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The fight against bacterial antibiotic resistance must be given critical attention

to avert the current and emerging crisis of treating bacterial infections due

to the inefficacy of clinically relevant antibiotics. Intrinsic genetic mutations

and transferrable antibiotic resistance genes (ARGs) are at the core of the

development of antibiotic resistance. However, traditional alignment methods

for detecting ARGs have limitations. Artificial intelligence (AI) methods and

approaches can potentially augment the detection of ARGs and identify

antibiotic targets and antagonistic bactericidal and bacteriostatic molecules

that are or can be developed as antibiotics. This review delves into the

literature regarding the various AI methods and approaches for identifying and

annotating ARGs, highlighting their potential and limitations. Specifically, we

discuss methods for (1) direct identification and classification of ARGs from

genome DNA sequences, (2) direct identification and classification from plasmid

sequences, and (3) identification of putative ARGs from feature selection.
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Background

When antibiotics were first discovered in the early twentieth century, it marked a
monumental shift in the battle against bacterial infections. The journey of antibiotic
research and development was paved with many years of incremental progress, from the
initial observations of bacteria structure by Antonie van Leeuwenhoek to the recognition
of mold’s curing abilities by John Parkington in the seventeenth century to the disproof
of the abiogenesis theory, and the characterization of infectious diseases (Mohr, 2016).
The discovery of penicillin by Fleming (1929) and its subsequent mass production at the
United States Department of Agriculture (USDA) Northern Regional Research Laboratory
in Peoria, Illinois, was a turning point that saved tens of thousands of men in the
Second World War from wound infections. This breakthrough was swiftly followed by
the introduction of several antibiotics in the next decades (Kourkouta, 2018). In the
following years, many antibiotics were developed, each with its unique mode of action
(Baran et al., 2023).

Unfortunately, due to the lack of stewardship regarding the use of antibiotics and
the natural process of evolution, bacteria have circumvented the efficacy of clinically
relevant antibiotics, leading to antibiotic resistance. The gravity of this situation cannot
be overstated. It should be highlighted that antibiotic resistance was noticed almost
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immediately after penicillin was discovered. Fleming had observed
as early as 1929 “that the growth of E. coli and a number
of other bacteria belonging to the coli-typhoid group was not
inhibited by penicillin” (Mohr, 2016). He attributed it to inaccurate
dosage. Later experiments using E. coli by Abraham and Chain
would come to reveal that, in fact, an enzyme produced by the
bacteria was quashing the bacterial growth-inhibiting property of
penicillin (Abraham and Chain, 1940; Mohr, 2016). Streptomycin
was ushered in 1944 for the treatment of tuberculosis. In
response, resistant variants of Mycobacterium tuberculosis were
soon detected. Even scarier was the revelation in Japan that
resistance abilities could be transferred vertically and horizontally
across bacteria populations through plasmid transfer, and the
subsequent identification of multidrug-resistant bacteria was
identified in the 1960s. This recurrent sequence of new antibiotics
discovery and rapid bacteria resistance development has been the
normal sequence of events to date (Davies and Davies, 2010;
Podolsky, 2018). According to the Centers for Disease Control
and Prevention, the threat of antibiotic resistance is a global
public health emergency. This crisis currently results in 2.8 million
infections in the United States, leading to approximately 35,000
deaths annually because of antibiotic resistance (Dadgostar, 2019).
The annual estimated cost of treating six common multidrug-
resistant bacterial illnesses was around $4.6 billion (Center for
Disease Control and Prevention, 2021; Nelson et al., 2021).
Other recognized burdens of antibiotic resistance include severe
illnesses, increased length of hospital stay, and complete treatment
failure. There is an antibiotic resistance crisis, and urgent
steps are needed to avert a return to the pre-antibiotic era
(Martens and Demain, 2017).

Based on currently available antibiotics, several strategies have
been proposed for combating this crisis: the development of new
antibiotics, phage therapy, combination therapy, antibody therapy,
immune modulation, and the One Health approach, among others
(Muteeb et al., 2023). It is especially critical to double down on
efforts toward innovating and developing new antibiotics as work
in this area has recently slowed. There are reported cases of bacterial
resistance to last-resort drugs, like Klebsiella and carbapenem,
which expose the population to the risk of untreatable infections.
There is projected to be a two-fold increase in resistance to
last-resort antibiotics compared to the 2005 level (WHO, 2023).
The increased costs of research and development, coupled with
the lack of incentives, have made the thrust for the research
and development of infectious diseases an unattractive pursuit
to pharmaceutical companies (Piddock, 2012; Ventola, 2019;
Muteeb et al., 2023).

Direct inactivation of drugs, limit in drug uptake, modification
of drug target, and increase in active drug efflux pumps are
well-known modes of action by which bacteria resist antibiotics.
However, the basis for these modes of action usually can be
traced back to genetic mutations and antibiotic resistance genes
(ARGs), which are often localized on plasmids and thus transferable
between various bacterial genera, species, or strains (Muteeb
et al., 2023). It is necessary to identify and understand these
mutations and ARGs that can serve as viable targets at various
levels for new antibiotic compounds and help to understand
antibiotic resistance transmission better (Hughes and Karlén,
2014). Currently, existing computational workflows for identifying
ARGs from next-generation sequencing (NGS) data are mostly

based on assembly or read-based methods, which rely on sequence
alignment for mapping reads to the genome. These are limited
in their ability to identify new ARGs and are prone to false
positives due to reading similarity in the read-based methods
(Hunt et al., 2017; Lakin et al., 2017; Yin et al., 2018; Alcock
et al., 2020). Emerging AI-based methods promise to overcome
some of these hurdles. Machine learning (ML) and deep learning
(DL) are subfields of AI. DL models can extract features from
known ARG sequences and use these to identify novel ARGs
(Lakin et al., 2017; Roy et al., 2023). ML algorithms continuously
learn new information from datasets without being explicitly
programmed, and deep learning employs layers of neural networks
that mimic human neurons to learn novel information from a
dataset. Depending on the task, both algorithms can be grouped
as supervised or unsupervised learning, and DL algorithms can be
further classified into reinforcement learning (Farina et al., 2022;
Ali et al., 2023; Vodanović et al., 2023). In the biomedical field,
AI is a great resource for making sense of the enormous data
generated from high-throughput molecular technologies (NHGRI,
2022). In this review, we summarize the application of AI for the
identification and annotation of ARGs.

Identification and annotation of
antibiotic resistance genes (ARGs)

Traditional methods for identifying ARGs from NGS data
consist of mapping reads directly to a reference genome or
assembling the reads into contigs before being compared to the
reference database. These methods cannot identify novel ARG
sequences and are often limited by false negative and false positive
results (Chowdhury et al., 2020; Wu et al., 2023). They are also
unable to distinguish between chromosomal or plasmid sequences.
AI models now exist to identify ARGs directly from short NGS raw
reads or fully assembled genes (Hunt et al., 2017; Lakin et al., 2017;
Yin et al., 2018; Alcock et al., 2020). Studies have also applied AI
to identify tentative ARGs and validate them. Encouragingly, some
of these models have recorded metrics comparable to the strict
alignment methods (Lakin et al., 2017; Roy et al., 2023). Common
ARG identification and annotation algorithms include support
vector machine (SVM), neural networks, and Hidden Markov
Models (HMM). The feature selection component in eXtreme
Gradient Boosting (XGBoost) and random forest (RF) are useful
in identifying potential ARGs.

Here, we discuss studies on the direct classification of ARGs
from sequence data, identifying possible ARGs from sequence data
via feature selection, and identifying plasmid sequences. Figure 1
illustrates these three approaches: machine learning, deep learning
algorithms for identifying antibiotic resistance genes (ARGs), and
plasmids.

Direct classification for identification
of ARGs from sequence data

The studies are presented based on the types of model
algorithms. The tools described in this review along with the
hyperlinks to these tools are annotated in Table 1.
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FIGURE 1

Summary of machine learning and deep learning algorithms for identifying antibiotic resistance genes (ARGs) and plasmids described in this review.
Studies reviewed were under the direct classification of ARGs from genome sequences utilizing support vector machine (SVM), deep learning, and
Hidden Markov Model (HMM) algorithms. The reviewed studies utilized SVM and eXtreme Gradient Boosting (XGBoost) to identify potential ARGs via
feature selection. Deep learning, SVM, and RF were utilized in studies to identify plasmid sequences.

TABLE 1 ARG and plasmid identification tools discussed in this review and their weblinks.

Tool Algorithm ARG or plasmid
identification

References Weblink

BlaPred SVM ARG Srivastava et al., 2018 http://proteininformatics.org/mkumar/blapred

BacEffluxPred SVM ARG Pandey et al., 2020 http://proteininformatics.org/mkumar/baceffluxpred/

MP4 SVM ARG Gupta et al., 2022 http://metagenomics.iiserb.ac.in/mp4

mlplasmids SVM Plasmid Arredondo-Alonso et al., 2018 https://gitlab.com/sirarredondo/mlplasmids

DeepARG Deep learning ARG Arango-Argoty et al., 2018 http://bench.cs.vt.edu/deeparg

PLM-ARG Deep learning ARG Wu et al., 2023 https://github.com/Junwu302/PLM-ARG

HMD-ARG Deep learning ARG Li et al., 2021 http://www.cbrc.kaust.edu.sa/HMDARG/

ARG-SHINE Deep learning ARG Wang et al., 2021 https://github.com/ziyewang/ARG_SHINE

PlasFlow Deep learning Plasmid Krawczyk et al., 2018 https://github.com/smaegol/PlasFlow

Deeplasmid Deep learning Plasmid Andreopoulos et al., 2022 https://github.com/wandreopoulos/deeplasmid

PPR-META Deep learning Plasmid Fang et al., 2019 https://github.com/zhenchengfang/PPR-Meta

PlansTrans Deep learning Plasmid Fang and Zhou, 2020 https://github.com/zhenchengfang/PlasTrans

Meta-MARC HMM ARG Lakin et al., 2019 https://github.com/lakinsm/meta-marc-publication/
blob/master/analytic_data/mmarc_test_set.fasta

SurHMM HMM ARG Xie and Fair, 2021 https://gitlab.com/gary_xie/surhmms

SourceFinder RF Plasmid Aytan-Aktug et al., 2022 https://cge.food.dtu.dk/services/SourceFinder/

ARG, antibiotic resistance genes; DL, deep learning; HMM, Hidden Markov Model; RF, random forest; SVM, support vector machine.

Support vector machines (SVM)

β-lactams are the largest group of antibiotics that are employed
in a clinical setting, and it is no surprise that β-lactamases
are the most common form of resistance posed by bacteria
against antibiotics. With various chemical modifications of β-
lactams introduced over the years, bacteria have also evolved in
the types of β-lactamases produced. It is, therefore, important
to accurately characterize β-lactamase to administer the right
therapy. An algorithm SVM-based model was created to fast track
this tedious and time-consuming laboratory process (Srivastava
et al., 2018). SVM is a machine learning-based classification

algorithm well known for its robustness to outliers and ability
to deal with high-dimensional datasets, frequently encountered
in bioinformatics (Van Messem, 2020). Multi-level SVM models
developed in this study take in protein sequences represented in
the form of amino acid composition (AAC) or pseudo amino acid
composition (PseAAC) as described in Chou (2001, 2005) and
classify β-lactamase A, B, C, or D and if B, further into B1, B2, B3.
Validated using a leave one out cross validation (LOOCV), PseAAC
input models performed better, with accuracy scores ranging from
82 to 97%. In a separate study, the Srivastava group applied
SVM models to tackle another antibiotic resistance mechanism-
efflux pump proteins. BacEffluxPred, a two-level group of SVM
models, was developed to identify and classify bacterial efflux pump
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proteins into various families (Pandey et al., 2020). The level I
model for distinguishing antibiotic resistance efflux (ARE) protein
from non-AREs achieved an accuracy score of 85 and 94% on
the training and independent datasets, respectively. Level II model
achieved an accuracy score of 93, 93, 93, and 100%, respectively,
in a LOOCV when each of the four ARE classes- ATP binding
cassette (ABC) transporter, major facilitator superfamily (MFS),
small multidrug resistance (SMR), multidrug and toxic compound
extrusion (MATE) families were grouped against a combined group
of other three classes.

An SVM model performed best to differentiate between
pathogenic and non-pathogenic bacterial proteins from sequences
represented as dipeptide frequency and pepstatin-containing
vectors, recording 79 and 72% accuracy on two separately curated
datasets, respectively (Gupta et al., 2022). The pathogenic proteins
were grouped into three, with one of the groups containing ARGs
and toxins.

Deep learning (DL)

Perhaps the most recognized deep learning-based ARG
identification system currently is DeepARG (Arango-Argoty et al.,
2018), a collection of artificial neural network (ANN) models-
DeepARG-LS and DeepARG-SS for identifying ARGs directly from
assembled sequences and short reads, respectively. Trained on
DeepARG-DB, a manually curated database put together from
CARD (Jia et al., 2017), ARDB (Liu and Pop, 2009), and UniProt
(Apweiler et al., 2004), the models have recorded precision and
recall scores above 0.97 and 0.90, respectively. Protein sequences for
training the models were represented as N ∗ 4333 vector matrices
containing bit scores (similarity distance between UniProt training
sequences and known sequences in CARD and ARDB) and passed
through the ANNs to predict 30 classes of antibiotic resistance,
including “unknown” class. Similarly, a Large Language Model
(LLM), ESM-1b, originally trained on about 250 million protein
sequences (Rives et al., 2021), was combined with XGBoost to
identify ARGs and classify their resistance group. PLM-ARG, as
it is named by the authors, embedded protein sequences with
ESM-1b and trained the XGBoost models on the embedding to
identify ARGs and classify ARGs resistance (Wu et al., 2023). On an
independent test dataset, PLM-ARG recorded metrics ranging from
9.6 to 36% and 40.8 to 107.3%, respectively, in AUC and f1-scores
above RGI, ResFam and DeepARG, three other state-of-the-art
(SOTA) ARG prediction methods.

Various categorizations of ARGs exist to enable a better
understanding of the spread of antibiotic resistance and ecology.
Beyond the identification of ARGs, (Li et al., 2021) built
a hierarchical multi-task deep learning framework for ARG
annotation (HMD-ARG), a Convolutional Neural Network (CNN)
based system that classifies ARGs at different levels. The model
takes a raw protein sequence that is one hot encoded and,
in downward order, predicts if the sequence is an ARG, the
antibiotic class it is resistant, its resistance mechanism (mode
of action), whether the ARG is intrinsic or an acquired,
and what subclass of β-lactamase it belongs to if it is a β-
lactamase. Manually curated sequences from seven databases-
CARD (Jia et al., 2017), AMRFinder (Feldgarden et al., 2019),

ResFinder (Zankari et al., 2012), ARG-ANNOT (Gupta et al.,
2014), DeepARG (Arango-Argoty et al., 2018), MEGARes (Lakin
et al., 2017), and Resfams (Gibson et al., 2015) were labeled
according to 15 antibiotic resistance classes in addition to
the 6 mechanisms of antibiotic resistance (enzyme inactivation,
modified target, resistance-conferring plasmid, modified cell
wall/membrane, efflux pumps overexpression and resistance
mutations), and gene transferability. In all tasks, an accuracy score
of greater than 0.9 was recorded, and experimental validation
of 8 randomly selected genes from Pseudomonas aeruginosa
agreed with HMD-ARG model predictions. For ARG classification,
another method ensembled ARG-CNN that is based on CNN
classification of sequence embedding, ARG-InterPro is based
on logistic regression classification of protein domains, families,
and functional sites data, and ARG-KNN is based on K-nearest
neighbor (KNN) classification of BLAST alignment homology
results to classify ARGs (Wang et al., 2021). The resulting overall
model named ARG-SHINE outperformed other known ARG
classification methods, including BLAST best hit (Altschul et al.,
1990), DIAMOND best hit (Buchfink et al., 2014), DeepARG
(Arango-Argoty et al., 2018), HMMER (Eddy, 2011), and TRAC
(Hamid, 2019).

Manually curated ARG databases like CARD (Jia et al., 2017)
utilized text-mining algorithms in ranking publications for manual
review. Taking advantage of Natural Language Processing to
incorporate deep learning into this process can lead to further
improvements. A Biomedical Relation Extraction (BioRE) system
trained on PubMed, CARD (Jia et al., 2017),and UniProtKB
(Apweiler et al., 2004) datasets at the sentence level were
built to predict gene-antibiotic relations that can be useful to
further enhance the process of ARG curation from publications
(Brincat and Hofmann, 2022). BioBERT, a transformer-based
model trained on biomedical data, and Piecewise Convolution
Neural Network (PCNN) were trained separately on the datasets.
BioBERT performed best on the holdout test dataset and was used
to identify gene-antibiotic relations for metronidazole in H. pylori.

Hidden Markov Models (HMM)

Annotated genes from the MEGARes database (Lakin et al.,
2017) were clustered according to sequence similarity, and an
HMM was trained on each gene cluster to produce multiple HMM
models that classify an input sequence as ARG and predict its origin
(Lakin et al., 2019). The model recorded high mean sensitivity
and specificity scores between 97 and 99%. Xie and Fair (2021)
combined the identification of unique family substring true and
junction markers characteristics of Short Better Representative
Extract Dataset (ShortBRED) with HMMs that are based on these
markers for accurate identification of bacterial toxins, virulence
factors, and antimicrobial resistance sequences from NGS reads.

Features selection methods for
identification of potential ARGs

Features selection is a dimensionality reduction technique
that allows for selecting the most relevant variables that produce
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the best prediction results from many variables. As it applies
to ARGs, selecting the most important ARGs with machine
learning for prediction tasks relevant to antibiotic resistance could
lead to identifying novel ARGs. Features selection methods can
generally be filter, wrapper, or embedded. Alongside embedded
methods like decision tree-based XGBoost and random forest,
we found from the literature that the SVM algorithm, which
falls within the wrapper feature selection group, is one of the
most commonly employed algorithms for identifying potential
ARGs. SVM was combined with a recursive feature addition
function for identifying genes and mutations associated with
resistance to pyrazinamide, a common antibiotic for treating
Mycobacterium tuberculosis infection (Zhang et al., 2021). Trained
on the binary representation of mutations on 23 resistance-
related genes for the bacteria strains included in the study
(Zhang et al., 2021), the model identified three likely ARGs–
embB, gyrA, and pncA, which contain 104 unique mutations
associated with Pyrazinamide resistance, one (pncA) of which
is already known. Prediction of Pyrazinamide resistance with
the 104 mutations led to an accuracy score of 89%. To further
verify the novelty of the two unknown genes as resistant to
Pyrazinamide, mutations on only the two genes were used as
features for predicting pyrazinamide resistance. An accuracy of
72% was achieved.

Support vector machine-random subspace ensembles (SVM-
RSEs) consist of multiple SVM models, each built from randomly
selected 80% of samples and 50% of features (Hyun et al., 2020).
In the end, features were ranked by weight. Pan genome was
constructed from genomes of Staphylococcus aureus, Escherichia
coli, and Pseudomonas aeruginosa downloaded from PATRIC
(Wattam et al., 2014), and binary representations of the genomes
were imputed into the models to predict antibiotic susceptibility.
This technique identified more known ARGs than Fisher’s Exact
and Cochran-Mantel-Hanszel (CMH) statistical tests, and it
recorded an accuracy score of 79 to 99% and AUC of 0.79 to 1.0.

A game theory-based feature selection technique was combined
with an SVM classifier to select the best overall representative
features that predict ARGs (Chowdhury et al., 2019). The technique
is based on weights assigned to a newly selected feature, which
depends on weights of already selected features, followed by overall
weights readjustment, described as the interdependence of the
selected features. From an initial size of 621 features comprising
amino acid composition, physicochemical characteristics, and
evolutionary and structural information, the selected features
recorded an overall accuracy ranging from 91 to 99% in predicting
ARGs.

Feature selection component of decision tree based algorithms
have also been applied for identifying ARGs. ARGs selected via
the XGBoost method from the binary pan genome representation
of A. baumannii, E. coli, K. pneumonia, and S. aureus lead
to a better antibiotic susceptibility prediction compared to
models of already known AMR genes, all genes, or scary-
selected genes (Yang and Wu, 2022). RF algorithm identified
three virulence genes- racR, ceuE, pldA that are related to
antibiotic susceptibility in Campylobacter jejuni, and coli species,
in a study that was aimed at unraveling the poorly understood
relationship between bacteria virulence and antibiotic resistance
(Gharbi et al., 2022). Likewise, multiple ML models were
trained to predict antibiotic resistance from all annotated

genes in the NCBI database, and potential ARGs selected
from the models were further validated by predicting their
structure via homology modeling (Srivastava et al., 2018). It
was observed that proteins coded by these unknown ARGs
have higher binding affinity to antibiotics than known AMR
proteins and randomly selected proteins. Nevertheless, the
results and the need for expert guidance were rightly noted,
as not all ARGs work by interacting directly with antibiotics
(Muteeb et al., 2023).

Identification of plasmid sequence

Bacterial plasmids carry genetic elements that can be
transferable. These sequences typically differ from chromosomal
elements and encode proteins such as ARGs, ensuring
survival in a dynamic environment. Identification of plasmid
sequences can indirectly lead to identifying ARGs and a deeper
understanding of the potential spread of plasmids that carry
ARGs. Differentiating plasmid sequences from chromosomal
sequences has been challenging due to either assembly or
incomplete databases. Examples of deep learning methods
developed for the identification and differentiation of plasmid
from chromosomal sequences include PlasFlow (Krawczyk et al.,
2018), Deeplasmid (Andreopoulos et al., 2022), and PPR-Meta
(Fang et al., 2019). PlansTrans was developed based on CNN
to distinguish between transmissible and non-transmissible
plasmids (Fang and Zhou, 2020). Arredondo-Alonso developed
an SVM-based classifier to identify plasmids and predict ARG
location in E. faecum, K. pneumoniae, and E. coli (Arredondo-
Alonso et al., 2018). An RF classifier differentiated between
plasmid, chromosomal, and bacteriophage sequences in assembled
metagenomic datasets (Aytan-Aktug et al., 2022). The best-
performing model achieved accuracy scores of 0.97, 0.94, and 0.93
per class for chromosome, plasmid, and bacteriophage sequences,
respectively, and model performance was affected by the size of the
k-mer (nucleotide sequence of a certain length) used for sequence
representation.

Limitations and conclusion

The application of AI undoubtedly has a place in the
fight against antibiotic resistance, specifically for identifying
and annotating ARGs, as shown in the reviewed publications.
However, AI’s challenges and limitations to these tasks
must be acknowledged to channel and maximize its utility
effectively. While systems like DeepARG have demonstrated the
ability to identify ARGs from short sequences, better results
are obtainable from already assembled genes containing
more sequence information. On the other hand, the
computational resources and time required for running
an assembler before predicting via DeepARG must also
be considered (Arango-Argoty et al., 2018). Although the
ARG proteins identified in the Sunuwar and Azad (2022)
study are bound to antibiotics with high affinities, not
all ARGs directly interact with antibiotics. In addition,
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ARGs identified by AI methods still require non-computational
experimental validation (Arango-Argoty et al., 2018; Sunuwar and
Azad, 2022). This further re-emphasizes that AI can be used as a
tool and guided by domain experts to help address the problem of
antibiotic resistance.

The supervised learning technique employed by many studies
for identifying and classifying ARGs are limited by the spectrum
of the labels assigned to data pre-model training. Therefore, it
cannot recognize entities that fall outside the assigned labels
(Arango-Argoty et al., 2018). Relatedly, the need and dearth of
high quality, well-curated datasets in the biomedical space is a
challenge that must be addressed soon to maximize the potential
of AI (Zhang et al., 2021; Brincat and Hofmann, 2022). The
studies reviewed here focus more on ARGs and do not specifically
address intrinsic mutations associated with antibiotic resistance
(Wu et al., 2023).
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