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Introduction: The severity of Coronavirus disease 2019 (COVID-19) caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated 
by a range of comorbidities. A considerable literature suggests iron deficiency and 
iron overload may contribute to increased infection, inflammation and disease 
severity, although direct causal relationships have been difficult to establish.

Methods: Here we  generate iron deficient and iron loaded C57BL/6  J mice 
by feeding standard low and high iron diets, with mice on a normal iron diet 
representing controls. All mice were infected with a primary SARS-CoV-2 
omicron XBB isolate and lung inflammatory responses were analyzed by 
histology, immunohistochemistry and RNA-Seq.

Results: Compared with controls, iron deficient mice showed no significant 
changes in lung viral loads or histopathology, whereas, iron loaded mice 
showed slightly, but significantly, reduced lung viral loads and histopathology. 
Transcriptional changes were modest, but illustrated widespread dysregulation 
of inflammation signatures for both iron deficient vs. controls, and iron loaded 
vs. controls. Some of these changes could be  associated with detrimental 
outcomes, whereas others would be viewed as beneficial.

Discussion: Diet-associated iron deficiency or overload thus induced modest 
modulations of inflammatory signatures, but no significant histopathologically 
detectable disease exacerbations.
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Introduction

In mammals hundreds of proteins use iron in a multitude of cellular activities (Galy et al., 
2024) including inflammation and immunity (Ni et al., 2022). Iron levels and distributions in 
different tissues and cells, under different conditions, are regulated by a complex network of 
processes (Vogt et al., 2021). Iron studies have been conducted for a range of diseases, with a 
diverse spectrum of findings (Ali et al., 2017; Charlebois and Pantopoulos, 2023). For instance, 
for tuberculosis and salmonella, anaemia is linked to poor outcomes, but iron supplementation 
can exacerbate infections (Hoffmann et al., 2021; Nienaber et al., 2023). For hepatitis B and 
hepatitis C virus infections, iron overload has been associated with poor prognosis (Schmidt, 
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2020), whereas for pediatric HIV cases, iron supplementation has 
been associated with disease progression (Andersen et al., 2022).

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the etiological agent of Coronavirus disease 2019 (COVID-
19) (Worobey et al., 2022; Crits-Christoph et al., 2023) and has caused 
a global pandemic involving ~775 million cases and ~ 7 million deaths 
worldwide (WHO, 2024a). COVID-19 is often associated with a 
‘cytokine storm’ and the life threatening, acute respiratory distress 
syndrome (ARDS). The severity of COVID-19 is influenced by a range 
of comorbidities (Chenchula et al., 2023; Finnerty et al., 2023; Silaghi-
Dumitrescu et al., 2023), with a large body of literature suggesting that 
iron deficiency and iron overload may also contribute to disease 
severity (Cavezzi et al., 2020; Campione et al., 2021; Girelli et al., 2021; 
Habib et al., 2021; Lanser et al., 2021a; Biasiotto and Ferrari, 2022; 
Gupta et al., 2022; Sonnweber et al., 2022; Zhou et al., 2022; Chaubey 
et al., 2023; Naidu et al., 2023; Hanson et al., 2024; Liao et al., 2024).

Multiple studies have shown that SARS-CoV-2 infection disrupts 
iron homeostasis and/or modulates iron-associated biomarkers 
(Dahan et al., 2020; Taneri et al., 2020; Girelli et al., 2021; Onur et al., 
2021; Tojo et al., 2021; Wojciechowska et al., 2021; Bastin et al., 2022; 
Hegelund et al., 2022; Mohus et al., 2022; Sana and Avneesh, 2022; 
Aslan et al., 2023; Naidu et al., 2023). This is not unique to SARS-
CoV-2, as many infections modulate iron biomarkers (Ward et al., 
2022), with clinical determinations of iron status thus generally 
unreliable in patients presenting with infectious and/or inflammatory 
diseases (Suchdev et al., 2017; Camaschella, 2019). Establishing the 
iron status of a patient presenting with COVID-19 is thus similarly 
complicated. How patients’ iron status prior to SARS-CoV-2 infection 
affects the severity of COVID-19 after infection is also often difficult 
to explore in clinical settings, as patients tend to present only after they 
have developed disease.

Iron deficiency is a widespread problem and is associated with a 
range of clinical issues, primarily anemia (Gattermann et al., 2021; 
Pasricha et al., 2021). Pre-existing anemia has been associated with 
increased mortality risk for hospitalized COVID-19 patients (Lanser 
et  al., 2021a), perhaps due to SARS-CoV-2 infection further 
exacerbating the anemia (Bergamaschi et  al., 2021). Dietary iron 
deficiency is responsible for about half the ≈2 billion cases of anemia 
globally (Pasricha et al., 2021; Hussien et al., 2023); however, anemia 
can have a variety of causes; globally this primarily involves 
thalassemias, sickle cell trait, and malaria (WHO, 2024b). Other 
conditions are also associated with anemia, including alcoholism 
(Manrai et al., 2022), diabetes (Praveen et al., 2020), cardiovascular 
disease (Lanser et  al., 2021b) and chronic obstructive pulmonary 
disease (Alisamir et al., 2022). Whether the anemia arising from an 
iron deficient diet, or the comorbidity giving rise to the anemia, is 
responsible for the increase in COVID-19 severity remains unclear 
(Ko et  al., 2020; Gerayeli et  al., 2021; Gregory et  al., 2021; 
Papadopoulos et al., 2021; Andreen et al., 2022). Iron dysregulation 
and inflammatory stress erythropoiesis have also been associated with 
long-COVID (Hanson et al., 2024). However, cause and affect are 
again difficult to verify, as increased iron dysregulation and stress 
erythropoiesis may be  the result of more severe SARS-CoV-2 
infections (Bergamaschi et  al., 2021; Huerga Encabo et al., 2021), 
which then predispose to more pronounced long-COVID (Rosa et al., 
2023; Zhao et al., 2023).

A number of publications have speculated on a connection 
between iron overload and increased severity of COVID-19, largely 

based on iron biomarker studies (Cavezzi et al., 2020; Campione et al., 
2021; Habib et al., 2021; Biasiotto and Ferrari, 2022; Gupta et al., 2022; 
Naidu et al., 2023; Liao et al., 2024). In addition, iron loaded mice, 
injected with a pseudovirus dis-laying the spike protein, showed an 
increase in serum CCL4, IL1β, IL-6 and TNFα levels (Chaubey et al., 
2023). Iron overload can arise from a number of conditions, most 
famously hereditary hemochromatosis or thalassemias (Hsu et al., 
2022), which lead to a unique pattern of body and cellular iron 
distributions (Queiroz-Andrade et  al., 2009; Cavey et  al., 2019). 
However, iron overload can also arise from excessive dietary iron 
intake, which is primarily associated with excessive iron supplement 
consumption (Bell et al., 2000; Deugnier et al., 2002; Barton et al., 
2006; Lands and Isang, 2017), but can also be associated with a high 
iron diet (Kasvosve et al., 2000). Whether pre-existing iron loading 
due to a high iron diet (in the absence of co-morbidities) exacerbates 
acute COVID-19 severity remains largely unexplored.

Here we  use adult wild-type C57BL/6 J mice and established 
models of diet-induced iron deficiency and iron overload (Mirciov 
et al., 2017; Rishi et al., 2018; Ali et al., 2020; Helman et al., 2022), and 
SARS-CoV-2 infection (Bishop et al., 2024; Carolin et al., 2024). Iron 
deficient and iron loaded mice were compared with control mice (fed 
a normal iron diet) after infection with a primary human omicron 
XBB isolate of SARS-CoV-2 (Stewart et al., 2023). Unlike the original 
strain isolates, omicron variants effectively utilize the mouse 
Angiotensin-Converting Enzyme 2 as an entry receptor (Zhang et al., 
2022), allowing use of wild-type mice. The impacts of the iron 
modified diets on viral replication and inflammatory disease in the 
infected mouse lungs were characterized using histology (H&E 
staining), immunohistochemistry and RNA-Seq at 2 days post 
infection (dpi) (peak viral load) and 6 dpi (peak of acute immune 
pathology) (Bishop et  al., 2024; Carolin et  al., 2024). Although 
widespread modulations in transcriptional signatures associated with 
inflammatory responses were observed, neither iron deficiency nor 
iron overload resulted in significant increases in viral replication 
or histopathology.

Results

Iron deficient vs. control diet; mouse 
weights and viral loads

Male C57BL/6 J mice were fed either a control diet (normal iron) 
or a diet deficient in iron for 7 weeks (Figure 1A). The iron deficient 
diet resulted in a significant reduction in growth rates so that mice 
were ≈5 grams (≈17%) lighter than controls just prior to infection (0 
dpi) (Figure  1B). XBB infection had no significant effects on the 
weight of mice in either the control or the iron deficient groups 
(Supplementary Figure S1). Lungs were harvested on 2 dpi (peak viral 
titers) and 6 dpi (day of peak lung pathology) (Bishop et al., 2022; 
Bishop et al., 2024). There were no significant differences in lung tissue 
titers (Figure  1C), or in lung viral read counts as determined by 
RNA-Seq (Figure 1D). Viral titers in the nasal turbinates were slightly, 
but significantly, lower (0.62 log10CCID50/g, p = 0.009) at 2 dpi in mice 
fed the iron deficient diet (Supplementary Figure 2A).

Thus, although an iron deficient diet moderately reduced the 
growth of the mice, SARS-CoV-2 tissue titers were not significantly 
different in lungs, and were slightly lower in nasal turbinates.
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FIGURE 1

Iron deficient vs. control diets; weights, viral loads and iron parameters. (A) Time line of experiment. (B) Mean percentage increases in mouse body 
weights prior to XBB infection. The mean body weights ± SD in grams are also provided for week 0 (also 0 dpi) in text at the top right of the graph. 
Statistics by t test for weight differences at week zero, n  =  11/12 mice per group. There were no significant weight changes after infection 
(Supplementary Figure S1). (C) Lung tissue XBB virus titers. Limit of detection ≈2 log10CCID50/g (dashed line); ND, not detected. (D) XBB viral read 

(Continued)
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Iron parameters for mice on iron deficient 
vs. control diets at 2 and 6 dpi

Standard iron parameters were evaluated to confirm the effects of 
the iron deficient diet. As expected, serum (non-heme) iron levels 
(Figure  1E) and transferrin saturation levels (Figure  1F) were 
significantly lower in mice on the iron deficient diet. We could not 
identify any reasons for high serum iron and transferrin saturation 
levels in two iron deficient mice (Figures 1E,F, one at 2 dpi and one at 
6 dpi), with results confirmed by repeat assays. They perhaps reiterate 
the unreliable nature of such iron studies during active inflammatory 
disease (Suchdev et al., 2017; Camaschella, 2019). Mice on the iron 
deficient diet showed significantly lower liver iron levels (Figure 1G), 
with assessments of liver iron arguably the most reliable method 
(Kohgo et al., 2008) to confirm that the diet had successfully reduced 
iron levels. Liver hepcidin mRNA levels and serum hepcidin levels 
were also significantly lower in mice on the iron deficient diet 
(Figures 1H,I), consisted with the role of hepcidin in iron sequestration 
(Ginzburg, 2019). Although inflammation can up-regulate hepcidin, 
the robust iron deficiency likely plays the dominant role in suppressing 
hepcidin levels in this setting (Figure 1I) (Darshan et al., 2010).

In summary, taken together, the measured iron parameters 
confirmed that the iron deficient diet had successfully reduced iron 
levels in the mice.

Iron deficient vs. control diet; 
immunohistochemistry at 2 dpi

Lung sections were stained with a SARS-CoV-2 spike specific 
monoclonal antibody (Morgan et al., 2023). Staining was primarily 
associated with the bronchial epithelium and cellular debris in the 
bronchial lumen (Figure 1J). The latter likely represents bronchial 
epithelial cells sloughed-off into the airways after infection-induced 
cytopathic effects (CPE). No overt differences in staining was observed 
for mice on the iron deficient vs. control diets, consistent with data in 
Figures 1C,D. IHC staining of an uninfected mouse lung, illustrating 
the low level of background staining, is shown in Supplementary  
Figure S3A.

Iron deficient vs. control diet; 
histochemistry and histopathology

Lung sections taken at 2 and 6 dpi were stained with H&E and 
scanned slides were examined by a European board-certified 
veterinary pathologist for histopathological lesions. Lung lesions were 
scored using 6 criteria with examples shown; (i) emphysema 
(Figure  2A), (ii) bronchial epithelium damage (Figure  2B), (iii) 
bronchial content (Figure 2C), which occasionally included red blood 

cells (RBC) (Supplementary Figure S3B), (iv) vascular changes 
comprising leukostasis (Figures  2D,E), perivascular hemorrhage 
(Figure  2D) and/or leukocytoclasis (Figure  2F), (v) perivascular 
edema (Figure 2G) and (vi) perivascular and/or peribronchial cuffing 
(Figure 2H). Scores were summed to provide a cumulative score for 
each mouse (Supplementary Figure S4A), with no significant 
differences emerging between groups (Figure 2I).

White space analysis, an approximate measure of lung 
consolidation, showed the expected (Rawle et al., 2021; Yan et al., 
2022; Dumenil et al., 2023) significant reduction in virus-infected 
mice compared with uninfected mice (Supplementary Figure S5). 
However, no significant differences emerged between mice on the 
different diets, although white space reductions appeared to have 
occurred slightly earlier (2 dpi) in some iron deficient mice 
(Supplementary Figure S5).

Using the same H&E stained sections, a pixel count analysis was 
undertaken to generate a ratio of nuclear (purple) to cytoplasmic (red) 
staining, which provides an approximate measure of leukocyte 
infiltration (Prow et al., 2019; Dumenil et al., 2023). As expected, 
infected mice showed significantly more infiltrates than naïve mice; 
however, no significant differences emerged between infected mice on 
the different diets (Supplementary Figures S6A,B).

Iron deficient vs. control diet; lung 
RNA-Seq at 2 dpi

RNA-Seq analysis of lungs at 2 dpi from mice fed an iron deficient 
vs. a control diet identified only 109 DEGs, with all but 5 of these 
showing low (<1 log2) fold change (Supplementary Table S1). (PC2/
PC1 plots for all the RNA-Seq data are shown in 
Supplementary Figure S7). A heat map of the top  100 genes that 
provided the greatest contribution to the segregation between iron 
deficient vs. control groups, further illustrated that gene expression 
differences between these groups was low and not particularly focused 
on any specific set of genes (Supplementary Figures S8A,B). The 
results from the bioinformatic analyses are shown in 
Supplementary Table S1 and are summarized in Figure 3A.

The 109 DEGs were analyzed by Ingenuity Pathway Analysis 
(IPA). Using the Up Stream Regulator (USR) feature, mild modulation 
of inflammatory cytokine signatures was identified (Figure 3A). As 
iron deficiency has been associated with changes in the Th1/Th2 
cytokine balance (Roth-Walter et  al., 2017; Ni et  al., 2022; Roth-
Walter, 2022), the Th1 or Th2 association for each cytokine is shown 
(Figure  3A), although 2 dpi is generally too early for significant 
adaptive T cell responses. The IPA Diseases or Functions feature 
identified a series of top annotations associated with cellular 
protrusions, cytoskeleton and actin (Figure 3A). These annotations 
may indicate increased leukocyte tethering and rolling (Kameritsch 
and Renkawitz, 2020) in the iron deficient mice. However, significant 

counts obtained from RNA-Seq of lung tissues. (E–I) Iron parameters from the same mice described in b-d; Control—black symbols, Iron deficient—
blue symbols. (E) Serum iron levels. Statistics by Kolmogorov–Smirnov exact tests. (F) Transferrin saturation. Statistics by Kolmogorov–Smirnov exact 
test (2 dpi) and t test (6 dpi). (G) Liver iron levels. Statistics by t tests. (H) Liver Hamp mRNA levels; the Hamp gene encodes hepcidin. Statistics by 
Kolmogorov–Smirnov exact tests. (I) Serum hepcidin levels. Statistics by Kolmogorov–Smirnov exact tests. (J) IHC of mouse lung at 2 dpi for mice on 
the control diet compared with mice on an iron deficient diet. Staining was undertaken using an anti-SARS-CoV-2 spike protein monoclonal antibody. 
B—bronchial air space. Blue arrows—sloughing of virus infected bronchial epithelial cells (and associated cell debris) into the bronchial lumen.

FIGURE 1 (Continued)

https://doi.org/10.3389/fmicb.2024.1441495
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Carolin et al. 10.3389/fmicb.2024.1441495

Frontiers in Microbiology 05 frontiersin.org

FIGURE 2

Iron deficient vs. control diets; lung histopathology. H&E staining of infected lungs. (A) Iron deficient diet 2 dpi showing dilated coalescing alveoli 
(D) illustrating emphysema. a, alveoli. Whole slide score for emphysema  =  1 on a 0–2 scale. (B) Control diet 2 dpi showing necrotic bronchial epithelia 
cells (blue arrow) and partial loss of bronchial epithelial architecture (dashed oval). B, bronchial lumen. Whole slide score for bronchial epithelial 
damage  =  2 on a 0–3 scale. (C) Control diet 2 dpi showing cellular debris in bronchial air space (dashed oval); this material stains positive for viral 
antigen. B, bronchial air space. Whole slide score for bronchial content  =  2 on a 0–3 scale. (D) Control diet 2 dpi showing occlusion of the vascular 
lumen by clumps of leukocytes (leukostasis) (white arrow), with perivascular hemorrhage (dashed oval). Whole slide score for vascular wall changes  =  3 
on a 0–3 scale. (E) Iron deficient diet 6 dpi showing clumps of leukocytes adherent to the blood vessel intima (arrows). V, vascular lumen. Whole slide 
score for vascular wall changes  =  2. (F) Control diet 2 dpi showing leukocytoclasis (vascular damage caused by nuclear debris from infiltrating 
neutrophils) (black arrow). Blue arrow—neutrophil. Whole slide score for vascular wall changes  =  3. (G) Control diet 2 dpi showing perivascular edema 
(E). V, vascular lumen. Whole slide score for edema  =  2 on a 0–2 scale. (H) (Top) Iron deficient diet 2 dpi showing perivascular cuffing (arrows). V, 
vascular lumen. Whole slide score for perivascular/peribronchial cuffing =2. (Bottom) Control diet showing peribronchial cuffing (white dashed box 
showing leukocytes). B, bronchial lumen. Whole slide score for perivascular/peribronchial cuffing =3 on a 0–3 scale. (I) Cumulative lung lesion scores 
for each mouse; raw data is shown in Supplementary Figure S4A.
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histological differences were not apparent (Supplementary Figure S9), 
as might be expected with only 109 DEGs.

Gene set enrichment analyses (GSEAs) were undertaken using the 
‘All genes’ list (ranked by fold change) (Supplementary Table S1) and 
gene sets from the Molecular Signatures Database (MSigDB) (Liberzon 
et al., 2015; Castanza et al., 2023). This analysis identified a series of 
annotations, with high Normalized Enrichment Scores (NES), that were 
associated with erythroblasts (Figure 3A, NES ≈ 2.4–2.6). Erythroblasts 
are ordinarily restricted to bone marrow, with the loss of the nucleus 
from these cells preceding release of the resulting reticulocytes, immature 
red blood cells (RBC), into the circulation. Reticulocytes retain the 
mRNA profile of erythroblasts in the final stages of maturation (Goh 
et al., 2007). These erythroblast annotations thus likely reflect an increase 
in gene signatures associated with reticulocytosis in iron deficient mice. 
Viral infections, including COVID-19, can result in significant damage 
to RBC (Al-Kuraishy et al., 2022; Russo et al., 2022), with COVID-19 
also able to infect RBC progenitors (Kronstein-Wiedemann et al., 2022). 
Erythropoiesis is thus stimulated (Hanson et al., 2024), with erythroblasts 
adapting to iron deficient conditions by modulating gene expression (Liu 
et al., 2008; Wollmann et al., 2014; Kobayashi et al., 2017), with such 
modulation likely giving rise to these erythroblast annotations.

In summary, at 2 dpi iron deficiency imparted only mild 
transcriptional changes, which were associated with minor 
modulation of inflammatory cytokine, and perhaps tethering and 
rolling, signatures. Erythroblast/reticulocyte signatures also indicated 
erythroblast adaptation to low iron conditions.

Iron deficient vs. control diet; lung 
RNA-Seq at 6 dpi

RNA-Seq analysis of lungs at 6 dpi from mice fed an iron deficient 
diet vs. a control diet identified 515 DEGs, with all but 23 of these 
showing low (<1 log2) fold change (Supplementary Table S2). The 
results from the bioinformatic analyses are shown in 
Supplementary Table S2 and are summarized in Figure 3B (see below).

IPA USR analysis again identified modulation of cytokine 
response signatures that were generally associated with up-regulation 
of Th1 signatures and down-regulation of Th2 signatures (Figure 3B). 
This contrasts with previous reports that suggest immune activation 
under iron-deficient conditions results in the expansion of Th2, but 
not Th1 cells (Roth-Walter et al., 2017; Roth-Walter, 2022). However, 

FIGURE 3

Iron deficient vs. control diets; bioinformatic summary. (A) RNA-Seq analysis of lungs from mice fed an iron deficient vs. control diet at 2 dpi yielded 
109 DEGs. DEGs were analyzed by IPA using the Up-Steam Regulator (USR) (cytokine annotations shown), and Disease and Function features. The All 
genes list was interrogated using GSEAs and gene sets provided by MSigDB. Full data sets are provided in Supplementary Table S1. 1USR annotation is 
“IL-12 (family)” and Molecular Type is “group” rather than “cytokine.” (B) RNA-Seq analysis of lungs from mice fed an iron deficient vs. control diet at 6 
dpi yielded 515 DEGs. Bioinformatic summary as for a, with the addition of USRs associated with stress responses, and IPA Canonical pathway 
annotations. Full data sets are provided in Supplementary Table S2.
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such Th1/Th2 modulation is likely to be setting dependent (Ni et al., 
2022). For instance, iron deficiency is reported to blunt IL-6 responses 
(Ekiz et al., 2005; Darshan et al., 2010) in some settings, but not others 
(Nakagawa et  al., 2014). Consistent with the observations herein 
(Figure  3B), iron deficiency has been reported to reduce IL-4 
(Kuvibidila et al., 2012) and IL-17A responses (Li et al., 2021; Teh 
et al., 2021). In addition, iron deficiency has been reported to cause 
non-proliferating, altruistic T cells to produce IL-2 (Berg et al., 2020).

Top IPA Diseases or Functions annotations indicated an increase 
in the quantity of lymphocytes/leukocytes in infected iron-deficient 
mouse lungs (Figure 3B; Increased leukocyte signatures). BTM GSEAs 
suggest these increases are primarily associated with B cells 
(Supplementary Table S2), consistent with identification of CXCR5 as 
an upregulated DEG (log2FC = 0.88) (Supplementary Table S2). 
CXCR5 is the receptor for CXCL13, which is the key chemokine for B 
cell recruitment to sites of inflammation (Kowarik et al., 2012; Armas-
González et al., 2018). However, histological analyses indicated only 
marginal, non-significant, increases in leukocytes in iron deficient 
mice (Supplementary Figure S6A, 6 dpi; Supplementary Figure S4A, 
cuffing 6 dpi), arguing the transcriptional modulations (Figure 3B) do 
not reflect an overall overt increase in inflammatory infiltrates. 
Instead, they may reflect transcription changes associated with (i) 
modest increases in infiltrates, with, for instance, the extravasation 
annotation indicating a relatively low z-score (Figure  3B, 
Z-score = 0.63), and/or (ii) Th1/Th2 modulation changing leukocyte 
transcriptional profiles, and/or (iii) changes in the type of cells 
infiltrating the infected lungs in iron deficient mice (see below).

The top upregulated Canonical pathway was endothelial nitric 
oxide synthase (Figure 3B, eNOS), with increased endothelial nitric 
oxide (NO) signaling previously associated with iron deficiency 
(Dunaway et  al., 2023). eNOS has a central role in endothelial 
homeostasis and is generally viewed as serving a beneficial role in lung 
inflammation (Qi et al., 2016; Guimarães et al., 2021; Ren et al., 2021) 
and ARDS (Albertine et  al., 1999; Vassiliou et  al., 2021). eNOS 
uncoupling can lead to generation of reactive oxygen species (ROS) 
and lung injury (Gross et al., 2015). However, this was not indicated 
in this setting as the ROS signature was reduced in iron deficient mice 
(Figure 3B, ROS). A number of other stress responses signatures were 
also lower in iron deficient mice; specifically, XBP1 (endoplasmic 
reticulum stress) (Cohen et al., 2017), ATF3 and ATF4 (stress-induced 
transcription factors) (Bradley et al., 2021; Shahriari-Felordi et al., 
2022; Li et al., 2023; Niethamer et al., 2023) (Figure 3B). In addition, 
expression of 18 heat shock protein mRNAs was lower (Figure 3B, 
DEGs), with Hspa1a and Hspa1b (Hsp70 family members) (Bishop 
et al., 2024) the most down-regulated DEGs (Supplementary Table S2).

In summary, iron deficient mice at 6 dpi showed modest 
transcriptional changes when compared to controls. Bioinformatic 
analyses indicated signatures associated with increased Th1/Th2 
ratios, modulated leukocyte expression patterns, and elevated eNOS 
and reduced stress responses.

Iron loading vs. control diet; weights and 
lung viral loads

Male C57BL/6 J mice were fed either a control diet or an iron 
loading diet for 7 weeks starting at 4 weeks of age (Figure 4A). The iron 

loading diet resulted in a small but significant reduction in body 
weight (mean 1.4 g reduction) at 0 dpi (Figure 4B). No significant 
weight changes were observed post XBB infection in either the control 
or the iron loading groups (Supplementary Figure S1). Lung tissue 
titers at 2 dpi showed a modest, but significant, 0.65 log10CCID50/g 
reduction in lung viral titers from mice fed the iron loading diet 
(Figure  4C). Nasal turbinate viral titers showed no significant 
differences at 2 dpi (Supplementary Figure S2B). Viral lung read 
counts (from RNA-Seq analysis) also showed a reduction (of 0.39 
log10), but this did not reach significance (Figure 4D).

Thus, the iron loading diet marginally reduced the mean mouse 
body weight, with lungs showing modest, but significant, viral titer 
reductions at 2 dpi. The latter is consistent with some (Singh et al., 
2023), but not other (Chaubey et al., 2023), in vitro studies.

Iron parameters for mice on iron loading 
vs. control diets at 2 and 6 dpi

Standard iron parameters were again evaluated to confirm the 
effects of the iron loading diet. As expected, serum iron levels 
(Figure  4E) and transferrin saturation levels (Figure  4F) were 
significantly higher in mice on the iron loading diet. Mice on the iron 
loading diet showed significantly higher liver iron levels (Figure 4G). 
mRNA levels for liver Hamp (the gene that codes for hepcidin) 
(Figure 4H) and serum hepcidin protein levels (Figure 4I) were also 
significantly higher in mice on the iron loading diet.

In summary, the iron parameters all confirmed that the iron 
loading diet had successfully increased iron levels in the mice.

Iron loading vs. control diet; 
immunohistochemistry at 2 dpi

Lung sections were stained with a SARS-CoV-2 specific monoclonal 
antibody. Staining was primarily associated with the bronchial 
epithelium, with minimal stained material in the bronchial airways 
(Figure  4J). Staining was less abundant (compared with controls, 
Figure 1J), consistent with the lower viral load (Figure 4C). IHC staining 
of an uninfected mouse lung is shown in Supplementary Figure S3A.

Iron loading vs. control diet; histochemistry 
and lung lesions

Lung sections taken at 2 and 6 dpi were stained by H&E and 
scanned slides were examined by a veterinary pathologist. Lung 
lesions were scored as above, with lesions at 6 dpi emerging to 
be  slightly less severe across the scoring criteria 
(Supplementary Figure S4B, Figure 5A), with the cumulative lesion 
score significantly lower for iron loaded mice when compared with 
mice on the control diet (Figure 5B). This observation likely reflects 
the lower viral loads in lungs from iron loaded mice (Figure 4C).

White space analysis (Supplementary Figure S10) and ratios of 
nuclear (purple) to cytoplasmic (red) staining 
(Supplementary Figure S6C) showed no significant differences 
between infected mice on iron loading vs. control diets.
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Iron loading vs. control diet; lung RNA-Seq 
at 2 dpi

RNA-Seq analysis of lungs at 2 dpi from mice fed an iron loading 
vs. control diet identified only 1 DEG, insufficient for meaningful 
pathway analysis. Full gene lists and bioinformatic analyses are 

provided in Supplementary Table S3 and are summarized in Figure 6A 
(see below).

GSEAs using the MSigDB gene sets provided a number of IFN 
annotations with high negative NES values (Figure 6A). These likely 
reflect the lower lung viral loads (Figures  4C,D), with less virus 
replication in iron loaded mice resulting in less stimulation of IFN 

FIGURE 4

Iron loading vs. control diets; weights, viral loads and iron prarameters. (A) Time line of experiment. (B) Mouse body weights at 0 dpi, prior to XBB 
infection. Statistics by t test, n  =  11/12 mice per group. There were no significant weight changes after infection (Supplementary Figure S1). (C) Lung 
tissue XBB virus titers. Limit of detection ≈2 log10CCID50/g (dashed line); ND – not detected. (D) XBB viral read counts obtained from RNA-Seq of lung 
tissues. (E–I) Iron parameters from the same mice described in b-d; Controls—black symbols, Iron loaded—red symbols. (E) Serum iron levels. Statistics 
by t tests. (F) Transferrin saturation. Statistics by t tests. (G) Liver iron levels. Statistics by Kolmogorov–Smirnov exact tests. (H) Liver Hamp mRNA levels. 
Statistics by Kolmogorov–Smirnov exact test (2 dpi) and t test (6 dpi). (I) Serum hepcidin levels. Statistics by Kolmogorov–Smirnov exact tests. (Data for 
control mice in b-i is the same as in Figure 1). (J) IHC of lung at 2 dpi for a mouse on the iron loading diet, using an anti-SARS-CoV-2 spike protein 
monoclonal antibody. B, bronchial air space. IHC of lung from a control mouse is shown in Figure 1J (top image). Staining of an uninfected lung is 
shown in Supplementary Figure S3A.
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responses. MSigDB GSEAs also identified complement activation with 
high positive NES values (Figure  6A). SARS-CoV2 is known to 
activate complement via the lectin (Ali et al., 2024) and alternative 
pathways (Yu et  al., 2020). Complement activation can mediate 
antiviral effects against SARS-CoV-2 (Santiesteban-Lores et al., 2021), 
providing a potential explanation for the reduction in viral loads. Iron 
infusions are reported to trigger complement via the lectin and 
alternative pathways (Hempel et al., 2016; Faria et al., 2019). One 
might thus speculate that iron loading reduces the threshold for 
complement activation during SARS-CoV-2 infection. The one DEGs 
(Per1) may also be  linked to complement activation (Shivshankar 
et al., 2020). However, it should be noted that complement activation 
primarily involves proteolytic processes that are not directly detectable 
by RNA-Seq. Complement activation by adaptive immune responses 
(mediated by IgM/IgG and the classical pathway) comes later during 
the course of infection, and can also (Ali et al., 2024) contribute to 
COVID-19 severity (Georg et  al., 2022). However, complement 
activation was not identified in iron loaded mice at 6 dpi 
(Supplementary Table S4), with virus largely cleared in the current 
model at this time (Figures 4C,D).

GSEAs using the BTM gene sets suggested an increased number 
of B cells infiltrating the infected lungs in iron loaded mice 
(Figure 6A).

Iron loading vs. control diet; lung RNA-Seq 
at 6 dpi

RNA-Seq analysis of lungs at 6 dpi from mice fed an iron loading 
vs. a control diet identified 497 DEGs. Fold changes were again 
modest, with only 2 genes showing a log2 fold change >2. Full gene 
lists and bioinformatics are provided in Supplementary Table S4 and 
are summarized in Figure 6B.

Modulation of Th1/Th2 cytokines was again apparent with mostly 
increased Th1 and reduced Th2 USR cytokine z scores in mice on an 
iron loading diet (Figure 6B). This result contrasts with Salmonella 

typhimurium infection of mice on a high iron diet where Th1 
responses were inhibited (Pfeifhofer-Obermair et al., 2021). However, 
the effects of high iron on the Th1/Th2 balance may be setting specific, 
with, for instance, iron promoting M1 differentiation of macrophages 
(Ni et  al., 2022), and lung macrophages playing a central role in 
COVID-19 inflammation (Olivier et  al., 2023). Several anti-
inflammatory USR cytokine signatures provided negative z-scores 
(Figure 6B), indicating less anti-inflammatory activity in iron loaded 
mice. However, the IFNA2 USR signature had a negative z-score 
(Figure 6B, Anti-viral), suggesting reduced inflammation, with type 
I IFNs major drivers of inflammation (Ji et al., 2023). A reduced type 
I  IFN signature is consistent with the lower viral loads at 2 dpi 
(Figure 4C) and the negative NES for IFN-associated GSEAs at 2 dpi 
(Figure 6A).

The annotations associated with increased leukocyte signatures 
(Figure  6B) do not reflect significant, histologically observable, 
increases in leukocytes infiltrates (Figure  5A, 
Supplementary Figures S4B, S6C). This again suggests they are 
associated with modest infiltrate changes, Th1/Th2 response changes 
and/or changes in the cell types infiltrating the lungs (see below). A 
series of BTMs suggested an increase in B cells (Figure 6B), although 
no chemokines or chemokine receptors that would readily explain 
migration of B cells into the lungs were present in the DEG list 
(Supplementary Table S4).

Iron has often been associated with ROS production (Chen et al., 
2020; Nousis et  al., 2023), and ROS-associated annotations were 
identified amongst the Canonical pathway annotations. However, 
z-scores were modest (≤1.3) (Figure 6B, ROS annotations), perhaps 
ameliorated by the lower viral loads. Increased ROS in iron overload 
setting is often ascribe to the Fenton reaction (e.g., (Mizumura and 
Gon, 2021)); however, the physiological relevance of this reaction in 
vivo is not without controversy (Muranov, 2024).

The negative z-score for the hemorrhagic disease annotation 
(Figure  6B) likely reflects the reductions in viral load, with lung 
hemorrhage well documented in COVID-19 mouse models (Sun 
et al., 2020; Ali et al., 2024). A number of transcription factor USRs 

FIGURE 5

Iron loading vs. control diets; histology. (A) Example of perivascular cuffing (top) and peribronchial cuffing (bottom) at 6 dpi for iron loaded mice. 
Leukocytes indicated by white dashed box/ovals. V, vascular lumen. B, bronchial lumen. Whole slide score for perivascular/peribronchial cuffing =1 on 
a 0–3 scale. (B) Cumulative lung lesion scores for each mouse, raw data is shown in Supplementary Figure S4B. Statistics by t test.
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also showed negative z-scores in iron loaded mice 
(Supplementary Table S4). These include, FOXC1 (Ahmed et  al., 
2022), XBP1 (Fernández et al., 2024a), EIF4E (Korneeva et al., 2023) 
and SREBF1 (aka SREBP1) (Soares et al., 2023), which are induced by 
SARS-CoV-2 infection. FOXC1 (Ma et al., 2020), XBP1 (Wang et al., 
2023), and EIF4E (Schwarz et al., 2002), as well as TCF3 (Miao et al., 

2014), are also involved in wound repair. Reduced infection 
(Figures 4C,D) and/or an ensuing reduced requirement for tissue 
repair, may explain these negative z-scores.

A number of RBC-associated annotations were identified, 
including hemolysis (Figure 6B). Although viral infections (Russo 
et al., 2022), including SARS-CoV-2 (Al-Kuraishy et al., 2022), can 

FIGURE 6

Iron loading vs. control diets; bioinformatic summary. (A) RNA-Seq analysis of lungs from mice fed an iron loading vs. control diet at 2 dpi yielded only 
1 DEG, insufficient for pathway analysis. The ‘All genes’ list was interrogated using GSEAs and the gene sets provided by MSigDB. Full data sets are 
available in Supplementary Table S3. (B) RNA-Seq analysis of lungs from mice fed an iron loading vs. control diet at 6 dpi yielded 497 DEGs. DEGs were 
analyzed by IPA as in Figure 3. Full data sets are available in Supplementary Table S4.
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cause hemolysis, why this should be higher in iron loaded mice is 
unclear. This may be due to the toxic effects of iron on RBC (Kozlova 
et al., 2022), or is associated with complement activation (Figure 6A), 
with complement-mediated hemolysis a well-documented 
phenomenon (Bortolotti et al., 2023; Xiao et al., 2024). GATA1 is the 
master regulator of erythropoiesis (Gutiérrez et  al., 2020), which 
might be upregulated to compensate for RBC loss.

POR (NADPH-cytochrome P450 oxidoreductase) was identified 
as the top scoring USR by z-score (Figure 6B, Supplementary Table S4). 
Amongst other functions, POR is involved in the induction of 
ferroptosis (Ai et  al., 2021). Ferroptosis is a form of cell death 
promoted by iron that involves peroxidation of lipids (Zhang et al., 
2023), which has been implicated in tissue damage during COVID-19 
(Jacobs et al., 2020; Qiu et al., 2024). Heme oxygenase 1(HMOX1) is 
a crucial ferroptosis factor (Chen et al., 2023), and the transferrin 
receptor (TFRC) is a ferroptosis marker (Feng et  al., 2020), with 
increased ROS/H202 and reduced glutathione (Figure 6B) crucial to 
the process of lipid peroxidation (Zhang et al., 2023). However, it 
should be noted that there is no single universal ferroptosis pathway, 
with many initiators, sensitizers and modulators (Dixon and Pratt, 
2023); hence reliable ferroptosis annotations are often lacking in 
bioinformatic pathway tools such as IPA.

In summary, iron loaded mice showed modestly lower lung viral 
loads at 2 dpi, with RNA-Seq indicating modest transcriptional 
changes. Signatures at 6 dpi in iron loaded mice were associated with 
a general bias toward increased Th1/Th2 cytokine ratios, hemolysis, 
ROS and perhaps ferroptosis, but also reduced type I  IFN 
and hemorrhage.

Dysregulated cell compositions in infected 
lungs of iron deficient and iron loaded 
mice

To gain insights into how iron deficiency and iron overload might 
influence the cellular compositions in the lungs after SARS-CoV-2 
infection, cellular deconvolution (SpatialDecon) analysis was 
undertaken. This used the normalized count matrices (that provide 
the number of aligned reads for each gene for each mouse) and the 
gene expression matrices from the Lung mouse cell atlas.

In iron deficient mice at 2 dpi, a significant increase in von 
Willebrand factor (VwF) positive endothelia cells was identified 
(Figure 7A). This observation is perhaps consistent with the increased 
extravasation annotations (Figure 3A), as endothelial VwF promotes 
extravasation (Petri et al., 2010; Mojzisch and Brehm, 2021).

In iron deficient mice at 6 dpi, the increase in endothelial 
transcriptional signatures (Figure 7B) is consistent with the increase 
in the eNOS signaling pathway (Figure 3B), with eNOS a key survival 
factor for endothelial cells during inflammation (Dimmeler and 
Zeiher, 1999). Stromal cells were less abundant in iron deficient mice; 
these cells are involved in wound repair (Jerkic et al., 2023) and their 
proliferation may be  impaired under iron-deficient conditions 
(Recalcati et al., 2019). The higher B and T cell abundance scores in 
iron deficient mice (Figure 7B) are consistent with the BTM GSEA 
results (Figure 3B). Difference in mean abundance scores for B cell 
represents the largest and most significant (Figure  7B, q = 0.006) 
observed herein. Lung B and T cells are well described for COVID-19 
(Cavalli et al., 2020; Yang et al., 2024); however, iron deficiency is 

generally associated with impaired B and T cell responses (Jiang et al., 
2019; Wideman et  al., 2023). The Interstitial macrophages are 
generally anti-inflammatory during disease processes (Zhou et al., 
2024) and Ear2 is upregulated on alveolar macrophages under Th2 
conditions (Cormier et al., 2002), so reduced abundance scores for 
these two cell types in iron deficient mice (Figure  7B) may 
be associated with the elevated Th1/Th2 ratios (Figure 3B). In contrast, 
proliferating alveolar macrophages (Pclaf is a proliferation marker) 
have a higher abundance score in iron deficient mice (Figure 7B), with 
these cells known to self-renew and adopt a M1 pro-inflammatory 
phenotype when exposed to IFNγ or TNF (Olivier et al., 2023).

In iron loaded mice at 2 dpi, only Dendritic.cell.H2.M2.high (Han 
et al., 2018) were identified as significantly less abundant (Figure 7C), 
with less infection perhaps resulting in less dendritic cell activation 
and/or recruitment. In iron loaded mice at 6 dpi, the abundance score 
for ciliated (epithelial) cells was significantly lower (Figure 7D), with 
these cells efficiently infected by omicron variants (Wu et al., 2023). 
The lower levels of infection (Figure 4C) and epithelia cell sloughing 
into bronchi in iron loaded mice (Figure 4J) compared with controls 
(Figure 1J, top), is consistent with a lower requirement for renewal and 
thus the reduced (transcription-based) abundance scores. The 
increased B cell abundance scores (Figure 7D) is consistent with BTM 
GSEAs (Figure 6B), with B cell abundance scores also increased in 
iron deficient mice (Figure 7B). A reduction in abundance scores for 
Interstitial macrophages at 6 dpi (Figure 7D) was similarly evident for 
iron deficient mice (Figure 7B), and may again be associated with the 
elevated Th1/Th2 ratios (Figure  6B). DCs expressing 
N-acylethanolamine acid amidase (Naaa) have a lower abundance 
score in iron loaded mice (Figure 7D). These cells are reported to play 
a proinflammatory role (Li et  al., 2022), with reduced type I  IFN 
responses (Figure 6B, IFNA2) perhaps contributing to their lower 
abundance (Tough, 2004). Gngt2 is a M1 marker (Jablonski et al., 
2015) and describes a subgroup of DCs (Han et al., 2018), whose 
specific function has yet to be described.

Cellular deconvolution using expression matrices from the 
ImmGen cell family (which is based on various tissues, not just lung) 
further illustrates dysregulation of leukocyte subsets at 6 dpi in both 
iron deficient and iron loaded mice (Supplementary Figure S11).

Discussion

We provide herein detailed comparisons of lung SARS-CoV-2 
omicron XBB infection and inflammatory disease in wild-type mice 
that were fed an iron deficient vs. a control diet, and mice fed an iron 
loading vs. control diet. In iron deficient and iron loaded mice, viral 
loads were either not significantly affected or were mildly (≈ 0.6 log10), 
but significantly, reduced in lungs or nasal turbinates (Figure 4C, 
Supplementary Figure S2A). This strongly argues that the effectiveness 
of the host’s anti-viral SARS-CoV-2 responses was not significantly 
compromised by altered iron status. Modulation/dysregulation of 
immune responses by iron deficiency and overload is well described 
in various setting (Haschka et al., 2021; Mu et al., 2021), and was also 
clearly evident herein (Figures 3, 6, 7; Supplementary Figure S11). 
However, this led neither to impaired ability to control the virus nor 
to overtly more severe lung histopathology.

Pleiotropic outcomes of SARS-CoV-2 infections in iron deficient 
and iron overloaded mice might be envisaged, given the complexity 
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of iron regulation (Galy et  al., 2024), the modulation of iron 
biomarkers and homeostasis during SARS-CoV-2 infections (Dahan 
et al., 2020; Taneri et al., 2020; Onur et al., 2021; Tojo et al., 2021; 
Wojciechowska et al., 2021; Bastin et al., 2022; Hegelund et al., 2022; 
Sana and Avneesh, 2022; Aslan et al., 2023; Naidu et al., 2023), and 
the robust pro-inflammatory responses associated with SARS-CoV-2 
infections (Bishop et al., 2022; Dharra et al., 2023; Olivier et al., 2023; 
Bishop et al., 2024). However, perhaps unexpected was the increase 
in Th1/Th2 ratios and B cell signatures in both iron deficient and iron 
load mice. This observation is reminiscent of the commonly 
illustrated U-shaped relationships for iron status. For instance, both 
iron deficit and iron excess leads to impaired or dysregulated 
maternal immunity during pregnancy (Dewey and Oaks, 2017). A 
similar U shaped relationship is also reported for maternal 

hemoglobin and preterm birth and ARDS (Ohuma et  al., 2023). 
Serum iron biomarkers and COVID-19 severity also show a similar 
relationship (Tojo et al., 2021). B cell responses are also often impaired 
during iron deficiency (Ni et  al., 2022), with IgM responses also 
reported to be  blunted in iron loaded mice (Omara and Blakley, 
1994). However, the effect of iron deficiency and overload on adaptive 
T cell responses would appear to be  quite diverse and setting 
dependent (Walker and Walker, 2000; Kuvibidila et al., 2012; Reuben 
et al., 2017; Roth-Walter et al., 2017; Ni et al., 2022; Roth-Walter, 
2022). In addition, in humans early Th1 responses have been 
associated with protection against severe COVID-19 (Garcia-Gasalla 
et al., 2022; Gil-Etayo et al., 2022); however, in mouse models, early 
pro-inflammatory signatures (2–7 dpi) tend to correlate with 
pathogenic “cytokine storm” profiles (Bishop et al., 2022; Bishop et al., 

FIGURE 7

Cellular deconvolution analyses for iron deficient vs. control and iron loading vs. control diets. Relative abundances of cell types were estimated using 
SpatialDecon and cell-type expression matrices obtained from the NanoString Lung mouse cell atlas. (A) Control vs. iron deficient, 2 dpi. (B) Control vs. 
iron deficient, 6 dpi. (C) Control vs. iron loading, 2 dpi. (D) Control vs. iron loading, 6 dpi. Statistics by t test with FDR correction.
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2024). Infection in humans usually spreads from the upper respiratory 
track into the lower respiratory track (lungs). This progression is not 
recapitulated in mice where lung infection requires direct intra-
pulmonary inoculation of virus (Fumagalli et al., 2022; Rawle et al., 
2021; Dumenil et al., 2023). Whether the increased Th1/Th2 ratios 
seen herein might be  associated with beneficial or detrimental 
activities is thus debatable.

Perhaps surprising was the wide scale reduction in stress responses 
in iron deficient mice at 6 dpi (Figure 3, XBP1, ATF4, ROS). The most 
dominant of these (by z score) was XBP1, which is associated with the 
endoplasmic reticulum (ER) unfolded protein response (UPR). This 
pathway is activated by SARS-CoV-2 infection, promotes viral replication 
in epithelial cells, and is associated with induction of proinflammatory 
responses (Fernández et al., 2024a; Fernández et al., 2024b). Why this 
response is blunted in iron deficient mice may be  related to the 
requirement for iron and heme effectors and binding proteins for Ire1 
clustering, a process that lies immediately upstream of XBP1 activation 
(Cohen et al., 2017). ATF4 is triggered by PERK, another sensor of ER 
stress and mediator of the UPR (Davies et al., 2024). Similarly, as iron is 
an important component of ROS-generating enzymes (Ying et al., 2021), 
iron deficiency may reduce ROS production capacity in this setting.

A limitation of this study is that we have not investigated the 
responses over the long-term, with a role for iron status in increasing 
the severity of long-COVID suggested by several studies (Sonnweber 
et al., 2022; Wu et al., 2023; Hanson et al., 2024). However, whether 
mouse models (Choi et  al., 2024) can faithfully recapitulate 
pathological or immunopathological features of human long-COVID 
remains to be  established (Hofer, 2022), with underlying 
co-morbidities (Russell et  al., 2023) clearly absent in genetically 
identical, specific pathogen free, laboratory mice. We have also not 
provided insights into the sizable range of co-morbidities that can give 
rise to anemia or iron overload (Hsu et al., 2022; Hess et al., 2023; 
Sohal and Kowdley, 2024), and how these would affect COVID-19; 
however, this would constitute a considerable undertaking. For 
instance, we have not studied the ‘homeostatic iron regulator’ deficient 
(Hfe−/−) mouse for mouse model of hereditary hemochromatosis 
(Albalat et al., 2021). A counter rationale for Hfe−/− mouse studies is 
that compelling evidence for Hfe mutations affecting COVID-19 
patient outcomes has yet to emerge (Ristić et al., 2023). We have also 
used herein a mouse model of relatively mild disease, as distinct from 
the more severe model involving infections of K18-hACE2 mice with 
original strain isolates. However, the latter is complicated by early 
mortality associated with fulminant brain infections (Dumenil et al., 
2023), which are generally not a feature of human disease (Stewart 
et al., 2023). Thus, whether iron status would influence severe lung 
infection and disease is not addressed in the current study. Lastly, 
we  have not investigated changes in iron distributions and their 
immunological consequences over time in different tissues (e.g., lungs, 
liver, spleen, lymph nodes) (Giorgi et  al., 2015; Ali et  al., 2020), 
primarily as there were no overt detrimental outcomes that would 
focus such studies.

In conclusion, the current study of iron deficient vs. control and 
iron loaded vs. control SARS-CoV-2 infected mice, finds modest 
transcriptional changes indicating a range of inflammatory response 
modulations, but no significant histopathologically detectable disease 
exacerbations. Some human studies have also failed to find a significant 
association between iron status and severity of acute COVID-19 (Achan 
et al., 2022; Marhaeni et al., 2023; Ristić et al., 2023). This is not to say 
that all diseases or conditions that lead to iron deficiency or overload 

are similarly benign, as they may indicate co-morbidities that can 
promote COVID-19 severity (Bhalla et al., 2021; Abu-Ismail et al., 2023).

Materials and methods

Ethics statements and regulatory 
compliance

Collection of nasal swabs from consented COVID-19 patients was 
approved by the University of Queensland HREC (2022/HE001492). 
All mouse work was conducted in accordance with the Australian 
code for the care and use of animals for scientific purposes (National 
Health and Medical Research Council, Australia). Mouse work was 
approved by the QIMR Berghofer MRI Animal Ethics Committee 
(P3600 and P3535). All infectious SARS-CoV-2 work was conducted 
in the BioSafety Level 3 (PC3) facility at the QIMR Berghofer MRI 
(Department of Agriculture, Fisheries and Forestry, certification 
Q2326 and Office of the Gene Technology Regulator certification 
3,445). Mice were euthanized using carbon dioxide.

Iron diet modifications

Male C57BL/6 J mice were bred in-house at the QIMR Berghofer 
MRI animal facility and were held under standard animal house 
conditions [for details see (Yan et al., 2022)]. Breeding pairs were 
maintained on standard rodent pellet diet (120 mg/kg iron; Norco 
Stockfeed, Lismore, Australia). Mice were allowed unlimited access to 
food and water at all times. Iron deficient diet. Three-week old mice 
were weaned onto an iron deficient diet based on AIN93G (~1 mg/kg 
iron, Specialty Feeds, Glen Forrest, Australia). This iron deficient diet 
produces a mild to moderate anemia (Mirciov et al., 2017; Zakrzewski 
et  al., 2022). Iron loading diet. Three-week old mice were fed the 
control diet for 1 week, after which they were switched to an iron 
loading diet, consisting of the iron deficient diet supplemented with 
0.5% iron as carbonyl iron (Sigma, Product no. C3518). This 1 week 
delay in switching mice to the iron loading diet is necessary, as moving 
weanling mice directly onto an iron loading diet dramatically reduces 
growth rates. Control diet. The control diet comprised the 
aforementioned iron deficient chow supplemented with 50 mg/kg iron 
as ferric citrate. All mice were maintained on these diets throughout 
until euthanasia. The aforementioned iron modified diets represent 
standard and ethically acceptable procedures for generating mouse 
models of iron deficiency and iron loading (Santos et al., 1998; Dupic 
et al., 2002; Aslam et al., 2014; Pereira et al., 2015).

Assays for iron parameters

Serum (non heme) iron and transferrin saturation levels were 
measured using the Iron/TIBC Reagent Kit (Pointe Scientific, Canton, 
MI). The volumes in the kit were adjusted to allow the assay to 
be performed in 96-well plates as described (Frazer et al., 2017). Liver 
(non heme) iron levels were assayed by colorimetric assay as described 
previously (Fuqua et al., 2014). Hamp mRNA levels were determined 
by RT qPCR as described (Frazer et al., 2017). Serum hepcidin levels 
were determined using the Hepcidin Murine-Compete™ ELISA Kit 
(Intrinsic Life Sciences) as per manufacturer’s instructions.
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The SARS-CoV-2 omicron XBB isolate

The XBB isolate (SARS-CoV-2UQ01) was voluntarily donated to the 
University of Queensland (Brisbane, Australia) by a deidentified adult 
COVID-19 patient with degree-level education via a self-collected 
nasopharyngeal swab. The patient provided written consent (Stewart 
et al., 2023; Carolin et al., 2024). The isolate was initially grown on 
Vero E6-TMPRSS2 cells (Amarilla et  al., 2021). The isolate is 
XBB.1.9.2.1.4 (Pango EG.1.4), a recombinant of BA.2.10.1 and 
BA.2.75; sequence deposited as hCoV-19/Australia/UQ01/2023; 
GISAID EPI_ISL_17784860. XBB viral stocks were propagated in 
Vero E6 cells (Rawle et al., 2021), and were titered using CCID50 assays 
(Yan et al., 2021). Medium was checked for endotoxin (Johnson et al., 
2005) and cultures for mycoplasma (MycoAlert, Lonza).

Mouse model of SARS-CoV-2 infection and 
monitoring of disease

Mice received intrapulmonary infections delivered via the 
intranasal route with 5 × 104 CCID50 of XBB in 50 μL RPMI 1640 
whilst under light anesthesia as described (Dumenil et al., 2023). Mice 
were weighed and monitored as described (Dumenil et  al., 2023; 
Stewart et al., 2023).

Mice were euthanized using CO2, lungs were removed, with the 
left lung fixed in formalin for histology, the right lung inferior lobe 
placed in RNAlater for RNA-Seq and the remaining lobes used for 
tissue titers determination by CCID50 assays using Vero E6 cells as 
described (Rawle et al., 2021; Dumenil et al., 2023).

CCID50 assays

Tissue titers were determined as described (Rawle et al., 2021). 
Briefly, 5-fold serial dilutions of clarified tissue homogenates were 
applied in duplicates to Vero E6 cells in 96 well plates. After 6 days 
cytopathic effects were observed by inverted light microscope. The 
virus titer was determined by the method of Spearman and Karber; an 
Excel sheet is available at https://www.klinikum.uni-heidelberg.de/
zentrum-fuer-infektiologie/molecular-virology/welcome/downloads.

Immunohistochemistry

Immunohistochemistry was undertaken using the anti-
SARS-CoV-2 spike protein monoclonal antibody, SCV2-1E8, as 
described (Morgan et al., 2023), except that the monoclonal (IgG2a) 
was purified using Protein A affinity chromatography and applied to 
sections at 4 μg/mL for 1 h.

Histology

Lungs were fixed in 10% formalin, embedded in paraffin, and 
sections stained with H&E (Sigma Aldrich). Slides were scanned 
using Aperio AT Turbo (Aperio, Vista, CA, United  States). 
Quantitation of white space in scanned images of H&E stained lung 
parenchyma (with areas greater than ≈100 μm set as a threshold) 
was undertaken using PixelClassifierTools in QuPath v0.3.2 

(Bankhead et al., 2017), and provides an approximate measure of 
lung consolidation (Dumenil et al., 2023). Scanned H&E stained 
whole lung sections were analyzed by Aperio Positive Pixel Count 
Algorithm (Leica Biosystems) to generate nuclear (strong purple 
staining) over cytoplasmic (total red staining) pixel count ratios, 
providing an approximate measure of leukocyte infiltration (Prow 
et al., 2019; Dumenil et al., 2023).

All H&E stained whole lung sections were scanned and .svs files 
examined by a trained European board-certified veterinary 
pathologist using Qu-Path (v 0.5.1). Lung lesions were scored using 
6 criteria. Emphysema was scored; 0 = no lesion, 1 = dilated and 
coalescent alveoli, 2 = “bullae” in the parenchyma. Bronchial 
epithelium damage was score; 0 = no lesion, 1 = small clusters of 
necrotic epithelial cells, 2 = scattered foci of epithelial degeneration 
with layer architecture partial loss, 3 = focal complete epithelial loss. 
Bronchial content was scored; 0 = empty lumen; 1 = presence of a 
small amount of material; 2 = partial obliteration; 3 = complete 
occlusion. Vascular wall changes were scored; 0 = no lesion, 
1 = leukostasis, 2 = focal wall damages (including leukocytoclasis), 
3 = transmural vessel wall alteration and/or vascular lumen 
obliteration. Perivascular edema was scored; 0 = no lesion, 1 = focal 
mild edema, 2 = extended marked edema with lymphoid vessel 
dilatation. Peribronchial/perivascular cuffing was scored; 0 = no 
lesion; 1 = focal inflammatory cell infiltration; 2 = circumferential 
inflammatory cell infiltration, 3 = coalescing inflammatory cell 
infiltration between bronchi and vessels. A total cumulative score was 
then calculated by summing all 6 parameter scores for each mouse 
(range 0 to 16).

RNA-Seq and bioinformatics

RNA-Seq (Illumina Nextseq  2000 platform generating 75 bp 
paired end reads) and bioinformatics was undertaken as described 
(Bishop et al., 2022; Bishop et al., 2024). Raw sequencing data (fastq 
files) have been deposited in the NCBI SRA, BioProject: 
PRJNA1102925 and are publicly available. Mean quality scores were 
above Q20 for all samples. Mouse RNA-Seq reads were aligned to a 
combined mouse (GRCm39, version M27) and SARS-CoV-2 BA.5 
reference genome (Stewart et al., 2023) using STAR aligner. Viral read 
counts were generated using Samtools v1.16. RSEM v1.3.1 was used 
to generate expected counts for host genes. EdgeR was then used to 
generate TMM normalized count matrices, with a separate count 
matrix generated for iron deficient vs. control and iron loaded vs. 
control. Differentially expressed genes were identified using EdgeR 
using a FDR cut-off of 0.05.

Pathway analyses were performed using host DEGs and Ingenuity 
Pathway Analysis (IPA, v84978992) (QIAGEN), which provides 
Canonical pathways, Up-Stream Regulators (USR) and Diseases or 
Functions features as described (Dumenil et al., 2023; Bishop et al., 
2024). Annotations without z scores or with significance (q or p) 
below 0.05 were removed.

Gene Set Enrichment Analyses (GSEAs) were undertaken using 
GSEA v4.1.0 with gene sets provided in MSigDB (≈ 45,000 gene sets) 
and in the Blood Transcription Modules (Li et al., 2014), and gene lists 
ranked by log2 fold-change. Relative abundances of cell types were 
estimated in R v4.1.0 from TMM normalized RSEM count matrices 
using SpatialDecon v1.4.3 (Danaher et  al., 2022) and cell-type 
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expression matrices obtained from the Lung mouse cell atlas1 and the 
ImmGen cell family.2 Statistics were undertaken by t tests with False 
Discovery Rate corrections using the Benjamini-Hochberg 
method (q).

Statistics

The t-test was used if the difference in variances was <4 fold, 
skewness was > − 2 and kurtosis was <2. The t test significance and 
variance were determined using Microsoft Excel. Skewness and 
kurtosis were determined using IBM SPSS Statistics for Windows 
v19.0 (IBM Corp., Armonk, NY, United  States). Otherwise, the 
non-parametric Kolmogorov–Smirnov exact test was performed using 
GraphPad Prism 10.
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