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The role of tRNA identity
elements in aminoacyl-tRNA
editing
Edwin Cruz and Oscar Vargas-Rodriguez*

Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine,
Farmington, CT, United States

The rules of the genetic code are implemented by the unique features that

define the amino acid identity of each transfer RNA (tRNA). These features,

known as “identity elements,” mark tRNAs for recognition by aminoacyl-tRNA

synthetases (ARSs), the enzymes responsible for ligating amino acids to tRNAs.

While tRNA identity elements enable stringent substrate selectivity of ARSs,

these enzymes are prone to errors during amino acid selection, leading to

the synthesis of incorrect aminoacyl-tRNAs that jeopardize the fidelity of

protein synthesis. Many error-prone ARSs have evolved specialized domains

that hydrolyze incorrectly synthesized aminoacyl-tRNAs. These domains, known

as editing domains, also exist as free-standing enzymes and, together with

ARSs, safeguard protein synthesis fidelity. Here, we discuss how the same

identity elements that define tRNA aminoacylation play an integral role in

aminoacyl-tRNA editing, synergistically ensuring the correct translation of

genetic information into proteins. Moreover, we review the distinct strategies of

tRNA selection used by editing enzymes and ARSs to avoid undesired hydrolysis

of correctly aminoacylated tRNAs.

KEYWORDS
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1 Introduction

Accurate translation of mRNAs into proteins requires the correct synthesis of
aminoacyl-tRNAs (aa-tRNAs). This reaction, known as tRNA aminoacylation or charging,
is catalyzed by aminoacyl-tRNA synthetases (ARSs), which ligate amino acids to tRNAs
(Ibba and Soll, 2000). Errors in amino acid or tRNA selection by ARSs lead to incorrectly
synthesized aa-tRNAs (Figure 1A). Generally, ARSs display a more robust specificity for
their tRNA substrates than for amino acids. The relatively weaker amino acid specificity
is mainly due to the structural and chemical similarities shared by many proteinogenic
and non-proteinogenic amino acids (Ling et al., 2009a; Bullwinkle et al., 2014a; Hoffman
et al., 2017; Mohler and Ibba, 2017). As a result, many ARSs do not effectively discern
between cognate and near-cognate amino acid substrates. Prominent examples of tRNA
mischarging include threonyl-tRNA synthetase (ThrRS), which confuses Ser for Thr
(Dock-Bregeon et al., 2000), and isoleucyl-tRNA synthetase (IleRS), which mistakes Val for
Ile (Berg et al., 1961). If uncorrected, tRNA aminoacylation errors lead to the translation of
codons with the wrong amino acid (mistranslation), which can cause cellular dysregulation,
growth defects, and death (Lee et al., 2006; Nangle et al., 2006; Ling and Soll, 2010;
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Bullwinkle et al., 2014b; Cvetesic et al., 2014; Liu et al., 2014, 2015;
Lu et al., 2014; Kelly et al., 2019; Lant et al., 2019; Zhang et al., 2021;
Schuntermann et al., 2023).

Due to their propensity to charge tRNAs with the wrong amino
acid, ARSs acquired specialized hydrolytic domains to “edit” their
aa-tRNA products. These domains, known as “editing” domains,
catalyze the hydrolysis of mischarged tRNAs, ensuring that only
correctly aminoacylated tRNAs accumulate in the cell (Figure 1A).
In addition to the editing domains embedded in ARSs (known as
cis-editing domains), aa-tRNA hydrolysis is catalyzed by standalone
deacylases (known as trans-editing domains) (Kuzmishin Nagy
et al., 2020; Jani and Pappachan, 2022). Cis- and trans-editing
domains act as essential quality control checkpoints to maintain the
integrity of the genetic code. The importance of aa-tRNA editing is
underscored by the negative phenotypes associated with defects in
editing domains (Lee et al., 2006; Nangle et al., 2006; Ling and Soll,
2010; Bullwinkle et al., 2014b; Cvetesic et al., 2014; Liu et al., 2014,
2015; Lu et al., 2014; Kelly et al., 2019; Lant et al., 2019; Zhang et al.,
2021).

In contrast to amino acids, ARSs identify their tRNA substrates
through an intricate set of structural and sequence features unique
to each tRNA (Schimmel et al., 1993; Giege et al., 1998; Giege and
Eriani, 2023). These tRNA features, collectively known as identity
elements, promote faithful interactions between tRNAs and ARSs,
preventing ARSs from cross-reacting with non-cognate tRNAs.
Notably, growing evidence indicates that many editing domains
rely on the same tRNA elements to gain aa-tRNA specificity and
avoid hydrolysis of correctly aminoacylated tRNAs. This tRNA
specificity is crucial to elude unintended energy loss due to
the depletion of correctly aminoacylated tRNAs and to maintain
adequate aa-tRNA supply for protein synthesis. More importantly,
the role of tRNA identity elements in aa-tRNA editing highlights
how identity elements secure the accurate translation of the genetic
code.

2 tRNA identities

The elements that define the identity of tRNAs for a particular
amino acid primarily reside in the tRNA acceptor stem and
the anticodon loop (Figure 1B; Giege et al., 1998; Beuning and
Musier-Forsyth, 1999; Giege and Eriani, 2023). Positions 1, 72,
and 73 in the acceptor stem, and 35 and 36 in the anticodon
are major contributors to tRNA selection. These elements act
as an operational code to mark tRNAs for aminoacylation by
a specific ARS (Schimmel et al., 1993; Ribas de Pouplana and
Schimmel, 2001). Identity elements in the acceptor stem are
generally recognized in the aminoacylation site of ARSs, whereas
dedicated anticodon binding domains mediate the recognition of
tRNA anticodon elements. tRNA identity elements are typically
conserved within a single domain of life. However, with few
exceptions, they diverge across domains of life (Lin et al.,
2019). For example, the operational code for aminoacylation
of tRNAPro diverged during evolution from G72 and A73 in
bacteria to C72/A73 and C72/C73 in archaea and eukaryotes,
respectively (Liu et al., 1995; Stehlin et al., 1998; Burke et al.,
2001). These changes in tRNAPro were accompanied by changes
in the selection mechanism of prolyl-tRNA synthetase (ProRS),

preventing cross-reaction between ProRS and tRNAPro from
different domains of life (Stehlin et al., 1998; Burke et al., 2001).
Similar changes in the operational code of other tRNAs are known
(Giege and Eriani, 2023).

3 The diversity of editing

Seven ARS families have editing domains to proofread aa-tRNA
synthesis, whereas five families and superfamilies of trans-editing
domains are currently known (Figure 2; Kuzmishin Nagy et al.,
2020; Jani and Pappachan, 2022). In most cases, trans-editing
domains are evolutionarily related to the editing domains of ARSs,
sharing structural homology and, sometimes, substrate specificity.
Trans- and cis-editing domains employ diverse mechanisms of
substrate selection, which can involve unique characteristics of the
amino acid side chain or tRNA features. Most editing domains
use steric exclusion and/or chemical mechanisms to differentiate
aminoacyl moieties of aa-tRNAs. Consequently, they tend to
display relaxed amino acid specificities. For example, bacterial
ProXp-ala, a trans-editing domain, hydrolyzes Ala- and Ser-tRNA
with similar efficiency (Danhart et al., 2017). In contrast to their
aminoacyl moiety selectivity, both trans- and cis-editing domains,
with some exceptions, exhibit more robust tRNA specificities. The
tRNA selectivity of editing enzymes can be mediated via direct or
indirect interactions. These mechanisms of tRNA recognition are
discussed in the following section.

4 Identity elements in
aminoacyl-tRNA editing

Accurate recognition of mischarged tRNAs by editing enzymes
is essential to avoid deacylation of correctly aminoacylated
tRNAs. Because aa-tRNA synthesis requires an ATP molecule,
indiscriminate hydrolysis of correctly charged tRNA by editing
enzymes would be energetically costly and could impact cell
growth and homeostasis by decreasing the available pool of
aa-tRNAs for protein synthesis. As discussed in the following
subsections, editing domains have evolved distinct mechanisms of
substrate selection that ensure hydrolysis of the incorrect aa-tRNAs.
Notably, in many cases, the same tRNA identity elements that
define aminoacylation are used to gain specificity during editing
(Figure 1C). However, lacking tRNA specificity in other cases may
offer a functional advantage in acting on diverse mischarged tRNA
substrates emerging from different ARSs.

4.1 ARS editing domains

4.1.1 Alanyl-tRNA synthetase (AlaRS)
AlaRS erroneously synthesizes Ser- and Gly-tRNAAla. The

appended editing domain of AlaRS is responsible for clearing
these mischarged products (Figure 2A; Beebe et al., 2003). The
editing domain relies on the almost universally conserved wobble
base pair G3:U70 to recognize tRNAAla (Beebe et al., 2008).
G3:U70 is also indispensable for tRNA aminoacylation by AlaRS
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FIGURE 1

(A) Steps in tRNA aminoacylation and editing. tRNAs are aminoacylated by ARSs producing aa-tRNAs. If the ARS uses a non-cognate amino acid
(ncaa), the resulting ncaa-tRNA can be hydrolyzed by the editing enzymes. In the absence of editing checkpoints, the ncaa is incorporated into
proteins in response to the wrong codon, causing mistranslation. (B) Representative secondary structures of tRNAs. As discussed in the main text,
the numbered bases indicate the various positions important for editing. (C) Summary of the trans- and cis-editing domains with characterized
functions and their known tRNA recognition elements. aArchaeal origin; b indicates weak or no tRNA specificity; cthe specificity of N73 depends on
the DTD’s origin; d in the context of tRNAAla; eBacterial origin; “ND” indicates not determined. B and E for ProXp-Ala indicate bacterial and eukaryotic,
respectively.

(Hou and Schimmel, 1988; McClain and Foss, 1988). Thus, a single
base pair defines tRNAAla aminoacylation and editing. How the aa-
tRNAAla substrate is transferred from the aminoacylation site to
the editing domain remains unknown. Channeling the aa-tRNAAla

between the two active sites would require substantial structural
rearrangement of AlaRS to bring the editing domain closer to the
aminoacylation domain and prevent complete dissociation of the
tRNA (Naganuma et al., 2014). The C-Ala domain could facilitate
the movement of the tRNA between the two domains (Guo et al.,
2009). Alternatively, the editing domain could bind the tRNA after
being released from the aminoacylation domain. Biochemical and
biophysical characterization and structural studies are needed to
determine the molecular mechanism of aa-tRNA selection by the
editing domain of AlaRS.

4.1.2 ThrRS
Most ThrRSs encode a dedicated editing domain that deacylates

Ser-tRNAThr produced in the aminoacylation domain (Dock-
Bregeon et al., 2000; Beebe et al., 2004; Korencic et al., 2004).
The editing domain is located at the N-terminus of ThrRS and
exhibits evolutionary differences. Eukaryotic and bacterial ThrRS
have a structurally similar editing domain known as the N2
(Figure 2A). In contrast, the archaeal ThrRS possesses an editing
domain structurally homologous to D-aminoacyl-tRNA deacylases
(DTD) (Dwivedi et al., 2005; Hussain et al., 2006). Notably, while
the N2 and DTD-like domains effectively hydrolyze Ser-tRNAThr,
they display distinct tRNA selectivity. For example, the N2 editing
domain of E. coli ThrRS indiscriminately deacylates bacterial
and archaeal Ser-tRNAThr. In contrast, the DTD-like domain of
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FIGURE 2

Representative structures of ARSs’ editing domains (A) and free-standing editing enzymes (B). The CP1 domains of LeuRS (PDB 3ZJU), ValRS (PDB
1IVS), and IleRS (PDB 1FFY) are colored in light blue, teal, and navy blue, respectively. The editing domains of ThrRS (PDB 1NYQ), AlaRS (PDB 3WQY),
ProRS (PDB 2J3L), and PheRS (PDB 3PCO) are shown in green, pink, orange, and purple, respectively. The other domains (e.g., aminoacylation and
anticodon binding domains) are in black. For ThrRS-ed (an AlphaFold model of S. solfataricus), the hydrolytic active domain is shown in green, while
the anticodon binding domain is in black. The structure of E. coli DTD (PDB 1JKE) and the AlphaFold model of human ATD are shown. The INS
superfamily is represented by ProRS and five single-domain families: YbaK (PDB 1DBU), ProXp-ST1 (an AlphaFold model of E. coli), ProXp-ST2 (an
AlphaFold model of Bordetella parapertussis), ProXp-ala (PDB 5VXB), ProXp-ala-CTD (an AlphaFold model of Arabidopsis thaliana), ProXp-ala-ProRS
(an AlphaFold model of Plasmodium falciparum) and ProXp-x (PDB 2CX5). ProXp-7, ProXp-8, and ProXp-9 were omitted from the INS superfamily
because their activities are unknown. The three known isoforms of AlaXp are represented by the structures of AlaXp-S (PDB 1WXO), AlaXp-M (PDB
2E1B), and AlaXp-L (an AlphaFold model of Pyrococcus horikoshii). For simplicity, all structures are displayed in monomeric form.

ThrRS from the archaeon Methanosarcina mazei only hydrolyzes
archaeal Ser-tRNAThr (Beebe et al., 2004). Similarly, the editing
domain of Pyrococcus abyssi ThrRS was shown to recognize Ser-
tRNAThr while discriminating against other Ser-tRNA substrates
(Novoa et al., 2015). These observations suggest that the tRNA
specificity of the archaeal ThrRS editing domain may rely on the
identity of position 73 (Beebe et al., 2004; Novoa et al., 2015),
a conserved U73 in archaeal tRNAThr. In contrast, the same
position is variable in bacterial and eukaryotic tRNAThr, consisting
of A73 or U73 (Lin et al., 2019). Therefore, the N2 domain

may have evolved a relaxed specificity that enables deacylation of
tRNAThr with U73 and A73. This relaxed specificity toward N73
is also observed in the aminoacylation of bacterial and eukaryotic
tRNAThr (Hasegawa et al., 1992; Nameki, 1995). In archaea, the
role of N73 in aminoacylation is species-specific, with some species
lacking N73 specificity (e.g., Haloferax volcanii) and others (e.g.,
Aeropyrum pernix) strongly depending on U73 (Ishikura et al.,
2000; Nagaoka et al., 2002). Consequently, a weak correlation exists
between editing and aminoacylation of tRNAThr in the context
of N73. In contrast to N73, the anticodon bases play a more
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important and conserved role in tRNAThr aminoacylation (Giege
and Eriani, 2023). Although direct evidence of the importance
of the anticodon bases in editing is not available, a model based
on E. coli ThrRS suggests that tRNAThr is held by the ThrRS
anticodon binding domain, facilitating the CCA-end repositioning
from the aminoacylation site to the editing domain (Dock-Bregeon
et al., 2004). Whether the DTD-like editing domain of archaeal
ThrRS uses a similar mechanism and how it recognizes the U73 is
unknown.

4.1.3 Phenylalanyl-tRNA synthetase (PheRS)
The editing activity of PheRS resides in the B3/B4 domain

of the β-subunit of the enzyme’s heterodimer (Figure 2A). The
B3/B4 domain clears aminoacylation errors involving Tyr and
meta-Tyr (Roy et al., 2004; Bullwinkle et al., 2014b). This activity of
PheRS is essential for preventing mistranslation of Phe codons and
maintaining cellular homeostasis. While a detailed investigation of
its tRNA specificity is missing, the activity of the PheRS editing
domain is affected by changes in the anticodon, as demonstrated
by the lack of deacylation of a tRNAPhe G34A mutant (Ling et al.,
2009b). Because G34 is an essential element for aminoacylation
(Peterson and Uhlenbeck, 1992; Ling et al., 2009b), this result
supports a 3′-end translocation model similar to ThrRS N2
editing, in which the anticodon binding domain provides indirect
specificity to the editing by holding the tRNA and enabling the
transfer of the 3′-end from the aminoacylation site to the editing
site (Roy et al., 2004). Whether elements in the acceptor stem or
other tRNA regions are directly recognized by the B3/B4 domain of
PheRS requires further investigation.

4.1.4 ProRS
ProRS exists in different structural isoforms. In bacteria, the

predominant ProRS isoform encodes an editing domain known
as the insertion (INS) domain (Figure 2A). The INS domain
catalyzes the deacylation of Ala-tRNAPro, which is incorrectly
synthesized in the aminoacylation domain of ProRS. To avoid
deacylation of cognate Ala-tRNAAla, the INS domain relies on
the anticodon binding domain (ABD) of ProRS. The ABD offers
specificity by interacting with the unique tRNAPro anticodon
bases G35 and G36 (Das et al., 2014). These bases also serve
as identity elements for aminoacylation (Liu et al., 1995; Stehlin
et al., 1998). Changes in the identity of these bases prevent the
binding of ProRS to the tRNA, impeding tRNA aminoacylation
and deacylation. In contrast, mutations in the acceptor stem of
tRNAPro are inconsequential for the catalysis of the INS domain.
The role of the anticodon sequence in ProRS editing is further
supported by the deacylation of Ala-tRNAAla mutants with a Pro
UGG anticodon (Das et al., 2014). The dependency of the INS
domain on the anticodon bases suggests that the ProRS ABD
anchors the tRNA, enabling the translocation of the tRNA’s 3′-
CCA end for editing. However, the molecular basis of this process
remains poorly understood.

4.1.5 IleRS, LeuRS, and ValRS
IleRS, leucyl-tRNA synthetase (LeuRS), and valyl-tRNA

synthetase (ValRS) share an evolutionarily related editing domain
called CP1 (connecting peptide 1) (Figure 2A). However, the
aa-tRNA specificity of each CP1 corresponds to the amino acid(s)

mischarged by each ARS. IleRS’s CP1 catalyzes Val- and Cys-
tRNA deacylation, whereas LeuRS’s editing domain hydrolyzes
Ile- and Nva (norvaline)-tRNA, and ValRS edits Thr- and Abu
(α-aminobutyrate)-tRNA (Baldwin and Berg, 1966; Englisch et al.,
1986; Lin et al., 1996; Döring et al., 2001; Mursinna et al., 2004;
Cvetesic et al., 2014). In addition to their different CP1 substrate
specificities, these ARSs use distinct selection strategies for tRNA
aminoacylation. IleRS and ValRS rely on anticodon bases and
position 73, while LeuRS uses A73 and the unique long variable
stem-loop of tRNALeu (Giege and Eriani, 2023).

For editing by ValRS’s CP1, A73, A35, and C36 are crucial,
while other elements like the U4:A69, the anticodon stem U29:A41
base pair, and the core nucleotide G45 moderately contribute to
editing (Tardif and Horowitz, 2002). The ValRS CP1’s reliance on
the anticodon bases suggests that the ABD facilitates the CCA-
end translocation between the aminoacylation and editing sites.
The ValRS-tRNA complex supports this model (Fukai et al., 2000).
Similarly, some overlap between elements for aminoacylation and
editing has been established for LeuRS, albeit with antagonistic
evidence emerging from two bacterial LeuRS models. For E. coli
LeuRS, the interaction between G19 in the D-loop and C56 in
the T-loop serves as a critical element for aminoacylation and
editing (Du and Wang, 2003). However, LeuRS from Aquifex
aeolicus, a deep-branching bacterium, may lack robust tRNA
specificity for editing as it effectively edits Thr, Val, and Ile from
different tRNA substrates (Zhu et al., 2007). Nonetheless, the
anticodon stem-loop may contribute to transferring the tRNA
acceptor stem from the aminoacylation to the editing site, as a
mutation of A35 in tRNALeu mildly decreases editing (Yao et al.,
2008). Structural evidence of LeuRS suggests that the anticodon
binding domain holds the tRNA in place while the CCA-end
moves from the aminoacylation state to the CP1 domain (Tukalo
et al., 2005; Palencia et al., 2012). However, how changes in
the tRNA anticodon influence LeuRS editing activity remains
unclear.

Unlike ValRS and LeuRS, IleRS editing requires nucleotides that
are different from those needed for aminoacylation. Nucleotides 16,
20, and 21 in the D-loop are the principal features that facilitate
editing by E. coli IleRS CP1 (Hale et al., 1997). However, a mutant
tRNAIle G16C/120/U21G tRNAIle is deacylated with similar
efficiency as wild-type (Farrow et al., 1999). These discrepancies
suggest that D-loop bases influence the transfer of the tRNA but not
the chemical step of deacylation (Farrow et al., 1999; Nomanbhoy
et al., 1999). Notably, the crystal structure of IleRS bound to the
tRNA in an editing conformation did not reveal direct interactions
between IleRS and the tRNA D-loop (Silvian et al., 1999). Thus,
additional biochemical and structural insights are needed to clarify
the tRNA specificity of the IleRS CP1 domain, and how the aa-
tRNAIle traffics between the two IleRS active sites is unknown. This
could explain if a direct role of identity elements in editing exists.

4.2 Trans- editing domains

In contrast to ARSs, trans-editing domains generally lack
dedicated RNA binding domains (Figure 2B). Nonetheless, several
of these enzyme families have developed tRNA specificities based
on recognizing tRNA acceptor stem elements. This recognition may
be mediated in the same catalytic domain.
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4.2.1 INS superfamily
In addition to the INS domain of ProRS, the INS superfamily

groups eight families of trans-editing domains, YbaK, ProXp-
ala, ProXp-x, ProXp-ST1, ProXp-ST2, ProXp-7, ProXp-8, and
ProXp-9 (Vargas-Rodriguez and Musier-Forsyth, 2013; Kuzmishin
Nagy et al., 2020). Most INS superfamily members are found
in bacteria, but each family’s phylogenetic distribution pattern is
unique. For example, ProXp-ala is found in all domains of life,
whereas YbaK is present only in bacteria. Except for the INS
domain, INS superfamily members are single-domain proteins.
Interestingly, while these enzymes share high structural homologies
and active site features, they display a wider range of aa-tRNA
specificities catalyzed by several aaRSs. These deacylases also
display distinct mechanisms of substrate selection, including tRNA
recognition. In the following subsections, each family’s activities
and tRNA specificities are described, except for ProXp-7, ProXp-8,
and ProXp-9, whose functions remain unknown (Kuzmishin Nagy
et al., 2020).

4.2.1.1 YbaK

YbaK is responsible for the deacylation of Cys-tRNAPro

produced by ProRS (Ahel et al., 2002; An and Musier-Forsyth, 2004;
Ruan and Söll, 2005). YbaK uses thiol-specific chemistry for Cys
recognition and catalysis (Kumar et al., 2013). However, YbaK lacks
robust tRNA selectivity, which results in the deacylation of Cys-
tRNACys in vitro (An and Musier-Forsyth, 2005; Ruan and Söll,
2005; Das et al., 2014; Chen et al., 2019). In a cellular context,
YbaK may gain indirect substrate specificity by forming a YbaK-
tRNA-ProRS ternary complex that allows shuttling of Cys-tRNAPro

from ProRS to YbaK, avoiding interaction with Cys-tRNACys (An
and Musier-Forsyth, 2005; Chen et al., 2019). Additionally, the
elongation factor Tu protects Cys-tRNACys from YbaK but not Cys-
tRNAPro. How Cys-tRNAPro transitions from ProRS to YbaK is
unknown.

4.2.1.2 ProXp-ala

ProXp-ala shares the same activity with the ProRS INS domain
(Ahel et al., 2003; Vargas-Rodriguez and Musier-Forsyth, 2013).
However, unlike the INS domain, ProXp-ala has a robust selectivity
for tRNAPro based on the acceptor stem bases N72 and N73,
which corresponds to G72 and A73 in bacteria and C72 and C73
in eukaryotes (Vargas-Rodriguez and Musier-Forsyth, 2013; Das
et al., 2014; Ma et al., 2023). ProXp-ala’s specificity prevents cross-
reaction with Ala-tRNAAla. Remarkably, ProXp-ala retained its
tRNAPro specificity during evolution from bacteria to eukaryotes,
adapting to changes in the identity of the N72 and N73 bases
(Vargas-Rodriguez et al., 2020). ProXp-ala is also found fused to the
N-terminus of ProRS (lacking an INS domain) in lower eukaryotes
from the Stramenopila, Aveolates, and Rhizaria supergroups and
the Leishmania and Trypanosoma genera (Ahel et al., 2003; Vargas-
Rodriguez et al., 2020; Parrot et al., 2021). Evidence suggests
that the ProRS-fused ProXp-ala can discriminate against Ala-
tRNAAla (Figure 2B; Ahel et al., 2003). In plants, ProXp-ala
contains a unique C-terminal domain (CTD) that contributes to
the enzyme’s tRNA binding affinity (Figure 2B; Byun et al., 2022).
However, the mechanism of substrate selection still needs to be
determined for the ProXp-ala-ProRS fusion and plant ProXp-
ala.

4.2.1.3 ProXp-x

ProXp-x deacylates tRNAs charged with the non-proteinogenic
amino acid Abu, and to a lesser extent, Ala-tRNAPro (Bacusmo
et al., 2018). ProXp-x prefers tRNA substrates carrying an A73,
allowing it to recognize different Abu-tRNA substrates. This
characteristic of ProXp-x is critical because ProRS, ValRS, LeuRS,
and IleRS mischarge Abu (Döring et al., 2001; Nangle et al., 2002;
Cvetesic et al., 2014; Bacusmo et al., 2018). Therefore, ProXp-x
prevents broad mistranslation of the genetic code with Abu.

4.2.1.4 ProXp-ST1 and ProXp-ST2

ProXp-ST1 and ProXp-ST2 are homologous deacylases that
catalyze the hydrolysis of Ser- and Thr-tRNAs (Liu et al.,
2015). Both enzymes display broad tRNA specificity, recognizing
diverse tRNAs, including tRNAVal, tRNAIle, tRNAThr, tRNAAla,
and tRNALys, all of which are mischarged with either Ser or
Thr by the corresponding ARS (Jakubowski, 2012; Liu et al.,
2015). Thus, the broad tRNA specificity of ProXp-ST1 and ProXp-
ST2 prevents mistranslation caused by Ser and Thr mischarging.
Despite their overlapping substrate specificities, only ProXp-ST2
has developed direct tRNA recognition based on A73. This bias
for tRNAs with A73 prevents hydrolysis of Ser-tRNASer due to the
G73 of tRNASer (Liu et al., 2015). ProXp-ST1 is indifferent to the
identity of N73, but whether it hydrolyzes Ser-tRNASer is unknown.
Because tRNAThr has an A73, ProXp-ST1 and ProXp-ST2 can
efficiently hydrolyze Thr-tRNAThr in vitro. However, ThrRS
effectively prevents Thr-tRNAThr from both enzymes, offering a
mechanism that protects correctly aminoacylated tRNAThr (Liu
et al., 2015). A ProXp-ST1-related deacylase, FthB, that hydrolyzes
fluorothreonyl-tRNAThr also exists, but little is known about its
tRNA specificity (McMurry and Chang, 2017).

4.2.2 AlaXp
Like the AlaRS editing domain, AlaXp hydrolyzes Ser- and

Gly-tRNAAla (Ahel et al., 2003; Sokabe et al., 2005; Fukunaga and
Yokoyama, 2007; Beebe et al., 2008; Chong et al., 2008). AlaXp and
the editing domain of AlaRS share high structural and sequence
homology and possibly emerged from a common ancestor (Sokabe
et al., 2005; Fukunaga and Yokoyama, 2007; Guo et al., 2009).
AlaXp exists in three distinct isoforms classified based on their
sequence length (Beebe et al., 2008; Novoa et al., 2015). While
AlaXp-L and AlaXp-M are functionally identical, AlaXp-S only
hydrolyzes Ser-tRNAAla (Sokabe et al., 2005). Moreover, AlaXp-L
and AlaXp-M exhibit tRNA selectivity, achieved via recognition of
the G3:U70 base pair that defines the identity of tRNAAla (Beebe
et al., 2008). In contrast, AlaXp-S lacks tRNA specificity (Novoa
et al., 2015). AlaXp-S is considered an ancestral version of the
AlaXp family. Thus, AlaXp may have been a general aa-tRNA
deacylase that gradually evolved tRNA specificity. A single Arg
residue may determine the tRNA specificity of AlaXp (Novoa et al.,
2015).

4.2.3 D-aminoacyl-tRNA deacylase (DTD)
DTDs prevent the cellular accumulation of D-aa-tRNAs

stemming from several ARSs (Calendar and Berg, 1967; Soutourina
et al., 2000). Three distinct DTD isoforms are found in organisms
from all domains of life: DTD1 in most bacteria and eukaryotes,
DTD2 in plants and archaea, and DTD3 in cyanobacteria
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(Kumar et al., 2022). Bacterial DTD requires a purine (A/G)
in position 73 for effective aa-tRNA deacylation (Kuncha et al.,
2018b). The specificity of bacterial DTD enables deacylation of
several tRNA substrates while preventing deacylation of Gly-
tRNAGly, which has a conserved U73 in bacteria (Routh et al.,
2016). Interestingly, N73 evolved from U to A73 in cytosolic
tRNAGly. This change in the identity of N73 prompted a switch in
the tRNA specificity of eukaryotic DTD1, which prefers pyrimidine
instead of purine (Gogoi et al., 2022). Whether the identity of
N73 plays a role in the deacylation of D-aa-tRNAs is yet to be
determined.

In addition to D-aa-tRNAs, bacterial DTD can inherently
deacylate the achiral Gly from tRNAAla (Pawar et al., 2017).
Bacterial DTD selects tRNAAla based on the G3:U70 and A73,
which are essential for tRNAAla aminoacylation by AlaRS (Hou
and Schimmel, 1988; McClain and Foss, 1988; Pawar et al., 2017).
Finally, the Animalia-specific tRNA deacylase (ATD), a DTD
paralog that hydrolyzes Ala-tRNAThr synthesized by AlaRS, may
use G4:U69 and U73 for tRNA selection. The G4:U69 of tRNAThr

enables mischarging by AlaRS (Sun et al., 2016; Kuncha et al.,
2018a).

5 Outlook

Despite the strong correlation between the role of identity
elements in tRNA editing and aminoacylation, our overall
knowledge is limited. The tRNA specificities of several editing
enzymes are unknown or poorly understood. For example,
whether the B3/B4 domain of PheRS relies on tRNA acceptor
stem is still unknown. The lack of molecular tools to prepare
aa-tRNA substrates has significantly contributed to our poor
understanding of the relationship between identity elements and
editing. Producing mischarged tRNA variants using ARSs is
challenging because mutating identity elements results in poor
aminoacylation. Most available data for the tRNA specificity
determination of CP1 domains are based on ATP consumption
assays (Farrow et al., 1999; Tardif and Horowitz, 2002; Du and
Wang, 2003; Zhu et al., 2007). This method integrates the effect of
tRNA mutations in aminoacylation and editing. Thus, establishing
the direct contribution of tRNA elements to editing can be
intricate because the same elements can impact aminoacylation.
The development of flexizyme technology now offers a powerful
tool to investigate the role of identity elements in aa-tRNA editing
(Murakami et al., 2006). This catalytic RNA ligates virtually any
amino acid to tRNAs regardless of their sequence. Thus, it enables
the preparation of diverse aa-tRNA mutant substrates to examine
identity elements in the context of editing comprehensively

(Das et al., 2014; Liu et al., 2015; Novoa et al., 2015; Danhart
et al., 2017; Vargas-Rodriguez et al., 2020; Watkins et al., 2024).
Adopting flexizyme can help establish and clarify the substrate
specificities of many cis- and trans-editing enzymes from diverse
species and across domains of life. Ultimately, this will expand our
understanding of the dual role of identity elements in editing and
aminoacylation, which, in turn, can provide novel insights into the
contribution of editing enzymes to the establishment of the genetic
code (Beebe et al., 2003).
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