.68 0.097

AST (U/L) 31.8± 2 23.9± 1.3 −3.31 0.001

TBIL (µmol/L) 22± 1.9 15.2± 0.8 −3.21 0.002

ALB (g/L) 36.8± 0.7 43.4± 1.5 4.54 <0.001

PT (s) 11.3± 0.3 10.2± 0.1 3.40 0.001

PTA (%) 66.27± 1.8 103.3± 1.4 14.96 <0.001

INR 1.2± 0.2 1± 0.2 −5.07 <0.001

CTP scores 5 (5, 7) - - -

MELD scores 9 (8,11) - - -

Etiology - - -

HBV/HCV 25 (55.6) - - -

ALD 10 (22.2) - - -

NAFLD 5 (11.1) - - -

AIH 5 (11.1) - - -

Complications

EGV, n (%) 15 (33.3) - - -

PVT, n (%) 11 (24.4) - - -

HE, n (%) 2(4.4%) - - -

Ascites, n (%) 9 (20) - - -

LC, liver cirrhosis; C, healthy controls; WBC, white blood cell; Hb, hemoglobin; PLT, blood platelet; ALT, alanine transaminase; AST, aspartate aminotransferase; TBIL, total bilirubin;

PT, prothrombin time; PTA, prothrombin activity; INR, international normalized ratio; CTP scores, Child-Turcotte-Pugh scores; MELD scores, Model for End-Stage Liver Disease scores;

HBV/HCV, Hepatitis B/C Virus; ALD, alcoholic liver disease; NAFLD, non-alcoholic fatty liver disease; AIH, autoimmune liver disease; EGV, esophageal and gastric variceal; PVT, portal vein

emboli; HE, hepatic encephalopathy.

Characterization of the intestinal
metabolome in liver cirrhotic patients

Based on the untargeted metabolomic technology, we

detected 11,382 variables in fecal samples from 45 cirrhotic

patients and 30 healthy individuals. Of these, 727 variables

were enriched in cirrhotic patients [VIP score>1, P < 0.05,

|log2(fold change) |>0], and 814 variables were enriched in

healthy individuals (Supplementary Figure 3A). OPLS-DA

analysis similarly demonstrated significant differences in the

metabolite composition of the samples from different subgroups

(Figure 3A). After metabolite annotation, we finally identified

130 differential metabolites. Sixty-eight of these metabolites were

enriched in cirrhotic patients, and another 62 were enriched

in healthy individuals (Supplementary Figure 3B). Ranking

all differential metabolites by VIP score, among the top 20

differential metabolites: 5,6-dihydroyangonin, glycyrrhizin,

diammonium glycyrrhizinate, bilirubin, (S)-2-acetamido-4-

amino-4-oxobutanoic acid, and protoporphyrin IX were enriched

in cirrhotic patients (Figure 3B). To further explore the biological

processes in which the differential metabolites might be involved,

we performed metabolic pathway annotation and enrichment

analysis based on the KEGG PATHWAY Database. The results

revealed that 49 differential metabolites were annotated to 75

metabolic pathways. Among them, the “porphyrin metabolism”

pathway showed the most significant enrichment effect (P =

0.053, hypergeometric test; Supplementary Figure 3C). Bilirubin,

biliverdin, protoporphyrin IX, and coproporphyrin I were jointly

involved in this metabolic pathway.

The e�ects of endoscopic treatment on gut
bacteria, fungi, and metabolites

In this study, 15 cirrhotic patients had fecal samples collected

before and after undergoing the endoscopic treatment. Based on

this, we further explored the effects of endoscopic treatment on

the intestinal bacteria, fungi, and metabolome of cirrhotic patients.
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A total of 8,506,082 high-quality 16S rRNA reads were obtained

from fecal samples of 15 treatment-before cirrhotic patients (TB

group), 15 treatment-after cirrhotic patients (TA group), and 30

healthy individuals (C group). A total of 8,009,700 high-quality

ITS rRNA reads were obtained. The average number of reads per

sample was 133,495 (5,771–280,279). After sequence processing,

7,069 ASVs (bacteria) and 712 ASVs (fungi) were obtained. The

rarefication curve of richness indicated that the current sample was

sequenced at a reasonable depth (Supplementary Figures 4A, E).

Compared with the TB group, the alpha diversity and beta diversity

of the TA group did not change significantly for either bacterial or

fungal communities (Figures 4A–D). Species classification results

of bacteria and fungi showed that at the phylum and genus

levels, the TA group had a similar species composition as the

TB group (Supplementary Figures 4B, C, F, G). LEfSe results

showed that the relative abundance of several bacterial and

fungal genera changed significantly after endoscopic treatment

(Supplementary Figures 4D, H). Among them, the bacterial genus

Acinetobacter and the fungal genus Cutaneotrichosporon (LDA

score >4) were enriched in the TB group, while the bacterial genus

Megamonas (LDA score > 4) and the fungal genera Coniochaeta

and Ascotricha (LDA score > 3) were decreased. In contrast, no

differential metabolic pathways related to bacteria and fungi were

found in predicting community functional composition based on

the MetaCyc database using PICRUSt2 software.

A total of 11,156 variables were detected in the metabolomic

analysis of 15 before- and 15 after-treatment cirrhotic patients.

Of these, 43 variables were enriched in the TA group [VIP

score > 1, P < 0.05, |log2(fold change) |>0], and 192 variables

were enriched in the TB group (Supplementary Figure 4I). The

OPLS-DA analysis demonstrated that before and after endoscopic

treatment, samples showed significant differences in metabolite

compositions (Figure 4E). After metabolite annotation, we finally

identified 16 differential metabolites. Only nandrolone was

enriched in the TA group, and the other 15 metabolites were

enriched in the TB group (Supplementary Figure 4J, Figure 4F).

Metabolic pathway annotation and enrichment analysis based on

the KEGG PATHWAY Database showed that four differential

metabolites were annotated to seven metabolic pathways. Among

them, the “butanoate metabolism” pathway showed the most

significant enrichment effect (P = 0.0058, hypergeometric test;

Supplementary Figure 4K). Maleic acid and D-malic acid (enriched

in the TB group) were involved in this metabolic pathway.

Multi-omics integration analysis

To explore the association between clinical indexes and

differential bacteria, fungi, and metabolites, we performed the

Spearman’s correlation analysis based on 45 cirrhotic patients and

30 healthy individuals. Depending on the number of significant

factors and the size of the p-values, we finally demonstrated

the ten most highly correlated features (differential bacteria,

fungi, and metabolites) in heatmaps (Figure 5). Overall, there

were significant associations between the clinical indexes ALB,

HGB, MELD, PLT, PTA, and WBC with various features. Among

bacterial genera, Acinetobacter (enriched in cirrhotic patients)

significantly negatively correlated with HGB and PTA indexes

(correlation coefficient<-0.6, P < 0.001). Dorea (enriched in

healthy individuals) significantly positively correlated with ALB,

HGB, and PTA indexes (correlation coefficient>0.6, P < 0.001).

Among the fungal genera, Saccharomyces (enriched in cirrhotic

patients) significantly negatively correlated with the PLT index

(correlation coefficient<-0.4, P < 0.001). Auricularia (enriched in

healthy individuals) significantly correlated not only with ALB,

HGB, and PTA indexes (correlation coefficient>0.5, P < 0.001)

but also with the MELD index (correlation coefficient<-0.5, P

< 0.001). Among the metabolites, 4-Acetyl-2-methylpyrimidine

and diammonium glycyrrhizinate (enriched in cirrhotic patients)

significantly negatively correlated with the PTA index (correlation

coefficient<-0.5, P < 0.001). 5,6-DHET (enriched in healthy

individuals) significantly positively correlated with the PTA, ALB,

and HGB indexes (correlation coefficient>0.5, P < 0.001).

Then we performed the Spearman’s correlation network

analysis for the bacterial genera (n = 83), fungal genera (n

= 116), and enriched metabolites (n = 68) in 45 cirrhotic

patients (LC group). The results showed significant associations

(|correlation coefficient|>0.4, P < 0.05, FDR corrected) between

74 bacterial genera, 59 fungal genera, and 53 enriched metabolites

(Supplementary Figure 5A). Overall, there were 519 positive and

149 negative correlations between different features. Compared

to fungi, there are more links between bacteria and enriched

metabolites. We also found 3 LC-enriched metabolites were

associated with bacterial and fungal genera, but the associations

differed (Supplementary Table 1). Within bacteria, 51 genera were

associated with each other, of which 10 were enriched in cirrhotic

patients (LDA score>3), including Streptococcus, Ligilactobacillus,

and Enterococcus. The top three bacterial genera ranked by degree

were Oscillibacter, Anaerobutyricum and Coprococcus. Within

fungi, 46 genera were associated with each other, with Pichia

enriched in cirrhotic patients (LDA score>3). The top three

fungal genera ranked by degree were Papiliotrema, Absidia, and

Aureobasidium. Within metabolites, associations existed among

36 enriched metabolites. The top three metabolites ranked by

degree were 7-Methylxanthine, L-Ribulose, and Theophylline. For

contrast, we also performed the Spearman’s correlation network

analysis for the bacterial genera (n = 83), fungal genera (n

= 116), and enriched metabolites (n = 62) in 30 healthy

individuals (C group). The results showed significant associations

(|correlation coefficient|>0.4, P < 0.05, FDR corrected) between

48 bacterial genera, 77 fungal genera, and 46 enriched metabolites

(Supplementary Figure 5B). Overall, there were 301 positive and 32

negative correlations between different features.

To explore the potential of different biomarkers for diagnosing

liver cirrhosis disease, 45 liver cirrhotic patients and 30 healthy

individuals were divided into a training set (34LC and 23C) and

a test set (11LC and 7C) to construct random forest models

based on the 16S data, ITS data, metabolites data, clinical indexes,

and a combination of them, respectively. Figures 6A, C, E, G, I

showed the top 20 features of different data types that contributed

most to the accuracy of predicted sample grouping. The random

forest model constructed based on 16S data had the lowest AUC

value of 0.75 (Figure 6B). The genera Acinetobacter (enriched in

LC patients), Kandleria, and Parasutterella (enriched in healthy

individuals) were three of the most important features to this
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model. Models constructed based on ITS data or clinical indexes

had close AUC values of 0.839 and 0.844, respectively (Figures 6D,

F). The fungal genera Auricularia, Hypsizygus, and Cladosporium

(enriched in healthy individuals), as well as the clinical indexes

PTA, MELD, and HGB were key features. The model constructed

on the basis of metabolites data had a high AUC value of

0.909 (Figure 6H). Metabolites MeAIB, 5-Aminopentanamide, and

N-Acetylglutamine enriched in LC patients were the top three

important features. Compared to other models, the random forest

model constructed by combining all four types of features had the

highest AUC value of 0.938 (Figure 6J).

Discussion

It has been widely known that gut microbial dysbiosis is a

bidirectional process with the development of cirrhosis because of

pathological interactions of the gut-liver axis (Albillos et al., 2020).

When the equilibrium between the intestinal microbiome and the

microenvironment is disturbed, increased microbial translocation

and dysbiosis result in liver injury and are closely linked to

the progression of cirrhosis (Acharya et al., 2017). Meanwhile,

abnormal liver function and portal hypertension easily occur in

the progression of cirrhosis, which will result in intestinal mucosal

barrier damage and weakening of the inhibitory effect of the

liver on intestinal harmful microbes (Wiest et al., 2014; Acharya

and Bajaj, 2017). The intestinal fungi and bacteria share micro-

habitats and complexly interact with microbial communities,

which have been shown to affect various biological processes

maintaining the stability of the intestinal environment (Huang X.

et al., 2023). Bacterial and fungal dysbiosis threaten the delicate

equilibrium that distinguishes cirrhosis and is associated with a

high mortality risk in patients with advanced liver disease through

the gut-liver axis (Maraolo et al., 2020; Chen L. et al., 2022). For

these reasons, our study focused on the interconnections among

cirrhosis-associated gut bacteria, gut fungi, microbial metabolites,

and disease conditions.

Previous studies have reported that cirrhotic patients

exhibited frequent gastrointestinal bacteria disturbances, which

are characterized by a decreased diversity, overgrowth of

Enterococcus, Enterobacteriaceae, and Bacteroidaceae, and a

reduction of the abundance of probiotic microorganisms, such

as Lachnospiraceae and Ruminococaceae (Gómez-Hurtado et al.,

2016; Wang et al., 2020). Our results in the present study showed

that intestinal bacterial alpha diversity was lower than healthy

controls (Figure 1A) and identified several compositional bacterial

differences in cirrhotic patients. At the genus level, the LC group’s

relative abundance of pathogenic bacteria such as Acinetobacter,

Enterococcus and Streptococcus significantly increased (Figure 1E),

which may cause an inflammatory reaction to aggravate liver

injury. It has been reported that Enterococcus and Streptococcus

are significantly abundant in patients with liver diseases, such as

autoimmune hepatitis (Ponziani et al., 2018; Zhong et al., 2021;

Huang X. Y. et al., 2023). Meanwhile, we observed decreased

beneficial bacterium abundance of Anaerobutyricum, Blautia,

Coprococcus, Dorea, Gemmiger, and Ruminococcus in LC group

(Figure 1E). KEGG analysis suggested that the variations in gut

bacteria led to significant differences in metabolic pathways

(Supplementary Figure 1D). In the LC group, more bacteria were

enriched in “fatty acid elongation—saturated,” “(5Z)-dodec-5-

enoate biosynthesis,” and “inosine-5′-phosphate biosynthesis III”

pathways. Notably, Blautia, Coprococcus, and Ruminococcus were

mainly involved in producing short-chain fatty acids, which are

widely thought to be beneficial microbial substances correlated

with a reduced risk of liver fibrosis and cirrhosis (Zhou et al.,

2019). Moreover, our study also exhibited strong linkages between

gut bacteria and cirrhosis clinical features (Figure 5A), especially

the severity of LC, including the MELD score, CTP score, and PTA

positively associated with potentially pathogenic taxa and inverse

correlations with the probiotic ones.

Analogous to intestinal bacteria disturbances, cirrhotic patients

exhibited intestinal fungi disorders with decreased fungal diversity

(Figure 2A) and a relative increase in abundance of opportunistic

fungal pathogens. In our study, Ascomycota and Basidiomycota

were the most common intestinal fungi at the phyla level in LC

patients and healthy controls (Figure 2C). Compared with healthy

controls, LC patients had an increased abundance of Ascomycota

and a decreased abundance of Basidiomycota (Figures 2C, E).

As reported, the Basidiomycota to Ascomycota ratio was used

to define fungal dysbiosis, and the gut fungal/bacterial metric

(Ascomycota/Bacteroidetes) was independently associated with

the risk of hospitalization (Bajaj et al., 2018). At the genus

level, our results found an increment of Saccharomyces and a

reduction ofAspergillus, and Penicillium associated with the clinical

variables (Figures 2E, 5B).Aspergillus,Cryptococcus,Debaryomyces,

Malassezia, Penicillium, and Saccharomyces have been more

vigorously studied in recent years to highlight the relationship

between gut fungi and human diseases, including liver diseases

(Suhr and Hallen-Adams, 2015; Doron et al., 2023). Of them,

some species of Saccharomyces were significantly associated with

the severity of the disease in cirrhotic patients (Costa et al., 2014).

The increased fecal abundance of Saccharomyces was also validated

in a cohort of patients with chronic hepatitis B virus (HBV)

infection and HBV-associated cirrhosis (Mou et al., 2018). Zhang

et al. (2023) have confirmed the decreased alpha diversity and

increased Saccharomycetes in LC patients with various etiologies.

Intriguingly, some edible mushroom genera from dietary sources

such as Auricularia and Hypsizygus were found in negatively

related to the severity of the liver cirrhosis in our data. Edible

mushrooms are healthy food with great therapeutic value as they

contain abundant bioactive metabolites with antioxidant, anti-

aging, antibacterial, anti-inflammatory properties. When exploring

the role of gut fungi in diseases, in addition to colonizing

fungi in the intestine itself, fungi from dietary sources may also

have a certain effect. In summary, our study demonstrated that

intestinal microbial disorders of patients with LC exhibited the

lack of potentially beneficial microbes, including an overgrowth of

potentially pathogenic microbes (bacteria and fungi), which may

affect and reflect the clinical features and severity of liver cirrhosis.

An essential function of the gut microbiota is metabolism,

which supplies nutrients to both microbes and host. Recently,

increasing evidence has shown that microbial metabolites play

pivotal roles in communicating among gut bacteria, fungi, and

hosts in various ways, leading to co-occurrence patterns of

fungi and bacteria (Gao et al., 2021). Microbial dysbiosis can

result in aberrant translocation of microbial components or
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FIGURE 1

Characterization of intestinal bacterial communities in liver cirrhosis patients. (A) Alpha diversity of bacterial communities between groups based on

Shannon index. (B) Principal coordinate analysis (PCoA) based on Bray-Curtis distance. (C) Bacterial community composition (phylum level). (D)

Bacterial community composition (genus level). (E) LEfSe analysis reveals di�erential bacteria between groups (LDA score > 3).

microbial-derived metabolites (such as bile acids, fatty acids, and

tryptophan metabolites) from the gut to the liver via the portal

circulation, which can affect the onset and progression of LC

(Trebicka et al., 2020). Consistent with the results of intestinal

microbial sequencing, we observed the raised prevalence of the

“fatty acid elongation—saturated” pathway and the reduced relative

abundance of unsaturated and short-chain fatty acid-producing

bacteria in patients with LC, suggesting a loss of beneficial fatty

acid in the intestinal environment resulting in more pervasive

gastrointestinal phenotypes. These metabolites may be involved in
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FIGURE 2

Characterization of intestinal fungal communities in liver cirrhosis patients. (A) Alpha diversity of fungal communities based on Shannon index. (B)

Principal coordinate analysis (PCoA) based on Bray-Curtis distance. (C) Fungal community composition (phylum level). (D) Fungal community

composition (genus level). (E) LEfSe analysis reveals di�erential fungi between groups (LDA score > 3).

regulating bacterial and fungal homeostasis and play an essential

role in the development and progression of cirrhosis. This also

suggests that metabolites in the gut are probably not just from the

same species but may be regulated by multiple ones.

Esophageal and gastric varices is one of the potentially life-

threatening complications of LC, resulting in high mortality

(Lesmana et al., 2020). Esophageal and gastric variceal bleeding

(EGVB) can represent a risk factor for the development of bacterial

infections in up to 45% of patients (Tandon and Garcia-Tsao,

2008). In our study, we exhibited the gut microbial ecology in LC

patients with EGV. Endoscopic procedures (endoscopic variceal

ligation, endoscopic injection sclerotherapy, and endoscopic

tissue adhesive) remain the mainstay recommended by domestic

and international guidelines for treating EGV and controlling
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FIGURE 3

Characterization of intestinal metabolites in liver cirrhosis patients. (A) OPLS-DA analysis reveals di�erences in metabolite composition of samples

between groups. Red color represents 45 liver cirrhosis patients (LC group) and blue color represents 30 healthy individuals (C group). (B) Top20

intergroup di�erential metabolites (sorted by VIP score).

acute bleeding. Changes caused by the endoscopic treatment

in portal vein pressure, blood flow, and gastric function may

alter gut microbiota composition and abundance. A total

of 15 LC patients with EGV who underwent endoscopic

treatment were enrolled to investigate the potential roles of

endoscopic treatment on gut microbial changes. Finally, no

significant differences were found in diversity of gut bacteria

and fungi (Figures 4A–D), composition at the phylum level

(Supplementary Figures 4B, F), and microbial metabolic pathways

before and after endoscopic procedures. However, several bacterial

and fungal genera were differentiated after endoscopic treatment

(Supplementary Figures 4D, H), which may affect subsequent

EGV bleeding. However, it will need long-term follow-up

and monitoring.

The gut bacteria and fungi contribute to the intestinal

ecosystem through their key roles in host interactions and

homeostasis. Fungal–bacterial interactions underlie both the

pathogenesis and the progression of disease (Krüger et al., 2019).

Previous study found that gut fungi can produce antimicrobial

peptides to influence bacterial colonization (Kombrink et al., 2019),

while bacteria can modulate fungal commensalism, pathogenesis

and growth by affecting fatty acids generation (García et al., 2017;

McCrory et al., 2024). The most widely studied pathogenic fungi

being antagonized by commensal bacteria (such as Streptococcus

and Clostridium difficile) is C. albicans (Santus et al., 2021).

Except that, data on the interactions between other fungi

and bacteria are limited. Our study preliminarily explored a

cirrhosis-specific interkingdom network among bacterial genera,

fungal genera, and enriched metabolites (Supplementary Figure 5,

Supplementary Table 1), and the type of interactions between these

bacteria and fungi might have clinical relevance. Three cirrhosis-

enriched metabolites were associated with bacterial and fungal

genera, but the associations differed (Supplementary Table 1).

Although the roles of these interaction are still unclear, these

findings can broaden our knowledge of the function and crosstalk

of gut microbiota.

Gut microbes have been used as novel molecular biomarkers,

mainly for disease risk prediction modeling, and have proved

their value in several diseases (e.g., diabetes, enteritis, and bowel

cancer). Previous studied have interrogated shotgun metagenomic,

untargeted metabolomic profiles and random forest machine

learning algorithm to evaluate the diagnostic accuracy based on

a set of liver fibrosis/cirrhosis-related bacterial and metabolomic

signatures, and the result were effective (AUC: 0.72–0.91; Loomba

et al., 2017; Lee et al., 2020; Oh et al., 2020). The construction of

disease risk models for liver cirrhosis was also attempted in our

study with multiple data combinations. Our modeling was based

on gut microbiome data and clinical indexes from 45 patients with

cirrhosis and 30 healthy individuals, with AUCs ranging from 0.750

to 0.938. Moreover, we found that the efficacy of diagnostic models

based on fungal signatures is not inferior to those based on bacterial

or metabolic signatures. Combining the metagenomic signature

with key clinical indicators (PTA, MELD, and HGB) accurately

distinguished cirrhosis in etiologically can improve the diagnostic

efficacy of liver cirrhosis.

Of course, several issues should also be addressed. Firstly, we

used an insufficient number of samples (case: 45 vs. control:30),

thus we did not classify cirrhosis patients in detail, and differences

in disease subtypes, which has an impact on our screening of

differential bacteria, fungi, and metabolites. Secondly, the overall

performance of our models was not promising enough, there

is still much room for improvement in the AUC of the risk

prediction model as well as its stability. Thirdly, this study

mainly used amplicon sequencing to study bacteria and fungi

in the gut microbiota. Therefore, more large-scale research must

be done on the genes and functions of bacteria and fungi by

mNGS sequencing. We plan to remedy these deficiencies in

subsequent studies.
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FIGURE 4

E�ect of endoscopic treatment on intestinal bacteria, fungi, and metabolites in liver cirrhosis patients. Red, green, and blue colors represent 15

treatment-before cirrhotic patients (TB group), 15 treatment-after cirrhotic patients (TA group), and 30 healthy individuals (C group), respectively. (A)

Alpha diversity of bacterial communities based on Shannon index. (B) Principal coordinate analysis (PCoA; bacteria) based on Bray-Curtis distance (P

= 0.001, PERMANOVA with ADONIS test). (C) Alpha diversity of fungal communities based on Shannon index. (D) Principal coordinate analysis (PCoA;

fungi) based on Bray-Curtis distance. (E) OPLS-DA analysis reveals di�erences in metabolite composition of samples between groups. (F) Di�erential

metabolites in patients with cirrhosis before and after treatment (sorted by VIP score).

Conclusion

In conclusion, our study presented the cirrhosis-associated

intestinal microbial characteristics and highlighted the gut bacteria-

fungi-metabolite interactions in patients with cirrhosis. Meanwhile,

we constructed a predicted diagnosis of cirrhosis using a random

forest model based on identified intestinal microbial and clinical

features. This interaction provides a new direction and theoretical

basis for exploring gutmicrobiota-based diagnostic and therapeutic

strategies for cirrhotic patients. Further mechanistic studies of

fungal, bacterial, and metabolic ecological interactions in liver

cirrhosis are required.
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FIGURE 5

Correlation analysis of clinical indexes with di�erent features. (A) Top10 di�erential bacterial genera most correlated with clinical indexes. (B) Top10

di�erential fungal genera most correlated with clinical indexes. (C) Top10 di�erential metabolites most correlated with clinical indexes. The red color

in the heatmap represents positive correlation and the blue color represents negative correlation. P < 0.05; **P < 0.01; ***P < 0.001 (FDR corrected).
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FIGURE 6

Random forest model for the diagnosis of cirrhosis. (A) Top 20 bacterial genera contributing most to the accuracy of predicting sample grouping. (B)

Bacterial genera used to discriminate between cirrhotic patients and healthy individuals with an AUC of 0.750. (C) Top 20 fungal genera contributing

most to the accuracy of predicting sample grouping. (D) Fungal genera used to discriminate between cirrhotic patients and healthy individuals with

an AUC of 0.839. (E) Top 20 clinical indexes contributing most to the accuracy of predicting sample grouping. (F) Clinical indexes used to

discriminate between cirrhotic patients and healthy individuals with an AUC of 0.844. (G) Top 20 metabolites contributing most to the accuracy of

predicting sample grouping. (H) Metabolites used to discriminate between cirrhotic patients and healthy individuals with an AUC of 0.909. (I) Top 20

features contributing most to the accuracy of predicting sample grouping. (J) Bacterial and fungal genera, metabolites, and clinical indexes used to

discriminate between cirrhotic patients and healthy individuals with an AUC of 0.938.
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SUPPLEMENTARY FIGURE 1

Analysis of intestinal bacterial communities in cirrhotic patients. (A)

Rarefaction curves. (B) Presence of ASVs (relative abundance > 0.1%) within

di�erent subgroups. (C) PCA analysis of the functional composition of

communities in di�erent subgroups. (D) Di�erential pathways in di�erent

subgroups (di�erence between proportions > 0.17%, q-value < 0.01).

Pathway names not shown in full are adenosylcobalamin biosynthesis from

cobyrinate a,c-diamide I, superpathway of guanosine nucleotides de novo

biosynthesis I, superpathway of guanosine nucleotides de novo

biosynthesis II.

SUPPLEMENTARY FIGURE 2

Analysis of intestinal fungal communities in cirrhotic patients. (A)

Rarefaction curves. (B) Presence of ASVs (relative abundance > 0.1%) within

di�erent subgroups. (C) PCA analysis of the functional composition of

communities in di�erent subgroups. (D) Di�erential pathways (di�erence

between proportions > 0.3%, q-value < 0.01) in di�erent subgroups.

Pathway names not shown in full are NAD/NADP-NADH/NADPH

mitochondrial interconversion (yeast), phospholipid remodeling

(phosphatidylethanolamine, yeast).

SUPPLEMENTARY FIGURE 3

Analysis of intestinal metabolites in cirrhotic patients. (A) Distribution of

metabolites di�ering between groups. Metabolites enriched in group C are

shown in blue, metabolites enriched in group LC are shown in red, and

metabolites without significant di�erences are shown in gray. (B)

Distribution of the 130 identified di�erential metabolites among samples.

Darker colors indicate higher relative abundance of metabolites. Red color

represents 45 patients with liver cirrhosis (LC group) and blue color

represents 30 healthy control individuals (C group). (C) Results of KEGG

pathway enrichment analysis of di�erential metabolites (Top 30). Vertical

coordinates are KEGG pathways enriched for di�erential metabolites. The

horizontal coordinate, Rich factor, is the ratio of the number of di�erential

metabolites in the corresponding pathway to the total number of

metabolites detected and annotated in that pathway. A larger value

indicates a greater degree of enrichment. The size of the dot represents the

number of di�erential metabolites enriched. The color of the dots is the

hypergeometric test p-value, with redder values indicating more

significant enrichment.

SUPPLEMENTARY FIGURE 4

Analysis of intestinal bacterial and fungal communities and metabolites in

patients with liver cirrhosis after the endoscopic treatment. (A) Rarefaction

curves (bacteria). (B) Bacterial community composition (phylum level). (C)

Bacterial community composition (genus level). (D) LEfSe analysis reveals

di�erential bacteria between groups (LDA score > 3). (E) Rarefaction curves

(fungi). (F) Fungal community composition (phylum level). (G) Fungal

community composition (genus level). (H) LEfSe analysis reveals di�erential

fungi between groups (LDA score > 3). (I) Distribution of di�erential

metabolites in cirrhotic patients before and after treatment. Red color

represents metabolites enriched in TA group and blue color represents

metabolites enriched in TB group. (J) Distribution of 16 identified di�erential

metabolites in samples between groups. (K) Results of KEGG pathway

enrichment analysis of 16 identified di�erential metabolites.

SUPPLEMENTARY FIGURE 5

Correlation network of enriched metabolites with bacteria and fungi. (A) LC

group network. (B) C group network. Blue triangles, red squares and cyan

circles represent bacterial genera, fungal genera, and LC-enriched

metabolites, respectively. Larger nodes have more associations with other

nodes. Red lines represent positive correlations and blue lines represent

negative correlations. Spearman’s correlation coe�cient|>0.4, P < 0.05

(FDR corrected).
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