Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.
Sec. Microbe and Virus Interactions with Plants
Volume 15 - 2024 | doi: 10.3389/fmicb.2024.1442208

Ecological Shifts in Soil Microbiota and Root Rot Disease Progress during Ginseng Monoculture

Provisionally accepted
  • 1 Gyeongsang National University, Jinju, Republic of Korea
  • 2 Rural Development Administration (South Korea), Jeonju, North Jeolla, Republic of Korea

The final, formatted version of the article will be published soon.

    The phenomenon in which the damage of plant diseases is suppressed by continuous cropping is defined as "suppressiveness" and the development of suppressive soils and key beneficial microorganisms have been identified through various previous studies. However, no studies have been conducted on microbial communities related to disease occurrence before the initial occurrence of diseases in crop monoculture. Here, we aimed to investigate the ecological modifications of pathogen population density in soil, disease occurrence rate, and microbiota community shifting during ginseng monoculture to better understand the tripartite social relationships in the monoculture system. To achieve the study's objectives, a long-term monoculture of ginseng was established. The microbial diversity and community structure were analyzed using high-throughput sequencing, and the pathogen population density and disease occurrence rate were determined using qPCR and observation. The results showed that the initial rhizosphere bacterial community of ginseng had already collapsed before the development of the root rot disease. The study also identified the crucial role of soil-borne pathogens in causing disease and the loss of initial keystone taxa populations in the early stages of monoculture. Our study revealed a novel aspect of soil microbiota dynamics during ginseng monoculture, with seven distinct microbes (Beijerinckiaceae, Comamonadaceae, Devosiaceae, Rhizobiaceae, Sphingobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae) participating in soil nitrogen metabolism as an ‘initial community’ that regulates root rot disease through nutritional competition. The findings contribute to ecological research on disease-suppressiveness soil, disease management, and sustainable agriculture.

    Keywords: Influencer taxa, ginseng, keystone taxa, Root rot disease, Suppressive soil

    Received: 03 Jun 2024; Accepted: 09 Oct 2024.

    Copyright: © 2024 Kwak, Cho and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Youn-Sig Kwak, Gyeongsang National University, Jinju, Republic of Korea

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.