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Background/aims: Digestive disorders of gut-brain interaction (DGBI) are very
common, predominant in females, and usually associated with intestinal barrier
dysfunction, dysbiosis, and stress. We previously found that females have
increased susceptibility to intestinal barrier dysfunction in response to acute
stress. However, whether this is associated with changes in the small bowel
microbiota remains unknown. We have evaluated changes in the small intestinal
microbiota in response to acute stress to better understand stress-induced
intestinal barrier dysfunction.

Methods: Jejunal biopsies were obtained at baseline and 90min after cold pain
or sham stress. Autonomic (blood pressure and heart rate), hormonal (plasma
cortisol and adrenocorticotropic hormone) and psychological (Subjective Stress
Rating Scale) responses to cold pain and sham stress were monitored. Microbial
DNA from the biopsieswas analyzed using a 16Smetabarcoding approach before
and after cold pain stress and sham stress. Di�erences in diversity and relative
abundance of microbial taxa were examined.

Results: Cold pain stress was associated with a significant decrease in
alpha diversity (P = 0.015), which was more pronounced in females, along
with significant sex di�erences in the abundance of specific taxa and the
overall microbiota composition. Microbiota alterations significantly correlated
with changes in psychological responses, hormones, and gene expression in
the intestinal mucosal. Cold pain stress was also associated with activation
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of autonomic, hormonal and psychological response, with no di�erences
between sexes.

Conclusions: Acute stress elicits rapid alterations in bacterial composition in the
jejunum of healthy subjects and these changes are more pronounced in females.
Our results may contribute to the understanding of female predominance
in DGBI.

KEYWORDS

stress, functional dyspepsia, disorders of gut-brain interaction, irritable bowel

syndrome, small intestine microbiota

1 Introduction

Irritable bowel syndrome (IBS) and functional dyspepsia

(FD) are major disorders of gut-brain interaction (DGBI) that

predominantly affect females (Sperber et al., 2021). The main

symptoms have been linked to intestinal barrier (IB) dysfunction

(Santos and Rescigno, 2024), neuroimmune activation (Vanuytsel

et al., 2023), dysbiosis and small bowel bacterial overgrowth (SIBO)

(Barlow et al., 2021; Gurusamy et al., 2021; Saffouri et al., 2019),

stress, and psychological factors. These patients often suffer from

difficult-to-treat comorbid chronic pain and disability disorders

such as fibromyalgia, chronic fatigue and depression/anxiety

(Ohlsson, 2022; Van Oudenhove and Aziz, 2013) that highly impact

healthcare costs and the patient’s quality of life (Agarwal and

Spiegel, 2011; Nyrop et al., 2007).

The human gut is colonized by diverse microbial communities,

collectively known as the gut microbiota (Lynch and Pedersen,

2016). This microbiota plays a key role in promoting intestinal

health, and when altered, is associated with the development of

gastrointestinal (GI) symptoms in DGBI. Such a relationship is

supported by good long-term clinical outcomes of fecal microbial

transplantation in IBS patients (El-Salhy et al., 2022). However,

most previous studies in DGBI relied on fecal or mucosal samples

from the large bowel, and the composition and the role of small

bowelmicrobiota remains largely unknown despite recent advances

in both IBS and FD (Kastl et al., 2020; Vasapolli et al., 2019;

Shanahan et al., 2022; Rodiño-Janeiro et al., 2018). Nevertheless,

it is noteworthy that small intestinal microbiota dysbiosis, rather

than SIBO, may be responsible for the main GI symptoms in DGBI

(Saffouri et al., 2019).

The gut barrier could be a possible explanation for the link

between stress, gut dysbiosis, and the female sex. On one side,

previous research has shown that both chronic psychosocial stress

and female sex lead to a significant IB dysfunction in response to

cold pain stress (CPS) in healthy subjects (Alonso et al., 2008, 2012;

Abbreviations: ACTH, adrenocorticotropic hormone; BGA, brain gut axis;

CPS, cold pain stress; DBP, diastolic blood pressure; DGBI, Disorders

of Gut-Brain Interaction; FC, fold change; FD, functional dyspepsia; GI:

gastrointestinal; HR, heart rate; inflammatory bowel disease (IBD); IB,

intestinal barrier; IBS, irritable bowel syndrome; MC, mast cell; non-steroidal

anti-inflammatory drugs (NSAIDs); PI, post infectious; SBP; systolic blood

pressure; SIBO: small intestinal bacterial overgrowth; SSRS, Subjective Stress

Rating Scale.

Vanuytsel et al., 2014). On the other, it has been shown that gut

dysbiosis is involved in the development of barrier dysfunction in

the post-infectious (PI) variants of IBS and FD (PI-IBS & PI-FD)

(Mearin et al., 2005; Marshall et al., 2010) where female sex and

comorbid psychological conditions are among the most significant

risk factors. In fact, multiple mechanisms related to intestinal

dysbiosis can contribute to intestinal barrier dysfunction in DGBI.

These include the production of dozens of neurotransmitters

(Strandwitz, 2018) and endocrine mediators (Furness et al., 2013)

and a myriad of metabolites, named collectively as the gut-brain

connectome (Sasso et al., 2023) that are known to regulate the vast

immune system associated to the gut mucosa (Pabst et al., 2008),

the enteric and autonomous system (Gershon and Margolis, 2021)

and brain physiology (Sasso et al., 2023), all of which participate

in the modulation of IB. Some of the relevant microbiota-

derived molecules are the short chain fatty acids, such as butyrate,

indoles, tryptophan, aryl hydrocarbon receptor ligands, proteases,

lipopolysaccharide from the bacterial wall or deconjugated bile

acids (Trzeciak and Herbet, 2021; Gasaly et al., 2021). Butyrate,

for instance, a major energy resource of intestinal epithelial cells,

has been shown to regulate the assembly of tight junctions through

the activation of AMP-activated protein kinase (Peng et al., 2009)

or to inhibit NLRP3 inflammasome activation and autophagy,

protecting the intestinal barrier from LPS disruption (Feng et al.,

2018). Moreover, probiotics help to strengthen the intestinal barrier

through an increase in the expression of occluding (Qin et al.,

2005) and ZO-2, and prevent apoptosis of intestinal epithelial cells

in a model of dextran sulfate sodium colitis which leads to a

stabilization of the epithelial barrier (Mennigen et al., 2009). More

recently, a mouse model of water avoidance stress (WAS), has

shown that stress inhibited the NLPR6 inflammasome, which is

necessary for the homeostasis of the gut microbiome, and that the

use of probiotics reversed this effect (Sun et al., 2013).

Stress, both acute and chronic, has also been shown to disrupt

the IB and local immune response, including mast cell (MC)

activation, in DGBI patients (Santos et al., 1998; Wallon et al.,

2008; Gareau et al., 2007; Söderholm et al., 2002; Demaude et al.,

2006) In both FD (Wauters et al., 2022) and IBS (Hanning

et al., 2021), increased epithelial permeability may facilitate

excessive transepithelial antigen penetration, uncontrolled immune

activation, and intestinal microinflammation. Although the exact

mechanisms by which stress impacts gut physiology are poorly

understood, intestinal dysbiosis may be one of them.

To fill this important gap, we here set out to assess changes in

small intestinal microbiota that may contribute to IB dysfunction in
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response to acute stress, and evaluate possible differences in these

changes between males and females.

2 Materials and methods

2.1 Participants

Healthy subjects (18–50 years-old) were prospectively recruited

by public advertising. Candidates were asked to fill out theModified

Social Readjustment Scale of Holmes-Rahe (to evaluate significant

life events in the last year) (Holmes and Rahe, 1967) and the Beck’s

inventory for depression (to assess depression levels in the last

week) (Beck et al., 1961) prior to entering the study, and a complete

medical history and physical examination were carried out on all

candidates. Inclusion criteria were to be healthy with not known

chronic health disorders, age between 18 and 50 years, signature of

informed consent, negative pregnancy test on the day of biopsy, and

presence of regular menses in the absence of oral contraceptives.

Exclusion criteria included history of acute gastroenteritis in the

last 2 years, regular smoking, history of abnormal menstrual cycle,

pregnancy at the time of the biopsy, usual contraceptive use, and

suffering from any chronic health disorders. Once included in the

study protocol, subjects were not allowed to take salicylates, non-

steroidal anti-inflammatory drugs (NSAIDs), anticholinergic drugs

or opioids at least 15 days prior to the biopsy. Antibiotics and

probiotics were not allowed in the 2 months prior to inclusion.

The study protocol was approved by the Ethics Committee

at Hospital Vall d’Hebron (PR(IR)149/2016) and conducted

according to the revised Declaration of Helsinki. All subjects gave

their written informed consent.

2.2 Jejunal biopsy

Two consecutive mucosal biopsies were obtained from the

proximal jejunum using a Watson’s capsule: the first at baseline

(PRE) and the second, 90min after completing the 15 min-period

of CPS (POST). Tissue samples were immediately split into two

similar pieces with a sterile scalpel. One piece was fixed in formalin

and embedded in paraffin for routine histology and the other was

placed in RNA later (Ambion, Invitrogen), kept at 4◦C for 2 h and

stored at−80◦C until processed for DNA isolation.

2.3 Cold pain stress

Acute experimental stress was induced by the cold-water

pressor test (Lovallo, 1975). Briefly, participants immersed the non-

dominant hand in iced water (4◦C) for periods of 45 s followed by

15-s withdrawal intervals, to prevent adaptation to pain, for a total

time of 15 min.

2.4 Systemic response to cold pain stress

2.4.1 Hand pain perception
The level of hand discomfort/pain was assessed using a visual

analog scale from 0 (no discomfort) to 10 (intolerable pain).

2.4.2 Autonomic response
Autonomic response was evaluated by measuring

blood pressure and heart rate (HR) with an automated

sphygmomanometer (Omron M4-I, Omron Healthcare Europe

B.V., Hoofddorp, Netherlands).

2.4.3 Psychological response
The level of acute stress experienced by participants was

evaluated by the Subjective Stress Rating Scale (SSRS) (Naliboff

et al., 1991).

2.4.4 Hormonal response
Hypothalamic–pituitary–adrenal axis activation was assessed

through plasma levels of adrenocorticotropic hormone (ACTH)

and cortisol.

2.5 Experimental design

Physical examination and assessment of baseline stress and

depression levels were performed the week prior to the jejunal

biopsy. After an overnight fast, participants were orally intubated at

8:00 h and a first biopsy baseline biopsy (PRE) was collected at 5 cm

distal to the Treitz’s angle. Thereafter, the capsule was withdrawn

and subjects were intubated, again with a second Watson’s capsule,

submitted to the CPS protocol and 90min after finishing CPS a

second biopsy obtained from the same location was taken (POST).

Blood samples (20mL) were collected before oral intubation

(t−95), after collecting baseline biopsy (t−45), immediately before

initiating CPS (t0), 5, and 15min after stress initiation (t 5, t15)

and 30 (t45) and 90 (t105) min after stress cessation. Autonomic

and psychological responses were measured before oral intubation

(t−95), once intubated (t−65), and after collecting baseline biopsy

(t−45), immediately before initiating CPS (t0), 5, 10 15 and 20min

after stress initiation (t5, t10, t15, t20) and 30 (t45) and 90 (t105)

min after stress cessation. Hand pain perception was assessed before

initiating CPS (t0), every 5min until finishing CPS (t5, 10 and 15),

and 5 (t20) and 30min (t45) after stress cessation (Figure 1).

To evaluate whether the changes observed could be related to

the intubation itself, a sham stress protocol was also performed in

a reduced number of participants, using the same procedures, but

with no CPS. Intestinal biopsies, blood collection and processing of

samples were performed identically in both groups.

2.6 DNA extraction, library preparation and
sequencing

DNA isolation was performed from the whole biopsy

(50–100mg) using the TRIzol method. In brief, the sample

was homogenized in TRIzol using the Lysing Matrix D (MP

Biomedicals) in FP120A FastPrep (Thermo electron). The

homogenate was passed through a 27G syringe and chloroform

was added. The homogenate was centrifuged to divide the aqueous

from the organic phase. The organic phase contains the tissular

protein and DNA. The DNA was precipitated from the organic
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FIGURE 1

Experimental design.

phase using 100% ethanol. The precipitated DNA was washed with

0.1M sodium citrate in 10% ethanol at pH 8.5 three times. A final

wash with ethanol 75% was performed and the pellet was dried at

room temperature for 15min. Finally, the DNAwas resuspended in

8mM NaOH, 10mM HEPES and 1mM EDTA. After the isolation,

the DNA samples were stored at−80◦C.

Samples were amplified using primers for the V3–V4 regions:

forward: (5
′
-TCG TCG GCA GCG TCA GAT GTG TAT AAG

AGA CAG CCT ACGGGNGGC WGC AG-3
′
), reverse: (5

′
GTC

TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA

CTACHVGGG TAT CTA ATC C-3
′
).

The PCR was performed in 10-µl final volume with 0.2µM

primer concentration.

1) 1st PCR: 3min at 95◦C (initial denaturation) followed by

30 cycles: 30 s at 95◦C, 30 s at 55◦C, and 30 s at 72◦C.

Final elongation step of 5min at 72◦C. PCR products were

purified with AMPure XP beads (Beckman Coulter, Nyon,

Switzerland) with a 0.9× ratio according to themanufacturer’s

instructions. PCR products were eluted from the magnetic

beads with 30 µl Milli-Q water.

2) 2nd PCR: 5 µl of the first PCR purified product were used

as the template for a second PCR with Nextera XT v2 adaptor

primers in a final volume of 30 µl using the same PCR mix

and thermal profile as for the first PCR but with only eight

cycles. Twenty-five microliter of the second PCR product

were purified with SequalPrep normalization kit (Invitrogen,

ThermoFisher Scientific, Waltham, MA, USA), according to

the manufacturer’s protocol.

3) Sequencing: Libraries were eluted in 20 µl and pooled.

Sequencing was performed in an Illumina (MiSeq 2× 300 bp,

v3 chemistry). ZymoBIOMICS Microbial Community DNA

Standard (ZymoResearch) was used as a positive control.

Samples were sequenced in two batches (named 2018 and

2019), libraries for some samples rendering a low number of

reads were sequenced in the two batches, and the sequencing

runs were combined into a single file (combined).

2.7 Hormonal response

Plasma adrenocorticotropic hormone (ACTH) was determined

by sandwich chemiluminescence immunoassay (LaisonXL,

DiaSorin S.p.A., Saluggia, Italy) and cortisol concentration,

measured by chemiluminescent immunoassay (ADVIA Centaur

Cortisol assay, Siemens Healthcare Diagnostics, Munich,

Germany). Blood samples were collected in plastic tubes (BD

Vacutainer R© Plus Plastic K2-EDTA Tubes, Franklin Lakes, NJ,

USA), centrifuged and aliquoted for hormonal determinations.

2.8 Microbiome analysis

Taxonomy assignment was obtained from sequencing data

using the dada2 (v. 1.10.1) (Callahan et al., 2016) pipeline.

Quality was assessed with the plotQualityProfile function. The

filterAndTrim function was used to filter out or trim low-quality

sequencing reads, as well as to remove the first 10 nucleotides

(corresponding to the adaptors). The following parameters were

used for each sample group, according to the sequencing run (2018,

2019, and combined):

• filterAndTrim (fnFs.2018, filtFs.2018, fnRs.2018, filtRs.2018,

truncLen= c(260,230), maxN= 0, maxEE= c(10,10), truncQ

= 2, rm.phix = TRUE, trimLeft = c(10,10), compress =

TRUE, multithread= TRUE).

• filterAndTrim (fnFs.2019, filtFs.2019, fnRs.2019, filtRs.2019,

truncLen= c(280,240), maxN= 0, maxEE= c(10,10), truncQ

= 2, rm.phix = TRUE, trimLeft = c(10,10), compress =

TRUE, multithread= TRUE).

• filterAndTrim (fnFs.combined, filtFs.combined,

fnRs.combined, filtRs.combination, truncLen = c(270,220),

maxN = 0, maxEE = c(10,10), truncQ = 1, rm.phix =

TRUE, trimLeft = c(10,10), compress = TRUE, multithread

= TRUE).

Then, identical sequencing reads were combined into unique

sequences to avoid redundant comparisons (dereplication), sample

sequences were inferred (from a pre-calculated matrix of estimated

learning error rates) and paired reads were merged to obtain

full denoised sequences. From these, chimeric sequences were

removed. Taxonomy was assigned to ASVs using the SILVA 16s

rRNA database (v. 132) (Quast et al., 2013). Next, a phylogenetic

tree representing the taxa found in the sample dataset was

reconstructed by using the phangorn (v. 2.5.5) (Schliep, 2011) and

Decipher R packages (v 2.10.2) (Wright, 2016). We integrated the
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information from the ASV table, Taxonomy table, phylogenetic

tree and metadata (information relative to the samples such as

the sex, stress group according to Holmes-Rahe score, age, etc)

to create a phyloseq (v. 1.26.1) (McMurdie and Holmes, 2013)

object. As mentioned above, positive controls (mock communities)

were sequenced and included in the ASV table to evaluate the

accuracy of the pipeline, but were not included in subsequent

statistical analyses.

The metadata (Supplementary Table S15) consisted of 88

variables including information about the volunteer such as the

sex, age, autonomic, hormonal and psychological (measured by

the Subjective Stress Rating Scale, SSRS) response to CPS. We also

used the fold change (FC) after CPS of genes related to epithelial

barrier (CLDN1, CLDN2, OCL, SLC26A3, TJP1 and TJP3), stress

regulation and circadian rhythm (NR3C1, NR1D1, NR1D2, PER1

and PER3), inflammation (SOD1, IL18, NFE2L2, NIFL3) and

mast cell activation (protease inactivation (SERPINA1), tryptase:

TPSAB1) from a previous expression analysis performed on the

same intestinal samples (Rodiño-Janeiro et al., 2017, 2023). We

created one variable (SeqGroup) to account for the sequencing run,

with the labels 2018_only, 2018_reseq, 2019_only and 2019_reseq

(including the term reseq for those samples that were sequenced in

the two runs).

We characterized the taxonomic composition by calculating

different alpha-diversity (within-sample) and beta-diversity

(between samples) metrics. Using the estimate_richness function

of the phyloseq package we calculated various alpha diversity

metrics, including Observed (number of unique species), Shannon

(accounting for both the number of species and their relative

abundances) and Simpson (which focuses more on dominant

species) indices, and also the Chao1, InvSimpson and Abundance-

based Coverage Estimator (ACE) metrics. We also computed an

alpha diversity metric that incorporates branch lengths of the

phylogenetic tree called Faith’s phylogenetic diversity by using

the picante package (v.1.8.1) (Kembel et al., 2010). Regarding

beta-diversity, we used the Phyloseq and Vegan (v. 2.5-6) packages

(Oksanen et al., 2024) to characterize nine distance metrics based

on the differences in taxonomic composition of the samples

including Jensen-Shannon divergence (JSD), Weighted-Unifrac,

Unweighted-Unifrac, VAW-Gunifrac, a0-Gunifrac, a05_Gunifrac,

Bray, Jaccard and Canberra. We also computed the Aitchison

distance (Gloor et al., 2017) using the cmultRepl and codaSeq.clr

functions from the CodaSeq (v. 0.99.6) (Gloor and Reid, 2016)

and zCompositions (v.1.3.4) (Palarea-Albaladejo and Martín-

Fernández, 2015) packages. Normalization was performed by

transforming the data to relative abundances, samples containing

fewer than 950 reads were discarded and taxa that appeared in

fewer than 5% of the samples were filtered out.

2.9 Statistical analysis

Clinical data are expressed as median with first and third

quartiles (Q1–Q3), unless otherwise stated. Comparisons were

made through parametric (paired and unpaired Student’s t-test and

Pearson’s correlation) or non-parametric tests (Mann–Whitney U-

test, Wilcoxon Signed Ranks test, Fisher’s exact test and Spearman’s

correlation coefficient) as appropriate. Hormonal, autonomic, and

psychological changes were compared using a two-way repeated-

measures Analysis of Variance (ANOVA) where Sex was considered

the between-subjects factor, and changes throughout perfusion

time the within-subject factor (Time). Mean imputation was used

for random missing values when needed.

We investigated the microbial composition of the samples

using a 16S metabarcoding approach. In total, 68 out of the 74

sequenced samples passed all quality filters and were considered

for subsequent analysis. Of these, 62 samples were paired: 24 pairs

of subjects exposed to CPS and seven pairs exposed to sham stress.

Clustering of the samples was evaluated through Multidimensional

scaling plots (MDS) and a Permutational Multivariate Analysis of

Variance (PERMANOVA) using the 10 calculated distances. We

applied the adonis function from the mentioned Vegan R package

to evaluate different variable effects in this clustering. We used

as covariates the Time and the Patient and as a constraint the

seqGroup (sequencing groups).

To identify taxonomic features (Phylum, Class, Order, Family,

Genus and Species) that show significantly different abundances

among the studied conditions, we used linear models, as

implemented in the R package lme4 (v. 1.1-21) (Bates et al., 2015).

A linear model was built (Supplementary Table S14) to assess the

gender-dependent changes: the fixed effects that were considered

were both the Time and the interaction of the Time and the Sex

[tax_element ∼ Time + Time:sex + (1| seqGroup)]. We indicated

as a random effect the seqGroup variable.

We used ANOVA to assess the significance for each of the fixed

effects included in the models using the Car R package (v. 3.0-6)

(Fox et al., 2013). To assess particular differences between groups

we performed multiple comparisons of the results obtained in the

linear model using the multcomp R package’s function glht and the

Tukey test (v. 1.4-12) (Hothorn et al., 2008). To examine differences

between groups considering interacting variables (Time and Sex)

we used the lsmeans function from the lsmeans R package (v. 2.30-

0) (Lenth, 2016). Due to the small sample size limiting the statistical

power, no fdr correction was applied for multiple testing, but

applied a bonferroni correction when comparing different groups.

Statistical significance was defined when P values were lower than

0.05 in all the analyses.

Correlations among continuous variables were assessed using

the cor.test function from the stats R package (v. 3.5-0).

Normalization of the data was analyzed by using the shapiro.test

function from the same package. The correlation coefficient

(spearman or pearson) was specified taking into account the

shapiro test result. In addition, a correlation matrix was performed

for multiple comparisons using the corr.test function from the

psych package (v. 2.0.12) (Revelle, 2023) and adjusting the P-values

using the holm method.

When correlating FC after CPS of genes and other

variables such as beta diversity metrics, some samples were

removed because of missing data as indicated in the metadata

(Supplementary Table S15).

3 Results

Forty-five subjects were initially recruited. Three were excluded

from the study, of which two did not complete the protocol,

and one had severe intraepithelial jejunal lymphocytosis after
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TABLE 1 Clinical variables from subjects submitted to cold pain stress.

Male Female P

n 14 16

Age (years) 22.8 (22.1–33.9) 22.9 (21.8–26.8) 0.759

Holmes-Rahe’s score 98.5 (67.5–212.3) 69 (38.3–101.8) 0.058

Cohen’score 13.5 (10.5–22.5) 17 (11.5–21.5) 0.697

Beck’s score 0 (0–2.5) 0 (0–1) 0.728

Menstrual phase (F/L) N/A 7/8

Data are expressed as median with first and third quartiles (Q1–Q3). AMann–Whitney U-test

was used for comparisons between groups.

F, follicular phase; L, luteal phase; N/A, not applicable.

histological revision. In addition, five samples were excluded from

the microbiome analysis due to poor DNA quality. A total of

37 participants were finally included, of which 30 underwent

the CPS protocol (14 male, 16 female) and seven sham stress

protocol (three male, four female; Figure 1). As mentioned, because

of the quality of the sequencing data only 13 males and 11

females had pairing (pre and post) of the data. No significant

differences were observed between the groups in key demographic

or psychological parameters (stress and depression levels; Table 1

and Supplementary Table S1).

3.1 Systemic response to CPS

3.1.1 Autonomic response
CPS significantly increased systolic blood pressure (SBP)

[F(3,83) = 6.450; P < 0.0001] and diastolic blood pressure (DBP)

[F(3,83) = 8.210; P < 0.0001] in both groups, with no significant

differences between men and women in SBP [F(1,27) = 1.481; P =

0.234] and DBP [F(1,27) = 2.348; P= 0.137; Figure 2A].

CPS was not associated with an increase in heart rate [HR;

F(3,83) = 1.520; P = 0.215] (Figure 2A), and there were no

differences between groups [F(1,27) = 1.825; P= 0.188].

Sham stress did not significantly increase SBP, DBP or HR in

either group (Supplementary Figure S1).

3.1.2 Psychological response
CPS was associated with an increase in the level of acute stress

experienced by participants [F(3,76) = 8.972; P < 0.0001], which

was similar between males and females [F(1,25) = 0,008; P = 0.931;

Figure 2B].

Sham stress did not increase SSRS scores in either group

(Supplementary Figure S1).

3.1.3 Hand pain perception
CPS increased hand pain perception in both groups [F(5,140) =

109.766 P < 0.0001] with no differences between males and females

[F(1,28) = 1.861; P = 0.183; Figure 2C].

3.1.4 Hormonal response
CPS significantly increased plasma ACTH [F(3,78) = 4.747; P=

0.0043] and cortisol [F(3,83) = 6.778; P< 0.001], with no differences

between males and females [F(1,26) = 2.281; P = 0.143] and [F(1,27)
= 1.053; P= 0.314, respectively; Figure 2D].

Sham stress did not increase plasma ACTH or cortisol

concentration in either group (Supplementary Figure S1).

3.2 E�ect of CPS on the jejunal microbiota

The microbiome composition at baseline (PRE) and after CPS

(POST) was dominated by the phyla Firmicutes, Bacteroidetes,

Proteobacteria and Fusobacteria for both CPS and sham stress.

The 10 most abundant genera were similarly distributed across all

samples (Supplementary Figure S2).

CPS was associated with a significant decrease in alpha diversity

(Figure 3A and Supplementary Figure S3). This decrease in the

relative abundance of bacteria was more pronounced in females,

although not significantly different from males (Figures 3B, C). We

also observed a significant decrease in alpha diversity in the sham

stress group (Figure 3A and Supplementary Figure S4). However,

the differences were smaller compared to CPS subjects (Figure 3C).

We also assessed differences in the overall microbiota

composition of the samples according to beta diversity metrics

by assessing Multidimensional plots (MDS) of the Bray-Curtis

dissimilarity of the samples, coloring and shaping them according

to different variables, and assessing the statistical significance by

the Adonis test. As observed in the MDS plot the sham stress

samples showed relatively small differences between their baseline

(PRE) or after sham stress (POST) biopsies, whereas the samples

from individuals exposed to CPS varied more, especially among

the POST samples (Figure 4A). Notably, we observed a greater

similarity of PRE- and POST-stress samples in males than in

females as shown by the overlap of the continuous and dashed

ellipses (Figure 4B). Adonis test detected the Stress model as

statistically significant effect variable on the overall composition,

considering all the samples (n = 68, Adonis test P-value: 0.001)

and the Sex when considering only paired cases, and including as

covariate the individual id (n= 48, Adonis test P-value: 0.013).

3.3 E�ect of sex in the CPS-induced
changes in the jejunal microbiota

At baseline there were no significant differences between males

and females in the relative abundances of bacteria.

CPS was associated with significant differences in the

relative abundance of several taxa at different taxonomic levels

(Supplementary Table S2). In particular, five taxa were differentially

abundant at the species level: Prevotella melaninogenica, Prevotella

salivae, Granulicatella spp., Defluviitaleaceae_UCG.011 spp.,

and Megasphaera spp. (Figure 5 and Supplementary Table S3).

Interestingly, a different response was observed between males and

females after the application of CPS, with 10 taxa having significant

differential abundance (Supplementary Table S4).
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FIGURE 2

Systemic response to cold pain stress. (A) autonomic (blood pressure and heart rate); (B) psychological (SSRS); (C) hand pain and (D) hormonal
responses to CPS. (A) Both systolic and diastolic blood pressure increased in response to stress (two-way ANOVA, *P < 0.0001 for time) with no
di�erences between sexes. (B) CPS significantly enhanced SSRS (two-way ANOVA, *P < 0.0001), with no di�erences between sexes; (C) CPS was
associated with a significant increase in hand pain perception (two-way ANOVA, *P < 0.0001 for time) that was similar between sexes. (D) ACTH and
cortisol levels significantly increased after CPS (two-way ANOVA, ACTH: *P = 0.004; cortisol: P < 0.001 for time) with no di�erences by sex. Lines
represent the median for each time point for M (dashed lines) and F (solid line). ACTH: adrenocorticotropic hormone; CPS: cold pain stress; min:
minutes; SSRS: subjective stress rating scale.

3.4 Correlations between changes in the
jejunal microbiota and molecular,
hormonal and psychological responses to
CPS

We investigated the relationship between changes in the jejunal

microbiome and the expression levels of genes related to the

epithelial barrier (CLDN1, CLDN2, OCL, SLC26A3, TJP1, and

TJP3), stress regulation and circadian rhythm (NR3C1, NR1D1,

NR1D2, PER1, and PER3), inflammation (SOD1, IL18, NFE2L2,

NIFL3) and MC activation (SERPINA1, TPSAB1) from a previous

expression analysis performed on the same intestinal samples

(Rodiño-Janeiro et al., 2023) and the relationships of microbiome

changes to participant’s hormonal and psychological responses

to stress.

Changes in the overall microbiome (beta diversity) significantly

correlated with several gene expression changes (Fold Change,

FC) after CPS (Supplementary Table S5). When stratifying by

sex, we observed a significant negative correlation between OCL

FC gene and beta diversity change only in the female group.

In contrast, in the male group we observed eight significant

correlations (Supplementary Tables S5, S6). Of note, we found a

consistent negative correlation of the SOD1 gene FC and the change

in total diversity of the samples only in males, suggesting that

the less the change in microbial composition before and after

the stress, the more the change in the expression levels of this

particular gene.

Alpha diversity variations also correlated with changes in

the expression levels of some of the genes evaluated after CPS

(Supplementary Table S7), as did the relative abundances of taxa

after stress and the FC of the genes (Supplementary Table S8).

Interestingly, a significant correlation was found between beta

diversity and OCL FC after CPS, and between alpha diversity

and NR3C1 FC after CPS, suggesting a relationship between gut

microbiota and barrier-related gene expression (Figure 6).

We did not find a significant correlation between the

overall change in the microbiome composition and cortisol

or ACTH levels. However, significant correlations between

specific taxa and stress hormones after CPS were observed

(Supplementary Tables S9, S10).

Changes in psychological response to CPS, measured through

the SSRS, were also correlated with differences in beta diversity

(Supplementary Table S11). Stratifying by sex, we observed no

significant correlation in females, but six significant correlations

in males (Supplementary Table S12). Changes in microbiota

composition that differed betweenmales and females after CPS also

correlated with changes in SSRS (Supplementary Table S13).

No significant correlation between the overall change in the

microbiome composition and levels of life stress and depression,

individuals’ weight, height or body mass index were found.
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FIGURE 3

Small intestine mucosal microbiota response after cold pain or sham stress. Alpha diversity (Shannon index) changes in paired samples for both CPS
(n = 48) and Sham stress (n = 14). (A) Shannon diversity according to the variable Time (PRE or POST). The Wilcoxon test (W) showed statistical
significance (P = 0.015 and P = 0.031) for both CPS and Sham stress respectively. Boxplots of the Shannon index diversity are represented including
the statistical significance. The line inside the boxplot represents the median for each of the group of samples (B) Shannon diversity according to
Time and Sex. The Wilcoxon test showed no statistical significance (P = 0.28 and P = 0.41 for females and males respectively considering CPS, and P

= 0.25 and P = 0.25 for females and males, respectively, considering sham stress). (C) Barplot of the di�erence of the Shannon diversity index
(POST-PRE) in CPS and sham stress. The bars are colored according to the Sex. Samples are ordered by the magnitude of the Shannon index
di�erence between their PRE and POST state.

4 Discussion

This study shows that acute stress causes rapid and considerable

changes in the composition of jejunal microbiota. These changes

are more evident in women, despite the absence of any differences

in the systemic response to stress between the sexes. Changes in

the composition of small intestine microbiota can contribute to IB

dysfunction induced by stress through the brain-gut axis (BGA).

This phenomenon may account for the higher risk of developing

DGBI in women. Disruption of this network can lead to impaired

GI function, and has been associated with inflammatory bowel

disease (IBD) and IBS.

Gut microbiological changes can be induced by enteric

infections, antibiotics, and stress. Pediatric patients with Crohn’s
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FIGURE 4

E�ect of sex and stress on the small intestine mucosal microbiota. Multidimensional plot representing the Bray-Curtis dissimilarity. A significant e�ect
of the Stress model (CPS or sham stress) and Sex was found in the clustering of the samples according to the Adonis test. Continuous and dashed
ellipses are plotted for PRE and POST samples, respectively. (A) Samples are colored according to the Stress model and shaped according to Time.
Significant e�ect of the Stress model (n = 68, Adonis test P-value: 0.001) (B) Samples are colored according to the Sex and shaped according to the
Time. Significant e�ect of Sex (n = 48, Adonis test P-value: 0.013). Adonis test showed no statistically significant e�ect of the combination of time
and Sex (n = 48, Adonis test P = 1).

disease (CD) (Mackner et al., 2020) and pregnant women with

high anxiety/stress (Hechler et al., 2019) display differences

in the fecal microbiome and metabolome, indicating increased

levels of inflammation, with higher relative abundance of

Proteobacteria and lower relative abundance of lactic acid bacteria

and Bifidobacteria (Zijlmans et al., 2015). Changes in gut

microbiota composition during pregnancy can be associated

with several childhood adversities, which may contribute to

altered inflammatory and glucocorticoid responses to stress

(Hantsoo et al., 2019). There is evidence that mucosal microbiota

composition can rapidly change after acute stress (Lyte and

Ernst, 1992; Zhang et al., 2021, 2024). This study shows
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FIGURE 5

Di�erence in the taxa relative abundance after cold pain stress. Heatmap representation of the di�erence in the relative abundance multiplied by 100
of the taxa found as di�erentially abundant according to the Time considering both the Time and the interaction of the Time and the Sex as fixed
e�ects (n = 48). Subject ids are depicted at x-axis. (A) Heatmap considering the CPS group (n = 48, cases). (B) Representation of these taxa in the
sham group (n = 14, controls).
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FIGURE 6

Correlation between changes in the small intestine mucosal microbiota and the expression levels of OCL and NR3C1. Scatterplots showing
correlations of beta and alpha diversity variables and the FC of some genes (n = 22). Samples are colored according to the Sex. Both Rho (R) and
P-value are represented in the plots. (A) Correlation between the Bray-Curtis dissimilarity of the samples before and after CPS and the FC of the OCL
gene. Spearman test, Rho = −0.53 and P = 0.017. (B) Correlation between Shannon diversity and NR3C1 FC. Spearman test, Rho = 0.55 and P =

0.0058. CPS, cold pain stress; FC, fold change; NR3C1, glucocorticoid receptor nuclear receptor subfamily 3 group C member 1.

novel information suggesting that acute stress rapidly alters

jejunal bacterial composition in healthy subjects, with more

pronounced changes observed in females. Importantly, these

differences are not related to chronic stress since there were no

significant differences in chronic stress levels between male and

female groups.

Sex-related changes in the gut microbiota have been previously

reported in animal models of early life stress (Park et al., 2021), after

chronic stress (Lyte et al., 2020, 2022), and in response to NSAIDs

in humans (Haro et al., 2016; Edogawa et al., 2018). Patients with

functional GI symptoms and IBD have shown lower phylogenetic

alpha diversity, richness, and evenness with significant decreases
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in the genera Porphyromonas, Prevotella, and Fusobacterium, when

compared to healthy subjects (Saffouri et al., 2019; Simrén et al.,

2013; Ni et al., 2017). In this study, we also found a significant

sex-dependent decrease in an unclassified species of the genus

Alloprevotella, which was previously reported to be increased

in a male mouse model of psychosocial stress (Burokas et al.,

2017). We found a significant decrease in the species Rothia

mucilaginosa species in females after CPS, a taxon that has been

associated with oral contraceptive use (Sinha et al., 2019) and

shown to be decreased in CD (Gevers et al., 2014). Dysregulation of

Granulicatella spp., which we also found to be decreased after CPS,

has also been described in CD after ileocolic resection (Mondot

et al., 2016).

Stress, microbiota, and IB function are closely interlinked.

Changes in the microbiota have been observed in healthy

individuals following a multi-stressor military training

environment, which also increased gut permeability (Karl

et al., 2017). This is also seen in patients with alcohol abuse

where richness and evenness of the fecal microbiota were reduced

along with increased gut permeability (Maccioni et al., 2020).

In mice subjected to water avoidance stress, psychological stress

exacerbates NSAID-induced small bowel injury through changes

in intestinal microbiota and barrier permeability induced by

glucocorticoid receptor signaling (Yoshikawa et al., 2017). Indeed,

the tight junction protein Claudin-1 promoter is regulated by the

glucocorticoid receptor and the transcriptional repressor HES1

(Zheng et al., 2017). This suggests that NR3C1 is responsible for

regulating the stress-induced decrease in intestinal permeability.

After CPS, significant correlations were found between changes

in gene expression and alpha and beta diversity metrics in

genes related to inflammation, epithelial barrier, MC activation,

circadian rhythm and stress response. Our results indicate a

positive correlation between alpha-diversity and NR3C1 FC, and a

negative correlation between beta-diversity and SOD1 and OCL.

Beta-diversity negatively correlated with NR3C1 FC in males. In

contrast, alpha diversity positively correlated with NR3C1 and

CLDN1 while beta diversity positively correlated with OCL FC

in females. These results suggest that changes in the microbiota

are associated with changes in the expression of genes encoding

different proteins related to gut barrier. Additionally, significant

correlations were observed between psychological and hormonal

responses to CPS and beta diversity overall changes in intestinal

microbiota. This implies that psychological stress modulates

changes in intestinal microbiota through BGA.

The mechanisms responsible for the rapid changes observed

in the microbiota are not yet fully understood. although previous

studies have described some of them. According to Rengarajan

et al. (2020), stress induces fecal dysbiosis, IB dysfunction, and

antibacterial IgA release inmice. In this context, we have previously

demonstrated an increased humoral immune response in IBS-D

patients, although it is more linked to IgG than to IgA (Vicario

et al., 2015). Moreover, a study has proved that female microbiota

transfer to germ-free mice leads to significantly lower IgA levels

compared to male microbiota transfer (Fransen et al., 2017).

Luminal levels of IgA were not assessed, but changes in salivary

IgA secretion by stress reach peak concentration in 10 minutes

(Seizer et al., 2024) being a response that could explain the

observed changes in gut microbiota after CPS. According to recent

research, chronic social defeat stress significantly reduces alpha-

defensin secretion and induces dysbiosis, which can be reversed

in mice by administering alpha-defensin (Suzuki et al., 2021).

In contrast, we discovered an increase in luminal alpha-defensin

secretion in the jejunum of healthy women after acute stress

(Alonso et al., 2008, 2012; Vanuytsel et al., 2014) being secreted

by CPS in 15min (Alonso et al., 2012). However, although the

rapid response matches the altered microbiota timeline, further

studies are required to understand the impact of stress on the

regulation of alpha-defensins and the small bowel microbiota.

Lastly, CPS increases small bowel water secretion in 15 minutes

(Alonso et al., 2008, 2012), a mechanism that appears to have a

relevant influence the colonization by pathobionts and the stability

of the intestinal microbiota (Rengarajan et al., 2020) and that was

more pronounced in female subjects than male subjects (Alonso

et al., 2012). Therefore, both innate and adaptive immune responses

can contribute to modulate intestinal microbiota, and recent

studies have highlighted the sensitivity of the upper gastrointestinal

tract to these immune-modulated changes (Gu et al., 2022).

Also, significant sex differences in gut immune system have been

described (Sankaran-Walters et al., 2013) that could affect the

types and abundance ofmicrobial communities, potentially altering

beta-diversity between male and females.

Our study has several limitations related to the complexity,

of the methodology that could act as confounding factors for the

interpretation of our results, including a relatively small sample

size, particularly in the sham stress group, a distinct anticipatory

and stress response to baseline biopsy between groups, a slight

difference in chronic stress levels between males and females in

the CPS group that could affect jejunal response, no negative

controls to account for potential contamination, and the inability

to test intestinal permeability in parallel with the biopsy procedure..

Moreover, the decision to choose the timing of the second biopsy

(90min after CPS) was arbitrary, and we recognize that more

pronounced changes could occur earlier or later. Furthermore, we

acknowledge the possibility that the observed changes are a result

of the experimental procedure’s combined effect, including stress

related to intubation and baseline biopsy, as well as to sham/CPS,

given that microbial changes were also found following the sham

stress protocol.

However, our study also has important strengths. There are

limited studies that have examined the composition of human

microbiota in the small intestine, an area that has received

considerably less attention compared to the large intestine in

existing studies and even fewer have investigated the impact of

sex differences and stress response in vivo. A recent systematic

analysis of saliva, mucosal, and fecal samples from healthy subjects

showed that the GI tract can be categorized into four unique regions

based on their bacterial composition, and indicated that the fecal

microbiota does not accurately represent the mucosal microbiota

(Vasapolli et al., 2019). Here, we report the changes in the jejunal

mucosal microbiota induced by stress in a larger sample, despite the

challenges in accessing this segment. Although one small biopsy is

probably not enough to give proper indication about the microbial

composition as there is evidence that the mucosal surface is not

homogeneous throughout the gastrointestinal tract, and differences
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in microbiota composition have been shown both at the mucosal

level (Vasapolli et al., 2019; Seekatz et al., 2019; Li et al., 2016),

and at the intestinal lumen (An et al., 2024), intestinal biopsies

were taken from the same place and all participants underwent

the same experimental procedure, supporting the credibility of

our observations. These changes are believed to have a significant

impact on host immunity (Van den Abbeele et al., 2011; Uchimura

et al., 2018), and the regulation of digestion (Martinez-Guryn et al.,

2018), and could potentially contribute to the pathophysiology

of IBS.

In summary, acute stress swiftly changes the gut microbiota’s

composition in the jejunum of healthy individuals. Women show

more pronounced changes than men, including some female-

specific changes in certain species. If further validated, our results

can aid in understanding the female predominance in DGBI.

However, further research with larger cohorts is required to

confirm and expand these findings in order to potentially identify

specific microbial signatures that may predict BGA susceptibility to

stress-sensitive disorders.
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