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Introduction: Acinetobacter baumannii contributes significantly to the global 
issue of multidrug-resistant (MDR) nosocomial infections. Often, these strains 
demonstrate resistance to carbapenems (MDR-CRAB), the first-line treatment 
for infections instigated by MDR A. baumannii. Our study focused on the 
antimicrobial susceptibility and genomic sequences related to plasmids from 
12 clinical isolates of A. baumannii that carry both the blaOXA-58 and blaNDM-1 
carbapenemase genes.

Methods: Whole-genome sequencing with long-read technology was employed 
for the characterization of an A. baumannii plasmid that harbors the blaOXA-58 and 
blaNDM-1 genes. The location of the blaOXA-58 and blaNDM-1 genes was confirmed 
through Southern blot hybridization assays. Antimicrobial susceptibility tests 
were conducted, and molecular characterization was performed using PCR and 
PFGE.

Results: Multilocus Sequence Typing analysis revealed considerable genetic 
diversity among blaOXA-58 and blaNDM-1 positive strains in Brazil. It was confirmed 
that these genes were located on a plasmid larger than 300 kb in isolates from the 
same hospital, which also carry other antimicrobial resistance genes. Different 
genetic contexts were observed for the co-occurrence of these carbapenemase-
encoding genes in Brazilian strains.

Discussion: The propagation of blaOXA-58 and blaNDM-1 genes on the same plasmid, 
which also carries other resistance determinants, could potentially lead to the 
emergence of bacterial strains resistant to multiple classes of antimicrobials. 
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Therefore, the characterization of these strains is of paramount importance 
for monitoring resistance evolution, curbing their rapid global dissemination, 
averting outbreaks, and optimizing therapy.
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Acinetobacter baumannii, OXA-58 carbapenemase, NDM-1 carbapenemase, genomic, 
plasmids, co-harboring

1 Introduction

Acinetobacter baumannii has emerged as one of the most 
significant and challenging pathogens of this century, primarily due 
to its involvement in multidrug-resistant (MDR) hospital-acquired 
infections (Zhang et  al., 2021). The most common clinical 
presentations linked to this pathogen include ventilator-associated 
pneumonia (VAP) and bloodstream infections (Palmieri et  al., 
2020). The management of Acinetobacter infections is notably 
difficult due to its exceptional capacity to develop resistance to 
nearly all classes of antimicrobials currently used in clinical settings, 
particularly carbapenems (Ghaly et  al., 2020), which are the 
treatment of choice for MDR A. baumannii (MDR-Ab) infections. 
However, the distressing increase in carbapenem-resistant 
A. baumannii (CRAB) strains globally has significantly limited 
treatment alternatives and considerably increased morbidity and 
mortality rates (Kyriakidis et al., 2021). Importantly, CRAB strains 
often demonstrate co-resistance to other antibiotic classes, further 
complicating therapeutic approaches (Nodari et al., 2020).

CRAB is primarily linked with the production of carbapenem-
hydrolyzing class D β-lactamases (CHDL), also referred to as 
oxacillinases (OXA). At present, among the recognized phylogenetic 
subgroups of CHDL, five are commonly identified in A. baumannii: 
intrinsic chromosomal OXA-51-like, acquired OXA-23-like, OXA-24-
like, OXA-58-like, and OXA-143-like (Goic-Barisic et al., 2021). These 
carbapenemases are generally expressed at low levels; however, the 
presence of an insertion sequence (IS) element upstream of these 
genes, such as ISAba1, serves as a powerful transcriptional promoter, 
leading to clinical carbapenem resistance (Wong et al., 2017). Among 
these enzymes, OXA-23-like is the most widespread and frequently 
reported enzyme worldwide (Goic-Barisic et  al., 2021). In Brazil, 
OXA-58 is detected sporadically (Matos et al., 2019), while OXA-23 
is prevalent, followed by OXA-143 (Vasconcelos et  al., 2015; de 
Oliveira et al., 2019). The OXA-24-like and OXA-58-like enzymes 
appear to be endemic in specific regions of the world (Hamidian and 
Nigro, 2019).

Carbapenem resistance in Acinetobacter spp. can also occur. 
However, it is less common due to the production of metallo-β-
lactamases (MBL), such as imipenemase (IMP), Verona integron-
encoded metallo-β-lactamase (VIM), and New Delhi 
metallo-β-lactamase (NDM) (Anggraini et al., 2022). Notably, NDM-1 
is prevalent in Klebsiella pneumoniae and Escherichia coli species, 
whereas Acinetobacter spp. is known as an intermediate reservoir. 
However, NDM-1-producing Acinetobacter strains have been reported 
globally due to the high horizontal transferability of the plasmids 
carrying the blaNDM gene and several additional resistance 
mechanisms, restricting treatment options (Vasudevan et al., 2022).

The co-occurrence of two distinct carbapenemase-encoding genes 
is a particularly alarming mechanism of antimicrobial resistance, as it 
typically results in higher resistance to β-lactams and is often 
associated with increased mortality rates (Oinuma et  al., 2016; 
Vasudevan et al., 2022).

In this study, we  examined antimicrobial susceptibility and 
investigated the genomic sequences associated with plasmids from 
A. baumannii clinical isolates carrying the blaOXA-58 and blaNDM-1 genes, 
with the aim of gaining a deeper understanding of the molecular basis 
and evolutionary dynamics of the antimicrobial resistance of isolates 
circulating in Brazil.

2 Materials and methods

2.1 Bacterial isolates

The Laboratório de Bacteriologia Aplicada à Saúde Única e 
Resistência Antimicrobiana (LabSUR-Fiocruz) receives clinical isolates 
from public health laboratories across Brazil to investigate the 
mechanisms of antimicrobial resistance. The present study encompasses 
12 unique clinical isolates of OXA-58- and NDM-1-producing 
A. baumannii, which are part of the Culture Collection of Hospital-
Acquired Bacteria (CCBH-Fiocruz, WDCM 947). These isolates were 
obtained from various clinical specimens, including blood, tracheal 
secretions, catheter tips, and cerebrospinal fluid, from patients 
hospitalized in two Brazilian states: Bahia in the northeast (eight isolates 
from two hospitals) and Amazonas in the north (four isolates from 
three hospitals). The strains were isolated over a period of 1 year, from 
November 2020 to November 2021, and were sent to LabSUR for 
investigation into the molecular mechanisms of carbapenem resistance. 
During this same period, the laboratory received 1,124 strains of 
Acinetobacter spp. After performing a polymerase chain reaction 
(PCR), the blaOXA-58 and blaNDM-1 genes were detected in 12 isolates.

2.2 Antimicrobial susceptibility testing

The antimicrobial susceptibility profile was performed and 
interpreted according to the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) guidelines (European Committee on 
Antimicrobial Susceptibility Testing (EUCAST), 2023). Antimicrobial 
susceptibility testing (AST) of A. baumannii isolates for amikacin, 
gentamicin, ciprofloxacin, trimethoprim–sulfamethoxazole, tobramycin, 
levofloxacin, and meropenem was performed using the Kirby–Bauer 
disk-diffusion method, as described previously (Bauer et al., 1966). The 
broth dilution method was used to determine the susceptibility to colistin.
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2.3 Pulsed-field gel electrophoresis

All the isolates were analyzed using PFGE, as described previously, 
with minor modifications (Bou et  al., 2000). Bacterial cells were 
embedded in agarose plugs and digested by ApaI (Invitrogen) at 37°C 
for 3 h. Electrophoresis was performed on 1.1% agarose gel (SeaKem® 
Gold Agarose, Lonza) in 0.4× Tris-borate-EDTA buffer using a 
CHEF-DR III System (Bio-Rad) apparatus. Images of banding patterns 
obtained were processed using BioNumerics software (version 6.6; 
Applied Maths). Similarities were calculated using both Dice 
coefficients, and the unweighted pair-group method using arithmetic 
averages (UPGMA) was applied for cluster analysis. The tolerance and 
optimization were set at 1.5% each. Strains were considered 
epidemiologically related if they had ≥90% genetic similarity.

Plasmids were analyzed using S1 nuclease (Invitrogen) digestion 
followed by Southern blot hybridization for all 12 strains. After 
transfer to Amersham Hybond-N+ membranes (GE Healthcare), the 
genomic DNA was hybridized with the blaOXA-58 and blaNDM-1 probes 
as described in the DIG-DNA labeling and detection kit (Roche 
Diagnostics, Germany).

2.4 Whole-genome sequencing

Only CCBH31258 was subjected to long-read sequencing by 
Oxford Nanopore Technologies® (ONT). Genomic DNA was extracted 
using the DNeasy® PowerSoil® Pro Kit (Qiagen), following the 
manufacturer’s recommendations. The barcoding sequencing library 
was prepared according to the protocol for native barcoding genomic 
DNA using the Ligation Sequencing SQK-LSK109 and Native 
Barcoding Expansion 1–12 EXP-NBD104 kits (Oxford Nanopore 
Technologies®), as well as the NEB Blunt/TA Ligase Master Mix, 
NEBNext® Quick Ligation Reaction Buffer, and NEBNext® Companion 
Module for Oxford Nanopore Technologies® Ligation Sequencing. 
After that, the DNA library was loaded onto a FLO-MIN106D flow cell 
(R9.4 chemistry) to run on Oxford Nanopore MinION. MinKNOW 
v.21.02.1 was used to obtain sequence signals, while basecalling and 
demultiplexing were performed using Guppy basecaller v1.6.0.

Based on the PFGE analysis, all isolates except CCCBH31258 were 
subjected to Illumina whole-genome sequencing. Genomic DNA from 
each strain from the overnight culture was extracted using the QIAamp 
DNA mini kit (Qiagen), following the manufacturer’s instructions. A 
tagmentation library from genomic DNA was made using the Nextera 
XT DNA Sample Preparation Kit (Illumina, San Diego, CA, 
United States), and the 250-bp paired-end reads were sequenced on the 
Miseq system (Illumina, San Diego, CA, United States).

2.4.1 Assembly
The de novo assembly for CCBH31258 long reads was generated 

using the Flye assembler (Kolmogorov et al., 2019). For the short reads 
from the other seven strains, Trimmomatic was used at the trimming 
step (ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 AVGQUAL:20 
MINLEN:50) (Bolger et al., 2014). The genome de novo assembly was 
performed using Unicycler (v0.4.9), conservative mode (Wick et al., 
2017). Short reads were mapped against plasmids from CCBH31258 
(pCCBH31258) using minimap2 and SAMtools (Li et al., 2009; Li, 
2018). For strains that read coverage for all pCCBH31258, a plasmid 
consensus sequence was generated using Pilon, and VCF output was 

checked (Walker et  al., 2014). Furthermore, contigs were mapped 
against the plasmid consensus using minimap2, and the mapped 
contigs were excluded to obtain only chromosome contigs. Contigs 
from the other strains were extended by AlignGraph (Bao et al., 2014), 
using pCCBH31258 as a reference. For each strain, mapped reads 
(SAM files) using pCCBH31258 as a reference were compared.

2.4.2 Annotation
Draft genomes were submitted to GenBank and annotated using 

the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). The web 
application CABGen was used to access coverage estimation; species 
confirmation; MLST mapping; searches for genes related to AMR, 
virulence, and plasmids; and detection of point mutations in specific 
AMR genes (Duré et al., 2022). Resistance genes were confirmed using 
raw reads as input for ResFinder software on the Center for Genomic 
Epidemiology website. Insertion sequence annotation was improved 
in the figures using ISFinder (Siguier, 2006). MOB-suite was applied 
to the assembled plasmid to predict the Inc. group, relaxase typing, 
and conjugation potential (Robertson and Nash, 2018). PdifFinder 
analyses were adopted for the annotation of pdif sites and pdif-ARGs 
modules in the plasmid (Shao et al., 2023).

3 Results

3.1 Antimicrobial susceptibility profile

The isolates exhibited a resistance profile to the majority of the 
antimicrobials tested, with the highest resistance rates to meropenem 
(100%), gentamicin (100%), trimethoprim–sulfamethoxazole (83%), 
and tobramycin (83%). Colistin was the most active agent tested, with 
only two resistant isolates, one from Bahia and the other from 
Amazonas (Figure 1).

3.2 Pulsed-field gel electrophoresis

The 12 strains were grouped into six PFGE clusters (A, B, C, D, E, 
and F), and the most frequent pulsetype was pattern F (six strains 
from the same hospital in Bahia), followed by pattern E (2 strains from 
two different hospitals in Amazonas). In Bahia and Amazonas, two 
other pulsetypes were found (A and B in Bahia and C and D in 
Amazonas). Southern blot hybridization showed that blaOXA-58 and 
blaNDM-1 genes were located on a plasmid with approximately 320 kb 
for clone B and clone F strains, which were isolated in the Bahia state, 
in the same hospital. Furthermore, two isolates from the Amazonas 
state, belonging to clone E, showed labeled bands with similar weights 
(CCBH31624 and CCBH32292). Two strains from Amazonas 
(CCBH33291 and CCBH33294), isolated in the same hospital, showed 
the same labeled band of approximately 178 kb, although they belong 
to different clones (C and D) (Figure 1; Supplementary material).

3.3 Whole-genome sequencing

The de novo assembly for CCBH31258 (pulsotype F) long reads 
generated two contigs: one chromosome with 3,706,655 bp and one 
circularized plasmid with 340,418 bp (GenBank accession 
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CP101889-CP101888). This isolate belongs to ST374 and carries 
blaOXA-259 (a blaOXA-51 variant). Both carbapenemase-encoding genes 
(blaOXA-58 and blaNDM-1) were detected in the MDR plasmid 
(pCCBH31258), which also carried resistance genes to several other 
antimicrobials, such as blaTEM-1B, aac(3)-IIa, aph(6)-Id, msr(E), mph(E), 
dfrA1, floR, sul1, and sul2 (Figure 1).

In plasmid pCCBH31258, the blaNDM-1 gene was identified in a 
DNA region characterized by a distinct guanine-cytosine (GC) 
content compared to the reads of the other isolates analyzed. This 
region also encompasses genes encoding a chaperone and a 
bleomycin-binding protein, corresponding to the complete Tn125 
transposon, flanked by ISAba125 (10,099 bp) (Figure 2A).

The blaOXA-58 was inserted between a complete ISAba3 upstream 
and a truncated ISAba3 downstream, followed by a complete ISApi2. 
This structure belongs to a pdif-ARGs module in pCCBH31258, 
surrounded by inversely oriented pdif sites (XerC/D and XerD/C). 
Surrounding blaOXA-58, araC family gene and genes related to efflux 
systems (adeR, adeS, MFS transporter, and multidrug efflux RND) 
were identified. Macrolide resistance genes, msr(E) and mph(E), were 
also located next to blaOXA-58 (Figure 2A).

Two genomic comparisons were applied: mapped reads from this 
study strains (Figure  2A) and GenBank assembly plasmids 
co-harboring blaOXA-58 and blaNDM-1, both using pCCBH31258 as a 
reference (Figure 2B). After visual inspection of the mapping results, 
reads from CCBH31270, CCBH32465, CCBH33045, CCBH33777, 
and CCBH33778 (typed as pulsotype F and ST374) covered all regions 
of pCCBH31258 (Figure 2A). Therefore, for these strains, the plasmid 
consensus assembly was adopted, and it was assumed that they 
carried the same plasmid (CP101886.1, JAPDGP000000000.1, 
JBDJPK000000000.1, JBDJPJ000000000.1, and JBDJPI000000000.1). 
Reads from CCBH31950 (pulsotype B, ST464) covered almost all 
pCCBH31258, missing only specific IS regions (ISApi2 and ISAba22) 
(Figure 2A). These seven strains were isolated in the same hospital in 
Bahia state, Brazil, between April and July 2021.

Although the weight estimation derived from hybridization 
results suggested that CCBH31624, isolated in Amazonas, harbored a 

plasmid similar to pCCBH31258, sequencing results indicated distinct 
gene sets (Figure  1). According to the mapping results and gene 
content, CCBH31624 and CCBH32292 (both pulsotype E, ST464) 
appear to carry a plasmid with a genomic background different from 
pCCBH31258, despite the similar weight observed in the Southern 
blot. For CCBH29641 (pulsotype A, ST739), retrieved from a different 
hospital in Bahia, the mapping results also demonstrated a genomic 
background distinct from pCCBH31258. Two sequenced strains from 
the same hospital in Amazonas (CCBH33291 and CCBH33294), 
belonging to ST10 and ST575, respectively, exhibited minimal 
similarities with pCCBH31258. For all these five strains, Tn125 
harboring blaNDM-1 was incomplete (Figure 2A).

Consequently, for STs other than ST374, it could not 
be confirmed by sequencing that blaOXA-58 and blaNDM-1 were inserted 
in the same plasmid, despite indications from Southern blot results. 
Given this, the contigs output from Align-Graph was adopted. For 
all isolates in this study, only the upstream insertion ISAba125 and 
downstream bleomycin gene were conserved surrounding blaNDM-1, 
and only the ISAba3 upstream and downstream regions were 
conserved for blaOXA-58 (Figure 2A).

MobTyper analysis revealed that pCCBH31258 encodes a relaxase 
that belongs to the MOBp family and was thus classified as a mobilizable 
plasmid. The Inc. group could not be determined; only a repB gene was 
identified (KT325596, 23,590–24,066), which was not included in the rep 
families characterized by Lam and Hamidian (2024). Furthermore, 
MobTyper identified pC54_001 (CP042365, A. pittii, clinical origin, 
Australia) as the closest plasmid in its database, sharing 99% identity (65% 
coverage). A literature search revealed other plasmids co-harboring 
OXA-58 and NDM-1, including pDETAB2 (CP047975.1), pNDM_
SCLZS86 (CP090865.1), pNDM_SCLZS30 (CP090384.1), pAC1530 
(CP045561.1), and pAC1633-1 (CP059301). A comparison of 
pCCBH31258 with these plasmids revealed that the former is a novel 
plasmid carrying these carbapenemase genes together. pCCBH31258 
likely evolved from a blaOXA-58 plasmid, as it shares conjugation genes from 
the type IVB secretion system and other backbone genes (parB and parM) 
with pC54_001. Moreover, the replicon gene (rep) of pCCBH31258 

FIGURE 1

Dendrogram cluster analysis of PFGE data with a  ≥  90% cut-off level of 12 clinical isolates of Acinetobacter baumannii and other relevant information 
about the strains. BA: Bahia; AM: Amazonas; AK: amikacin; CIP: ciprofloxacin; TMP/SMX: trimethoprim–sulfamethoxazole; TOB: tobramycin; LEV: 
levofloxacin; COL: colistin. *99% identity.
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FIGURE 2

Genomic comparison of plasmid pCCBH31258 with (A) other Acinetobacter baumannii strains from this study and (B) selected plasmids from 
GenBank: pC54_001 (CP042365.1), pDETAB2 (CP047975.1) (Liu et al., 2021), pNDM_SCLZS86 (CP090865.1) (Li et al., 2022b), pNDM_SCLZS30 
(CP090384.1) (Li et al., 2022a), pAC1530 (CP045561.1) (Alattraqchi et al., 2021), and pAC1633-1 (CP059301) (Alattraqchi et al., 2021). Inside out, the first 
ring is the plasmid pCCBH31258, used as a reference (CP101888.1). In (A), each strain was represented by its reads mapping coverage against the 
reference plasmid. The “graph maximum value” was set to 400x, which represents the maximum coverage peak shown. Regions with coverage over 
400x were highlighted in dark blue. In (A,B), the last ring represents relevant features in the reference. BA: Bahia state; AM: Amazonas state.
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encoded a replicase protein different from those present in the 
A. baumannii plasmids used for comparison (Figure 2B). Two strains 
from Amazonas, CCBH33291 and CCBH33294, which exhibited a 
similarly labeled band with an approximate size of 178 kb, were analyzed 
by mapping their reads against pAC1530 and pAC1633-1. These plasmids 
share a similar size, but the read coverage was found to be below 20%.

4 Discussion

Acinetobacter baumannii exhibits an extraordinary ability to 
develop resistance to multiple antimicrobial agents, particularly 
through mobile genetic elements, such as plasmids, that harbor 
antimicrobial resistance determinants. The prevalence of multidrug-
resistant A. baumannii (MDR-Ab) infections in hospital settings is a 
significant health concern, especially regarding last-resort antibiotics 
such as carbapenems. In the present study, all blaOXA-58 and blaNDM-1 
positive strains were resistant to meropenem and exhibited the MDR 
phenotype, aligning with the global increase in MDR-Ab infections 
(Nguyen and Joshi, 2021).

Carbapenem-resistant A. baumannii (CRAB) is a therapeutic 
challenge because few currently available antibiotics are active against 
CRAB (Bartal et al., 2022). Carbapenem resistance makes colistin the 
last-resort antimicrobial to treat MDR-Ab infections. However, overuse 
of this antimicrobial to treat CRAB infections may have contributed to 
the increased prevalence of colistin-resistant A. baumannii (Kurihara 
et al., 2022). Although most of the strains in the current study were 
susceptible to colistin, resistance was observed in two isolates.

CRAB is generally associated with a wide range of co-resistance to 
other classes of antimicrobial agents. The production of OXA-type 
carbapenemases is the main mechanism of carbapenem resistance in 
A. baumannii. These carbapenemases are encoded by the blaOXA genes, 
which are usually carried by highly transmissible plasmids (Nguyen and 
Joshi, 2021). In Brazil, blaOXA-23 is the most widely disseminated 
OXA-type carbapenemase in CRAB, followed by blaOXA-143, while blaOXA-

58 is less common (de Souza Gusatti et al., 2012; de Oliveira et al., 2019; 
Matos et al., 2019).

OXA-58 was first described in 2003 in France; since then, it has been 
widely reported worldwide, being associated with outbreaks of 
nosocomial infections (Moro et al., 2008; Ozen et al., 2009; de Souza 
Gusatti et al., 2012). OXA-58 hydrolyzes carbapenems at low levels; 
however, expression can be  increased by the presence of insertion 
sequences, such as ISAba3, resulting in resistance to carbapenems 
(Walther-Rasmussen and Høiby, 2006; Evans and Amyes, 2014). In the 
present study, all representative isolates sequenced showed complete 
ISAba3 upstream of the blaOXA-58 gene, suggesting its higher expression. 
The blaOXA-58 gene was inserted in a pdif module flanked by inversely 
oriented pdif sites in pCCBH31258, suggesting that this gene was 
probably mobilized and mediated by pdif sites using a XerC-XerD 
recombination system (Li et al., 2022a).

The emergence of NDM in CRAB has also become an important 
public health issue, which remains a major challenge for the treatment of 
infectious diseases. NDM is reported in most regions of the world due to 
its rapid dissemination since the gene encoding NDM is often carried by 
transferable plasmids (Villacís et al., 2019). pCCBH31258 analyzed in 
this study revealed that the blaNDM-1 gene was located between two copies 
of the ISAba125 element, and all strains carried the bleMBL (bleomycin 
resistance) gene, which has always been identified downstream of the 

blaNDM-1 gene. Several studies reported that the genetic environment of 
the blaNDM-1 gene presents a conserved structure, where this gene is 
located between two copies of the ISAba125 element, forming a 
transposon named Tn125 (Dortet et  al., 2014; Pagano et  al., 2016). 
However, it could be observed in this study that the Tn125 complete 
structure was conserved only for the strains that harbored the complete 
plasmid characterized here.

Our research describes 12 strains of carbapenem-resistant 
Acinetobacter baumannii (CRAB) concurrently carrying blaOXA-58 and 
blaNDM-1, representing 1% of all Acinetobacter species received by the 
laboratory during the period. The coexistence of these carbapenemase 
genes in CRAB has been infrequently reported. There have been four 
instances of CRAB isolates co-producing OXA-58 and NDM-1 from 
Algeria (Ramoul et al., 2016), Japan (Oinuma et al., 2016), Malaysia 
(Alattraqchi et al., 2021), and China (Liu et al., 2021). Only the strains 
isolated in Malaysia and China have the blaOXA-58 and blaNDM-1 genes 
located on the same plasmid (Alattraqchi et al., 2021; Liu et al., 2021) 
(Figure 2B), while in the Algerian isolate, the genes were chromosomally 
located (Ramoul et al., 2016), and the genome of the Japanese strain is a 
draft (Oinuma et al., 2016). Other non-baumannii Acinetobacter carrying 
blaOXA-58 and blaNDM-1 genes have been reported from Malaysia 
(Alattraqchi et al., 2021), China (Zhou et al., 2015; Chen et al., 2019; Li 
et al., 2022a,b), and Palestine (Regeen et al., 2014). Of these reports, three 
isolates were sequenced and found to carry these genes on the same 
plasmids (Alattraqchi et al., 2021; Li et al., 2022a,b) (Figure 2B). To the 
best of our knowledge, this is the first study reporting A. baumannii 
strains in Brazil co-harboring blaOXA-58 and blaNDM-1 genes. Genomic 
analysis revealed that pCCBH31258 harbored genes coding for proteins 
with high-level similarity to components of the Dot/Icm type IV 
secretion system from species of Legionella and Coxiella (type IVB) 
(Segal et al., 2005).

It could be noted that there is a high level of ST diversity associated 
with the co-occurrence of blaOXA-58 and blaNDM-1 in Brazil, which suggests 
that this co-occurrence does not relate exclusively to the clone. MLST 
analysis showed that five different sporadic STs were present in 12 whole-
genome sequenced strains: ST10, ST374, ST464, ST739, and ST575. 
Interestingly, none of the STs described here belonged to the main clonal 
complexes CC1, CC15, CC25, and CC79 predominant in South America 
or to CC2, which is the most prevalent clonal lineage in the world 
(Rodríguez et al., 2018). The same diversity of plasmids co-harboring 
blaOXA-58 and blaNDM-1 can also be highlighted, considering isolates from 
other countries (Alattraqchi et al., 2021; Liu et al., 2021; Li et al., 2022a,b).

The most frequent ST was ST374, including six isolates from the 
same hospital, and all these strains carried the same plasmid cohabiting 
blaOXA-58/blaNDM-1. The A. baumannii ST374 has rarely been reported 
(Fedrigo et al., 2022), and only one study from Tanzania reported a 
meropenem-resistant isolate, belonging to ST374, which was found to 
harbor blaNDM-1 in a chromosomally located composite transposon 
Tn125 (Moyo et al., 2021), while our observations revealed a plasmid 
localization for the blaNDM-1 gene.

A very similar plasmid to the one characterized here was observed in 
an isolate in the same hospital, belonging to ST464 (CCBH31950). 
Hybridization approaches suggest that another plasmid (~178 kb) is 
responsible for the mobilization of the two carbapenemase-encoding 
genes in strains from different clones but isolated in the same hospital in 
Amazonas state. Horizontal transfer enables different clonal lineages to 
acquire the same accessory genetic elements (Valenzuela et al., 2007). 
Furthermore, the mobilization of both genes on the same plasmid may 
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develop an increasing number of OXA-58/NDM-1 co-producer isolates. 
This scenario is favored by the high plasticity that the genome of 
A. baumannii has in acquiring, retaining, and disseminating antimicrobial 
resistance genes, especially in plasmids, which play a key role in harboring 
and transferring antibiotic-resistant genes (Roca et al., 2012).

5 Conclusion

Our study delineates a large plasmid harboring OXA-58 and 
NDM-1 carbapenemases, which have disseminated among clonal 
strains isolated during 2021 in the same hospital. These strains have 
accumulated other antimicrobial resistance genes. Furthermore, other 
genetic contexts have also demonstrated the capacity to disseminate 
blaOXA-58 and blaNDM-1. Our limited access to ONT sequencing 
prevented the complete genomic characterization of all plasmids 
harboring blaOXA-58 and blaNDM-1. However, this study reports the first 
identification of A. baumannii strains co-harboring these 
carbapenemase genes in Brazil. The co-occurrence of the 
carbapenemase genes blaOXA-58 and blaNDM-1 in clinical strains of 
A. baumannii is relatively uncommon. To the best of our knowledge, 
the 12 co-producing strains identified in this study represent the 
highest number reported in a single investigation. The spread of 
plasmids harboring critical antimicrobial resistance genes may 
facilitate the emergence of bacterial strains resistant to several classes 
of antibiotics, thereby presenting new challenges for the treatment of 
infectious diseases. Thus, the results presented highlight the propensity 
of A. baumannii to acquire and accumulate resistance genes to 
significant antimicrobial classes utilized in clinical practice. The 
characterization of MDR-CRAB strains is crucial for monitoring the 
evolution of resistance, with the aim of containing their rapid global 
spread, preventing outbreaks, and optimizing therapy.
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