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The increasing reliance on fossil fuels and the growing accumulation of organic 
waste necessitates the exploration of sustainable energy alternatives. Anaerobic 
digestion (AD) presents one such solution by utilizing secondary biomass to produce 
biogas while reducing greenhouse gas emissions. Given the crucial role of microbial 
activity in anaerobic digestion, a deeper understanding of the microbial community 
is essential for optimizing biogas production. While metagenomics has emerged 
as a valuable tool for unravelling microbial composition and providing insights into 
the functional potential in biodigestion, it falls short of interpreting the functional 
and metabolic interactions, limiting a comprehensive understanding of individual 
roles in the community. This emphasizes the significance of expanding the scope 
of metagenomics through innovative tools that highlight the often-overlooked, yet 
crucial, role of microbiota in biomass digestion. These tools can more accurately 
elucidate microbial ecological fitness, shared metabolic pathways, and interspecies 
interactions. By addressing current limitations and integrating metagenomics with 
other omics approaches, more accurate predictive techniques can be developed, 
facilitating informed decision-making to optimize AD processes and enhance 
biogas yields, thereby contributing to a more sustainable future.

KEYWORDS

methane, metagenome, microbiota, syntrophy, sequencing, DIET, GCM, SRM

1 Introduction

Fossil fuels are the primary global energy source, substantially contributing to global 
warming while lacking replenishable capacity (Alengebawy et al., 2022). The rapid increase in 
residual biomass due to population growth, coupled with the urgent need to transition to 
renewable energy, has positioned anaerobic digestion (AD) for biogas production as a reliable 
technology for converting waste into energy (Subbarao et al., 2023; Piadeh et al., 2024).

Compared to solar and wind power, AD provides key advantages: (1) reliable baseload 
power, as it is not weather-dependent like solar and wind (Götz et al., 2016; Shah et al., 2024); 
(2) potentially lower investment and operation costs (Thi et al., 2016); (3) higher energy output 
per area once AD is stabilized (Araoye et al., 2018; Emrani and Berrada, 2024); and (4) 
flexibility in producing various products and byproducts (thermal and electrical power, 
vehicular fuel, biomethane, hydromethane, and green hydrogen; Villante and Genovese, 2012; 
Subbarao et al., 2023).
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AD is a successful waste treatment method, reducing greenhouse 
gas emissions through microbial decomposition. The microbial 
community (MC) plays a key role in AD’s stability and biogas 
production, but limited knowledge of their roles and interactions 
hampers optimization efforts (Zhang et al., 2019b).

This review highlights metagenomics as a game-changer for AD, 
highlighting the importance of studying MC’s intricate composition, 
dynamics, and functions (Ghiotto et al., 2024b) to attain more efficient 
AD operations (Zhao et al., 2024).

This study emphasizes the advantages of metagenomics in 
understanding microorganisms’ taxonomy and function through 
innovative tools, showcasing microbiota’s often unnoticed yet crucial 
role during AD. Metagenomic enhancements allow for more accurate 
identification and comprehension of microbial ecological fitness, 
shared metabolic pathways, and interspecies interactions within AD, 
improving system knowledge (Schwan et al., 2020; Zhao et al., 2024). 
This review consolidates recent advances in AD research using 
metagenomics tools, highlighting key findings, addressing challenges, 
and outlining future research directions. It provides researchers 
insights to leverage metagenomics advancements, extending AD’s 
potential for biogas production and guiding future research toward 
more efficient AD approaches. Deepening the understanding of MC 
and their responses to reactor operational factors through 
metagenomics is expected to facilitate decision-making for higher 
CH4 content (Blades et al., 2017), contributing to the demystification 
of the AD black box.

2 Biogas composition and importance 
of the microbial community during AD

Before understanding microbial interactions, it is crucial to 
comprehend biogas composition and the roles of microorganisms 
in its production. As shown in Table 1, biogas primarily consists of 
methane (CH4) and carbon dioxide (CO2), with composition 

varying based on the substrate used. Substrate-specific levels of fats, 
carbohydrates, and proteins impact the biogas’ chemical nature and 
its impurity levels. These impurities include nitrogen (N₂), which 
dilutes CH4; ammonia (NH₃), inhibits methanogens and corrodes 
equipment; hydrogen sulfide (H₂S), a toxic compound that 
degrades biogas quality; oxygen (O₂), which can inhibit 
methanogens and create explosive mixtures with methane; 
hydrogen (H₂), an indicator of system imbalances; and carbon 
monoxide (CO), a toxic gas that can inhibit methanogenic activity 
at high concentrations.

To fully comprehend the AD process and achieve biogas 
production, it is also essential to understand the roles of 
microorganisms and substrates in the four main phases: hydrolysis, 
acidogenesis, acetogenesis, and methanogenesis (Fedailaine et  al., 
2015; Xu et  al., 2018b). Each phase is facilitated by specialized 
microbiota (Tijani et al., 2018; Xu et al., 2018b; Table 2).

The initial phase, hydrolysis, can limit the overall process rate 
(Krishna and Kalamdhad, 2014). During this stage, hydrolytic 
microbes (Table 2) enzymatically break down complex polymers such 
as lipids, proteins, and carbohydrates into smaller molecules such as 
amino acids, sugars, and fatty acids (Bharathiraja et al., 2018; Khanh 
Nguyen et  al., 2021). Cellulose is degraded by organisms such as 
Clostridium, Cellulomonas, Bacillus, Thermomonospora, Ruminococcus, 
Bacteroides, Erwinia, Acetovibrio, and Microbispora (Chukwuma et al., 
2021), while hemicellulose is targeted by Bacteroides, Ruminococcus 
(Krishna and Kalamdhad, 2014), and Streptomyces genus, associated 
with high ratios of metabolite production and biotransformation, even 
capable of degrading lignocellulose (de Lima Procópio et al., 2012). 
Lignin degradation is performed by Streptomyces, Sphingomonas, 
Pseudomonas, Rhodococcus, and Nocardia with Clostridium 
thermocellum and Caldicellulosiruptor bescii, also breaking lignin 
down while utilizing sugars(Chukwuma et al., 2021). Organisms such 
as Acinetobacter sp., K. variicola, Bacillus sp., P. mirabilis, and 
S. maltophilia are considered lignocellulose degraders (Chukwuma 
et al., 2021).
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Later, hydrolysis products are ingested by acidogenic bacteria to 
produce short-chain volatile fatty acids (VFAs) and alcohols (Table 2; 
Ali Shah et al., 2014; Tabatabaei et al., 2020; Zhang X. et al., 2023). In 
acidogenesis, NH₃ and H₂S have a significant impact since they 
produce an obnoxious odor associated with system inhibition and 
gear corrosion (Ali Shah et al., 2014).

During acetogenesis, acids are converted into H2, CO2, and acetic 
acid through acetogenic bacteria (Table  2; Mehariya et  al., 2018; 
Tabatabaei et al., 2020). Acetic acid is an important product as it can 
be used by methanogenic organisms to obtain CH4. In this phase, 
Methanobacterium spp. can break down valeric acid to propionic 

acid, to be  later turned into acetic acid by archaea such as 
Methanobacterium propionicum (Ali Shah et al., 2014). Moreover, 
released H2 from acetogenesis can be exploited through a symbiotic 
relationship (syntrophy) between acetogenic bacteria and autotrophic 
methane bacteria (Li et al., 2018; Tijani et al., 2018). This stage is 
accountable for producing approximately 70% of methane, 25% of 
acetates, and 11% of hydrogen, making acetates a crucial intermediate 
for AD mechanisms (Ali Shah et al., 2014; Jain et al., 2015).

During methanogenesis, the final stage of conventional AD, acetate, 
and H2 are converted into CH4 and CO2 by methanogenic, 
hydrogenotrophic, and acetoclastic archaea (Table 2; Manjusha and Beevi, 

TABLE 1 Typical biogas composition ranges from different substrates.

Substrate Main products Impurities

Reference
product CH4% CO2% N2% NH3%

H2S 
ppm

O2% H2% CO%

Cow slurry 55–65 35–45 0–1 - 0–1% 0–2 0–1 0–3 Adebayo et al. (2015)

Landfill waste

50 15–50 0–5 1,394 ppm 5–60 1 0–5
115-

500 ppm
Abedi et al. (2023)

48–57 38-38 4.5–12 0.004–6.5
0.004–

3.6%
1.8 - 0.001 Raboni and Viotti (2016), Sepúlveda et al. (2018)

Wastewater 

treatment plant
55–77 19–45 0–8 0-7 ppm 1–8×103 0–2 - 0–0.01

Ong et al. (2014)

Agricultural 

waste

30–75 15–50 0–5 0-150 ppm 10–15,800 0–1 - -

50–80 30–50 0–1 - 0–0.7% 0–1 0–2 0–1 Chen et al. (2015)

Non-defined 40-80 15–60 0–10 0–500 0–5,000 0–2 0–1 0–2
Ali Shah et al. (2014), Samuel (2015); Bharathiraja 

et al. (2018)

TABLE 2 Typical microorganisms associated with the four phases in anaerobic digestion.

Phase in AD
Product 
transformed

Microorganisms involved
Product 
obtained

Reference

1. Hydrolysis

Cellulose

Acetovibrio microbispora, Clostridium cellobioporus, Clostridium 

lochhadii, Clostridium stercorarium, Clostridium thermocellum, 

Micromonospora bispora, Ruminococcus albus, Ruminococcus 

Bacteroides, and Ruminococcus flavefaciens

Amino acids, sugars, 

and organic fatty acids

Tabatabaei et al. (2020); 

Chukwuma et al. (2021)

Hemicellulose
Bacteroides fibrisolvens, Bacteroides ruminicola, Ruminococcus 

albus, Ruminococcus flavenfaciens, and Paenibacillus polymyxa

Krishna and Kalamdhad 

(2014); Chukwuma et al. 

(2021)

Lignocellulose

Thermobifida fusca, Clostridium thermocellum, 

Caldicellulosiruptor bescii, Acinetobacter sp., Klebsiella variicola, 

Bacillus sp., Proteus mirabilis, Stenotrophomonas maltophilia, and 

Chryseobacterium gleum

Chukwuma et al. (2021)

2. Acidogenesis
Amino acids, sugars, 

and organic fatty acids

Bacillus, Escherichia coli, Lactobacillus, and Salmonella, 

Streptococcus

Short-chain organic 

fatty acids and alcohols 

such as methanol, 

ethanol, and aldehydes. 

NH3 and H2S

Ali Shah et al. (2014), 

Tabatabaei et al. (2020)

3. Acetogenesis
Short-chain organic 

fatty acids and alcohols

Clostridium, Acetobacterium, Syntrophomonas, Syntrophobacter, 

Sporomusa, Syntrophospora, Thermosyntropha, Ruminococcus, 

and Eubacterium

H2, CO2 and acetate
Mehariya et al. (2018); 

Tabatabaei et al. (2020)

4. Methanogenesis Acetate and H2

Archaea: Methanobacterium, Methanothermobacter, 

Methanospirillum, Methanobrevibacter, Methanoculleus, 

Methanothrix (previously known as Methanosaeta), 

Methanosarcina, Methanolobus, and Methanococcus

CH4 and CO2

Tabatabaei et al. (2020); 

Zhang X. et al. (2023)

https://doi.org/10.3389/fmicb.2024.1437098
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ostos et al. 10.3389/fmicb.2024.1437098

Frontiers in Microbiology 04 frontiersin.org

FIGURE 1

Current metagenomics data analysis flow chart. Created with BioRender.com.

2016; Tabatabaei et al., 2020). Approximately 30% of CH4 comes from 
CO2 reduction by autotrophic methane bacteria, resulting in H2 depletion 
(Ali Shah et  al., 2014). Low pH values from VFAs and significant 
production of H2S could inhibit methanogenesis (Izumi et al., 2010).

Optimizing biogas production in AD requires a deep 
understanding of MC structures due to their enormous role in the 
process. Research should focus on substrate composition, MC 
dynamics, metabolic networks, and their impact on performance. 
Metagenomic analysis offers a powerful method for quantifying and 
identifying ecological niches in complex communities (Zhang Y. et al., 
2019; Zhu et al., 2019). Despite its importance, replication is often 
overlooked owing to cost and time constraints, impacting the 
robustness of findings in microbial ecology (Prosser, 2010).

3 Metagenomic analysis

Metagenomics is a revolutionary method for exploring microbial 
ecosystems and uncovering complex microbiological interactions (Taş 
et al., 2021). Shotgun sequencing typically allows for the analysis of 
total DNA from a microbiome (Lindner et al., 2024). In AD research, 
metagenomics focuses on studying genetic material from feedstocks 
or digestates to identify and examine MCs’ structure, abundance, 
functionality, and interactions using phylogenetic analysis and DNA 
sequencing (Bedoya et al., 2019; Zhang et al., 2019a). This information 
can be correlated with operational factors to reveal insights into biogas 
production and the essential role of microbiota in AD processes.

Figure  1 illustrates a streamlined metagenomic data analysis 
workflow, from sample collection to downstream analysis. Sequencing 
options include short-read (second generation), long-read (3rd 
generation), or hybrid approaches for improved accuracy and 
completeness (Chen et  al., 2020; Eisenhofer et  al., 2024). After 
sequencing, processing, and quality control, ensure data quality. 
Taxonomic and functional analysis follows, with amplicon sequencing 
typically identifying MCs at the genus level, while advanced 
metagenomics can achieve strain-level resolution in some cases. This 
broadens perceptions of microbial interactions and ecological 
dynamics. Advanced metagenomics also reveals novel functions and 
interactions, surpassing traditional approaches limited to DNA 
amplification. Downstream analysis includes diversity assessment, 
differential abundance, and network analysis, resulting in deeper 
insights into the AD microbiome. These findings can input ML 
predictive models to increase biogas yields.

3.1 Sample preparation

This early quality control step aims to minimize false positives. 
Meticulous sampling and cleaning are crucial to prevent interference 
during collection. Repeated sampling helps establish consistency and 
minimizes experimental error.

While no single formula guarantees successful DNA extraction, 
proper cleaning, lysing, extraction, purification, and quality assessment 
are needed before metagenomics analysis. Errors in these steps can 
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result in unreliable sequencing. In AD, the MP Biomedicals FastDNA 
SPIN kit for soil is preferred for its high-quality DNA yield and effective 
lysis, ensuring accurate microbiome representation. Other commonly 
used kits include QIAGEN DNeasy PowerSoil Pro, Omega Bio-Tek 
E.Z.N.A. Soil DNA, and ZymoBIOMICS DNA Miniprep.

Library preparation is essential for DNA sequencing and analysis, 
permitting the identification and characterization of MCs. Illumina 
MiSeq and Nextera are widely used systems for this purpose.

3.2 Sequencing technologies

3.2.1 Second generation
Next-generation sequencing (NGS), or second-generation 

sequencing, works with short DNA reads between 50 and 400 base 
pairs, simultaneously enabling high-throughput, parallel sequencing 
of multiple DNA strands.

3.2.1.1 16S rRNA-based metagenomics or 
metataxonomics

The 16S rRNA gene is a fundamental tool in microbial analysis, 
traditionally grouped into operational taxonomic units but now 
clustered into amplicon sequence variants for greater accuracy. As a 
conserved phylogenetic marker across diverse microbial lineages, it 
allows for organism clustering, with conservation levels determining 
taxonomic resolution (Case et  al., 2007; Yang et  al., 2016). Its 
conserved nature and cost-effective sequencing make it popular in AD 
research (Zhang et al., 2019a). Nonetheless, the 16S rRNA gene cannot 
differentiate closely related species and does not provide functional or 
metabolic comprehension (Golub et al., 2011). Therefore, advanced 
metagenomics, transcriptomic (gene expression), proteomics (protein 
production), and metabolomic (metabolite profiles) are necessary to 
understand AD microbiome function and metabolism more deeply 
(Tabatabaei et al., 2020).

Shotgun metagenomic sequencing, which sequences the entire 
genomic DNA in a sample, provides a comprehensive view of the 

metagenome and insights into the microbiota’s functional potential 
(Portik et al., 2022). In contrast, amplifying and sequencing taxonomic 
marker genes, like the 16S rRNA gene, is better termed 
“metataxonomic” since it focuses on specific regions rather than the 
entire genome (Marchesi and Ravel, 2015; Portik et al., 2022; Lindner 
et al., 2024).

DNA polymerases, which replicate DNA by adding nucleotides to 
the 3′-end of an existing strand, require primers, short single-stranded 
nucleic acids, to anneal to complementary sequences on the DNA 
template, granting starting points (Michael et  al., 2015; Abellan-
Schneyder et al., 2021). Table 3 lists commercial primers for 16S rRNA 
gene amplification used in AD microbiota studies, highlighting their 
strengths and weaknesses. Most primers target the V3-V4 (Cattaneo 
et  al., 2022; Alghashm et  al., 2023; Zhao et  al., 2023) and V4-V5 
(Alghashm et al., 2023; Li et al., 2023; Chen et al., 2024) regions, which 
are informative for identifying bacteria and archaea.

The following are examples of frequently and recently used sets of 
primers regarding AD studies: 338F/806R (Li et al., 2022; Alghashm 
et al., 2023; Wei et al., 2023), 787F/1059R (Mao et al., 2021; Khanthong 
et al., 2023; Zhang et al., 2024), and 1369F/1492R (Mao et al., 2021; 
Trego et al., 2021; Zhang et al., 2024).

Primer selection is critical in AD research because potential 
primer bias can affect MC representation by preferentially amplifying 
certain sequences. The 338F/806R primer is widely used to capture the 
diverse microbial participants in AD. Other primers, like 787F/1059R 
and 1369F/1492R, are also employed but may have limitations, such 
as insufficient archaea coverage or taxonomic resolution, impacting 
MC analysis. Therefore, selecting primers should align with the 
specific research goals and AD systems through validation to ensure 
accuracy and reliability.

3.2.1.2 Shotgun sequencing
Shotgun sequencing is a leading metagenomic technique for 

characterizing the genetic composition of complex microbiomes, 
providing taxonomic and functional insights by analyzing the entire 
DNA content of an MC. Unlike amplicon sequencing, it allows 

TABLE 3 Commonly used primers in AD.

Forward 
primer

Reference Reverse 
primer

Reference Strengths Weaknesses

338F

Li et al. (2022); Pei et al. (2022); Alghashm 

et al. (2023); Wei et al. (2023); Zhao et al. 

(2023)

806R

Li et al. (2022, 2023); Alghashm 

et al. (2023); Zhao et al. (2023); 

Liu et al. (2024)

High bacteria diversity 

coverage

Able to amplify non-

targeted sequences

340F
Song et al. (2021); Sun Z. et al. (2023); Rao 

et al. (2024)
907R

Alarcón-Vivero et al. (2022); 

Chen et al. (2024); Cheng et al. 

(2024)

Good resolution for 

taxonomic identification
Lower archaea coverage

341F
Cattaneo et al. (2022); Khanthong et al. 

(2023); Sun Z. et al. (2023); Liu et al. (2024)
1000R

Song et al. (2021); Sun Z. et al. 

(2023); Rao et al. (2024)

High specificity for 

bacteria and archaea

Low abundance taxa 

might get missed

349F
Song et al. (2021); Sun Z. et al. (2023); Rao 

et al. (2024)
1059R

Mao et al. (2021); Rhee et al. 

(2021); Khanthong et al. (2023); 

Zhang et al. (2024)

Recommended for varied 

microbiota

Bias may be encountered 

in some microbiota

787F
Mao et al. (2021); Rhee et al. (2021); 

Khanthong et al. (2023); Zhang et al. (2024)
1492R

McAteer et al. (2020); Mao et al. 

(2021); Trego et al. (2021); 

Zhang et al. (2024)

Wide range bacteria 

coverage

Not great coverage for 

archaea

1369F
McAteer et al. (2020); Mao et al. (2021); Trego 

et al. (2021); Zhang et al. (2024)
Targets conserved regions

Resolution for closely 

related species is a low
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detailed genome reconstruction through metagenomics assembly and 
binning, which is beneficial for understanding microbial dynamics.

Traditional reference-based assembly is effective for known 
organisms but struggles with novel or uncultured microbes common 
in AD environments. De novo assembly addresses this by 
reconstructing genomes directly from sequencing data without a 
reference genome, a significant advance in the field of identifying 
unknown species.

During assembly, short DNA sequences (reads) are combined into 
longer contiguous sequences (contigs) and then into scaffolds, often 
using paired-end reads or long-read data to enhance genome 
completeness. Binning groups these scaffolds into metagenome-
assembled genomes (MAGs), providing detailed insights into 
microbial functions in AD (Lischer and Shimizu, 2017; Hauptfeld 
et  al., 2024). However, short-read sequences can hinder genome 
assembly due to limitations in resolving repetitive sequences. Long-
read technology inclusion improves genome assembly quality and 
resolution (Xie et al., 2020; Becker et al., 2023).

Despite its benefits, shotgun sequencing faces challenges such as 
short read length, missing data, and sequencing errors. Combining 
reference mapping with de novo assembly could enhance genome 
reconstruction by leveraging information from related genomes, 
offering a more robust understanding of microbial processes in AD 
(Lischer and Shimizu, 2017).

3.2.2 Third generation
Unlike short reads that usually cover a single gene portion, long 

reads can span multiple genes, making them more effective for 
sequence alignment and genome matching (Portik et al., 2022). Third-
generation sequencing (TGS), such as those by Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT), represent 
significant advancements in sequencing, generating long reads 
without PCR amplification, thus reducing bias and improving genome 
coverage (Xiao and Zhou, 2020; Athanasopoulou et al., 2021). This 
gives TGS proven advantages over second-generation platforms in 
analyzing complex MCs.

For instance, in biogas research, TGS facilitates in-depth analysis 
of MCs within AD systems, which is essential for optimizing biogas 
production processes. TGS can provide a clear picture of microbial 
diversity and interactions, aiding in the identification of key 
microorganisms and their functional roles, which allows for targeted 
interventions to improve AD systems’ stability and efficiency (Xie 
et al., 2020).

Even though long TGS reads have accuracy issues, they may 
provide proper overall taxonomic classification because of the higher 
information content per read (Brandt et  al., 2020). TGS requires 
careful sequencing library preparation to achieve optimal quantitative 
metagenomic analysis, enabling researchers to effectively correlate 
metagenomic data with biogas process operation.

PacBio’s single-molecule real-time technology produces highly 
accurate long reads, with the Sequel IIe system generating up to 
4 million reads in a 30-h run, improving metagenomic assemblies 
and genome binning, thanks to its advanced data processing 
capacity, which reduces the computational cost and facilitates faster 
data transfer (Athanasopoulou et  al., 2021). Comparative 
metagenomic analysis using short and long-read assemblers in AD 
systems indicates that PacBio long reads improve metagenomic 
assemblies, enhance gene catalog statistics, refine genome binning, 

and enhance the functional understanding of microbiomes (Xie 
et al., 2020).

ONT, which uses protein nanopores embedded in an electrically 
resistant membrane to sequence single-stranded DNA or RNA 
molecules (Cuber et  al., 2023), has transformed sequencing by 
introducing pocket-sized devices capable of real-time sequencing in 
the field, facilitating immediate analysis of environmental samples and 
potential reactor monitoring (Athanasopoulou et al., 2021). The use 
of automated, biogas reactor-specific monitoring tools, such as those 
employing ML, could help predict operational problems (Brandt 
et al., 2020).

Tools such as LongQC assess TGS data quality, while Canu, 
Prowler, and Porechop are used for adapter trimming. Minimap2, 
GraphMap, and BWA-MEM are widely used aligners for TGS data, 
offering robust performance for aligning long reads (Wick et  al., 
2017a; Athanasopoulou et al., 2021). Additionally, Flye is effective for 
genome assembly, while tools such as Quiver, Nanopolish, and Racon 
are suitable for read corrections and polishing, enhancing the accuracy 
of TGS-based assemblies (Vaser et al., 2017; Kolmogorov et al., 2019).

The major drawback of these technologies is the high error rate, 
approximately 15%, observed during sequencing, making TGS less 
ideal for accurate detection (Athanasopoulou et al., 2021). However, 
improvements in sequencing chemistry are expected to reduce these 
errors and enhance accuracy. Despite this, the development of 
necessary bioinformatics tools and pipelines for TGS data analysis 
remains challenging, limiting the full exploitation of the vast amount 
of data produced.

3.2.3 Hybrid sequencing
Hybrid sequencing approaches, which combine short-read and 

long-read technologies, offer a cost-effective strategy for generating 
comprehensive genome assemblies, balancing the strengths and 
weaknesses of each method (Eisenhofer et al., 2024). For instance, the 
Unicycler pipeline uses Illumina short reads for initial assembly and 
ONT long reads to close gaps and resolve repeats, often producing 
complete genome assemblies. These hybrid assemblies are highly 
accurate and complete, consistent with reference genomes in size and 
GC content, and capable of producing high-quality MAGs that reveal 
the functional potential of AD microbiomes, including unknown 
bacteria and archaea (Chen et al., 2020).

A study by Singleton et al. (2021) combined long and short reads 
to assemble over 1,000 high-quality MAGs from anaerobic conditions, 
identifying key functional microbes, such as the novel genus Ca. 
methylophosphatis. This highlights the importance of raising standards 
for MAG quality to facilitate the identification and experimental 
validation of functional microbes while avoiding contamination with 
low-quality MAGs.

In AD microbiomes, hybrid approaches are becoming increasingly 
important for analyzing system stability and buffer capacity (Becker 
et  al., 2023). These methods have enabled the identification of 
potentially new organisms critical to AD processes, such as 
Syntrophobacteraceae (involved in short-chain fatty acid oxidation), 
Syntrophomonadaceae (butyrate oxidation), and Methanoculleus 
(hydrogenotrophic methanogenesis; Becker et al., 2023).

In summary, hybrid sequencing is revolutionizing the field of 
AD metagenomics by generating high-quality MAGs and deepening 
the understanding of MC and their functions. As sequencing 
technologies and computational power continue to advance, these 
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hybrid approaches will further enhance the investigation of AD 
microbiomes, leading to improved outcomes and expanding 
microbial knowledge.

3.3 Processing and quality control

After sequencing, data are subjected to rigorous QC and 
trimming. Tools such as MultiQC, Mothur, FastQc, and UCHIME 
assess sequencing quality and identify low-quality reads and 
contamination. Trimming tools such as Trimmomatic remove 
low-quality bases and adapter sequences, while K-mer-based tools 
(substrings of constant length k that capture consecutive bases, 
enabling efficient sequence comparison and analysis) like UCHIME 
identify and remove chimeric sequences. Trimming must be carefully 
balanced, as overly aggressive trimming can lead to data loss and less 
accurate assemblies (Yang et al., 2019; Taş et al., 2021; Häntze and 
Horton, 2023). The combination of QC and trimming is crucial to 
avoid biases in taxonomic profiling and functional annotation, as 
downstream accuracy relies on the input data quality.

Since QIIME2 performs initial QC and trimming, it plays a 
crucial role in downstream analysis, offering taxonomic and functional 
profiling tools, diversity analysis, and visualization. It integrates with 
QC and trimming outputs, allowing for further exploration, and 
includes plugins for state-of-the-art sequence quality control like 
DADA2 and Deblur (Bolyen et al., 2019).

Handling large metagenomic datasets can strain resources, but 
incorporating QIIME2 with cloud platforms like Microsoft Azure, 
AWS, and Google Cloud poses a scalable solution (Callaghan, 2023). 
This approach allows researchers to efficiently handle and analyze 
large datasets, making advanced metagenomic analysis more 
accessible and manageable.

3.4 Taxonomic profiling

Taxonomic profiling, which predicts the relative abundance of 
taxa in metagenomic samples, involves read alignment, taxonomic 
classification, and abundance estimation (Lapierre et al., 2020). In AD, 
Greengenes and SILVA databases commonly assign taxonomy to 
sequences after the sequencing run and QC. Although it can 
be computationally demanding, SILVA is widely used due to its high-
quality curation, frequent updates, and comprehensive coverage. 
Greengenes, while less frequently updated, is also commonly used, 
particularly for its focus on bacteria and archaea. Alignment maps 
sequencing reads to reference genomes to identify microbial taxa, 
annotate functional genes, and ensure data quality. However, 
incomplete reference databases can limit accuracy, though regular 
updates like those in the Genome Taxonomy Database (GTDB) help 
(Parks et al., 2022). The high computational demand of processing 
large datasets can be optimized using efficient tools like Bowtie2 and 
BWA (Robinson et  al., 2017). Handling divergent sequences is 
challenging, so tools like HISAT2, Bowtie2, or hybrid approaches are 
recommended for better accuracy. Metaling, a novel method, balances 
precision and speed by using containment min hash (a technique that 
can rapidly estimate dataset similarities via k-mers hashing and 
identifying overlaps) for pre-filtering, reducing computational cost 
and enhancing profiling accuracy (Lapierre et al., 2020).

In the following alignment, contig assembly reconstructs 
microbial genomes to understand their roles in biogas production. 
Tools like SPAdes (effective for assembling short reads; Bankevich 
et al., 2012), MEGAHIT (fast and efficient for large datasets; Li et al., 
2015), and Canu (designed for long-read data but primarily for single-
genome assembly; Koren et al., 2017) are commonly used in AD. For 
complex metagenomic datasets typically in AD studies, long-read 
assemblers like Flye and HiCanu may be more suitable (Liu et al., 
2023). Assembly merges overlapping sequences into contigs, which 
are essential for generating high-quality MAGs. Challenges include 
repetitive sequences, coverage gaps, and assembly errors. Hybrid 
assembly, combining short-read accuracy with long-read connectivity, 
improves accuracy and completeness. This method balances high-
depth, short-read sequencing with lower-depth, long-read sequencing 
(Sims et  al., 2014; Eisenhofer et  al., 2024). Emerging tools like 
Unicycler and MaSurCA, applying short and long reads, help resolve 
repetitive sequences and reduce chimeric contigs (Zimin et al., 2013; 
Wick et al., 2017b; Liu et al., 2023). Notably, MaSuRCA corrects long 
reads with short reads before assembly, while SPAdes fix errors within 
the assembly graph, further enhancing accuracy (Zimin et al., 2013).

Contig binning groups of DNA fragments from the same or 
related genomes is essential for reconstructing MAGs and identifying 
metabolic pathways. Moreover, it can lead to the discovery of novel 
species and enzymes (Campanaro et al., 2018; Wang et al., 2024). 
Without binning, uncultured microbiomes in AD systems would 
remain unknown, leaving significant gaps in understanding their 
metabolic capabilities and potential for optimizing biogas production. 
Binning methods include sequence composition, abundance, and 
hybrid approaches, with tools like MetaBAT2 and CONCOCT known 
for high accuracy but requiring significant computational resources 
(Alneberg et al., 2014; Kang et al., 2019). Maxbin2 is effective with 
multiple metagenomic datasets and faces computational intensity 
challenges, employing an Expectation–Maximization algorithm to 
assign contigs based on tetranucleotide frequency and coverage (Wu 
et al., 2016). Advanced methods like COMEBin, using contrastive 
multi-view learning and data augmentation, efficiently recover MAGs, 
providing deeper perceptions into AD microbiomes (Wang 
et al., 2024).

Reconstructed MAGs must be  checked for completeness, 
contamination, and errors. CheckM is widely used for assessing MAG 
quality, balancing accuracy and computational efficiency (Parks et al., 
2015). GUNC, a novel tool that utilizes an entropy-based measure of 
lineage homogeneity across contigs, can infer each gene across 
different levels, using taxonomy to approximate phylogenetic 
relationships. GUNC identifies chimerism caused by horizontal gene 
transfer, improving MAG accuracy in complex environments. 
However, it is computationally intensive and requires comprehensive 
reference databases (Orakov et al., 2021). Combining tools such as 
GUNC, GTDB-Tk, and CheckM refines MAG datasets. Tools like 
GTDB-Tk and PhyloPhlAn4 provide high-resolution taxonomic 
classification but demand significant computational resources. GUNC 
can further refine results, leading to more precise outcomes.

3.5 Functionality profiling

Before initiating functional profiling, additional MAG refinement 
is recommended to ensure accuracy and avoid the misinterpretation 
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of key metabolic pathways. Refining MAGs increases functional 
annotation accuracy, improving system interpretability. Tools such as 
RefineM, which are used alongside CheckM, can redefine boundaries, 
remove contaminants, and correct binning errors.

High-quality MAGs are ideal for accurate gene prediction. 
Prodigal is efficient for fast gene prediction but may struggle with 
fragmented or low-quality MAGs. Alternatives like FragGeneScan, 
Glimmer-MG, and MetaGeneMark (which employs hidden Markov 
models) handle sequencing errors and diverse data, while Prokka 
offers a streamlined annotation pipeline, though less flexible for 
non-bacterial genomes designed for gene prediction from short reads, 
effectively accounting for sequencing errors and codon usage (Taş 
et al., 2021; Yang et al., 2021). Artificial intelligence (AI) applications 
like Meta-MFDL and CNN-MGP improve accuracy but are 
computationally intensive and require well-annotated training data, 
which can be scarce in AD environments (Yang et al., 2021).

Functional microbiomes, interspecies interactions, and versatile 
metabolic pathways are critical for the microbial degradation 
processes in AD, which are essential to achieving efficient and targeted 
operations. Although studies traditionally focused on cultivated 
microbial members, recent advances in 16S rRNA gene amplicon 
sequencing, metagenomics, and other omics technologies 
(metatranscriptomics, metaproteomics, and metabolomics) have 
expanded knowledge of uncultivated microbes, microbial black holes, 
niche differentiation, and previously unknown metabolic pathways 
(Zhang X. et al., 2023), providing a more holistic view of MC function 
and activity in AD.

Whereas 16S rRNA amplicon sequencing data is conventionally 
not directly linked to functional potential, improved methods such as 
PICRUSt2 and Tax4Fun2 can predict microbial function from 16S 
rRNA, enhancing the ability to infer functional profiles from 
taxonomic data. However, they still depend on the quality and 
completeness of reference genomes (Douglas et al., 2020; Wemheuer 
et al., 2020). Additionally, combining 16S rRNA amplicon sequencing 
with MAGs has proven beneficial in uncovering abundant, previously 
undescribed lineages within key functional groups (Singleton et al., 
2021), facilitating the identification of novel metabolic pathways and 
understanding ecological roles.

High-quality MAGs are necessary for exploring complex MCs. 
Databases like MiDAS connect microbial function with process data, 
while tools like Prokka and Infernal aid gene identification and 
annotation (Singleton et al., 2021). KEGG is widely used for mapping 
metabolic pathways, yet its focus on well-characterized organisms can 
be limiting. Integrating KEGG with databases like Eggnog and Pfam 
expands functional annotation with varying specificity (Huerta-Cepas 
et  al., 2019; Palù et  al., 2022). Pfam effectively identifies protein 
families and domains but may miss novel proteins, which can 
be addressed alongside de novo prediction tools (Coggill et al., 2008).

A recently developed cutting-edge software called METABOLIC 
is noteworthy for advancing microbial ecology and biogeochemistry 
studies. It integrates protein annotation from KEGG, TIGRfam, Pfam, 
custom hidden Markov model databases, dbCAN2, and MEROPS and 
assesses metabolic pathways through KEGG modules. METABOLIC 
profiles metabolic and biogeochemical traits and functional networks 
in MCs based on MAGs. METABOLIC provides protein annotations 
and metabolic pathway analyses for inferring the contribution of 
microorganisms, metabolism, interactions, activity, and 
biogeochemistry at the community scale. This software facilitates the 

standardization and integration of genome-informed metabolism into 
models, enabling easier interpretation of system metabolism and 
biogeochemistry (Zhou et al., 2022).

A feasible choice to enhance the quality and accuracy of genome-
scale metabolic models is the amalgamation of MAG data with 
KEMET, a novel tool that expands KEGG annotations by identifying 
missing orthologs through hidden Markov models. However, KEMET 
may be  limited by its reliance on high-quality reference genomes, 
affecting its performance in poorly characterized environments (Palù 
et al., 2022).

HUMAnN3, an innovative approach for functional profiling and 
metabolic pathways analysis that combines the MetaCyc database 
(Beghini et al., 2021; Cortés et al., 2022), can also be used for KEGG 
orthology enrichment analysis (Chen et al., 2021). A disadvantage is 
that it is computationally intense and requires extensive reference data.

Identifying metabolic pathways aids the prediction of metabolic 
and biochemical functional trait profiles across datasets, including 
MAGs, single-cell amplified genomes, or pure culture genomes (Taş 
et  al., 2021). This knowledge is crucial for optimizing microbial 
processes in AD operations. Despite these advancements, challenges 
regarding better computational resources, improved functional 
annotation methods, and more comprehensive databases remain 
significant barriers in metagenomic workflow analysis.

3.6 Downstream analysis

In microbiome analysis, alpha and beta diversity metrics assess 
variation within and between MC. Alpha diversity is measured by 
species richness (Chao1) and evenness (Shannon index), with the 
latter being less affected by sequencing depth (Zhang et al., 2022). 
Rarefaction or normalization ensures accurate sample comparison, 
determining MC coverage and saturation despite sequencing depth 
variations (Stolze et al., 2015). Beta-diversity evaluates dissimilarity 
between MCs using metrics like Bray-Curtis and weighted UniFrac, 
or qualitative metrics, with ordination techniques like PCoA and 
PCA for visualization. QIIME, Mothur, and the R package vegan 
are suitable for computing alpha and beta diversity (Knight 
et al., 2018).

Multivariate analyses surpass simple correlations by applying 
sophisticated techniques to capture complex relationships between 
MCs and environmental variables. Symmetric methods, like canonical 
correlation analysis, co-inertia analysis, and Procrustes analysis, treat 
variables equally without distinguishing between explanatory or 
response roles. Conversely, asymmetric approaches, like redundancy 
analysis and canonical correspondence analysis, differentiate between 
explanatory and response variables. Non-metric multidimensional 
scaling is an exploratory method mainly for visualizing sample 
similarities or dissimilarities. Methods like generalized linear models 
and permutation tests assess the significance of multivariate patterns. 
These analyses rely on detailed metadata, high-dimensional data, and 
well-structured experiments (Ramette, 2007; Paliy and Shankar, 2016).

Recent methods combine sequencing with microbial cell counts 
for accurate data, enabling ML approaches like random forest 
regression to distinguish samples based on metadata. SourceTracker, 
a Bayesian tool, identifies microbial sources and classifies samples. 
However, ML analysis demands large datasets and cross-validation to 
ensure robustness (Knight et al., 2018).

https://doi.org/10.3389/fmicb.2024.1437098
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ostos et al. 10.3389/fmicb.2024.1437098

Frontiers in Microbiology 09 frontiersin.org

Analyzing alpha- and beta-diversity in AD studies is decisive for 
understanding MC structure and stability, impacting biogas 
production. While trained ML models improve data analysis 
efficiency, they require substantial training data and may struggle with 
adaptation, highlighting the need for more flexible models with less 
dependency on extensive data inputs.

3.7 Metagenomics resources used within 
the AD research field

Selecting appropriate tools for metagenomic analysis is vital, and 
researchers must match their selections to the specific requirements 
and resources of their projects. Comprehensive platforms such as 
MOTHUR, QIIME2, MG-RAST, and MEGAN can manage most of 
the metagenomic workflow, making them suitable for budgets with 
limited budgets or simple goals. Moreover, tools such as MOCAT2 
and MetaWRAP efficiently cover processes from gene prediction to 
functional profiling (Taş et al., 2021).

However, these all-in-one solutions may lack the precision and 
adaptability of more specialized tools, such as SPAdes for genome 
assembly, Kraken2 for taxonomic classification, and MetaPhlAn for 
strain-level profiling. Advanced tools such as KEMET, METABOLIC, 
PICRUSt2, CNN-MPG, and GUNC provide greater accuracy and 
functionality but require significant computational resources and 
expertise. The future of metagenomic research may involve the 
integration of specialized tools into more user-friendly platforms that 
offer both precision with ease of use.

Table 4 presents a range of methods and tools, both common and 
novel, used for metagenomic analysis in AD research, spanning from 
sequencing type selection to functional analysis.

From Table 4, it is evident AD researchers predominantly favor 
short-read approaches targeting the V3, V4, and V5 regions, likely due 
to project scope, practical experience, or budget constraints. Short-
read sequencing, often paired with Illumina NGS or Nextera XT kits, 
is cost-effective and scalable, though it may miss novel genomes. In 
contrast, while more expensive, long-read sequencing delivers high-
fidelity genome recovery and deeper microbial insights. Hybrid 
approaches, which combine the strengths of both methods, balance 
cost with comprehensive analysis.

Researchers should select sequencing strategies based on specific 
research needs, whether focusing on 16S rRNA gene regions for 
targeted studies or whole-genome sequencing for broader analysis. 
There is a growing interest in AD research in correlating MC, 
functional annotation, and metabolic pathway identification, aiming 
to improve biogas yields and produce valuable products such as 
biomethane, hydromethane, and hydrogen, along with byproducts like 
organic acids, alcohols, and biofertilizers.

Metagenomics and hybrid sequencing are increasingly preferred 
for exposing the microbial “black box” of AD systems, which is 
essential for enhancing biogas production. Tools like MOTHUR for 
versatile analysis stage and KEGG for functional annotation are 
popular in AD research. As costs decrease and technologies advance, 
integrating high-fidelity sequencing with robust bioinformatics is 
expected to enhance AD process understanding and efficiency. 
Additionally, metagenomics, along with other omics technologies, has 
proven effective for uncovering key functional associations and 

tracking gene expression, demonstrating the power of multi-omics in 
advancing AD research.

4 Applications of metagenomics in 
anaerobic digestion research

Operational factors in AD, such as the feeding regime (mono and 
co-digestion), temperature, reactor type, pH value, substrate choice, 
organic loading rate (OLR), and hydraulic retention time, can 
influence MC structure, dynamics, and interactions (Su et al., 2019; 
Pasalari et al., 2021). Understanding these variations is crucial for 
informed decisions that lead to more efficient AD systems, a task that 
is now more feasible thanks to metagenomics analysis.

Among factors influencing AD, the choice of substrate is crucial, 
as it significantly influences MC. Studies have shown a strong link 
between changes in MC and the substrate used in both mono-
digestion and co-digestion processes. The composition of the 
feedstock plays a major role in shaping the active microbiota within 
AD systems (Tsapekos et al., 2017; Zhang et al., 2020a).

Furthermore, concerning reactor configurations, two of the most 
common setups in biogas are single-stage and two-stage continuous 
stirred tank reactors. Through metagenomic analysis, different 
microorganisms and their syntrophic relationships within a reactor 
can be  unraveled, aiding in understanding how these factors can 
influence community structure, interactions, and overall process 
efficiency (Treu et al., 2016). For instance, using dairy wastes in a 
two-stage reactor, (Fontana et  al., 2018) identified that certain 
microorganisms were predominant in the first (acidogenic) reactor, 
while others were more active in the second (methanogenic) reactor. 
This niche differentiation through metagenomics demonstrated that 
a two-stage reactor could benefit methane production and how MC 
can influence the AD process.

Moreover, temperature also plays a significant role in shaping 
microbial ecology. When comparing mesophilic and thermophilic 
biogas plants, the use of Genome Centric Metagenomics (GCM) was 
crucial because it allowed a more detailed examination of communities 
at the species level, providing insights into specific roles of individual 
microorganisms in a complex MC (Campanaro et al., 2018). In this 
study, thermophilic microorganisms were more efficient in breaking 
down complex organic compounds into methane than mesophilic 
ones. The Genome Centric Metagenomic (GCM) approach allowed 
us to understand how these temperature-dependent microorganisms 
contribute to the overall efficiency and stability of the AD process.

Previous examples demonstrate that the application of metagenomics 
in AD research has significantly enhanced the understanding of MC and 
their functional roles in the AD process. By providing exhaustive 
knowledge into the abundance, diversity, and interactions of 
microorganisms, as well as identifying keystone species and syntrophic 
relationships, metagenomics has paved the way for improved analysis 
and decision-making in AD systems. Likewise, evaluating the impact of 
varied inoculums on long-term anaerobic yield (Peces et  al., 2018) 
suggested that achieving a stable process requires establishing and 
maintaining a desirable MC composition through careful planning and 
optimization of operational conditions. This knowledge can be leveraged 
to optimize process conditions and enhance microbial activity to increase 
biogas yield and process efficiency. Thus, in the following sections, the 
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TABLE 4 Process and tools used during metagenomic analysis within the AD research field.

Sequencing 
length

Sequencing type
Sequencing 

system
Region

Sequencing library 
preparation

Data cleaning 
and assessment

Taxonomy
Function 

annotation
Citation

Short

16S rRNA gene High-

throughput sequencing
Illumina MiSeq

V3
Quick-16S NGS Library 

Preparation
DADA2 Greengenes, QIIME1.9.1 Akyol et al. (2019)

V3-V4

Illumina MiSeq MOTHUR SILVA, RDP Classifier KEGG Bedoya et al. (2019)

Nextera XT

Trimmomatic/

MOTHUR/QIIMME

BLAST2.2.22/RDP 

Classifier
- Khanthong et al. (2023)

QIIME2/DADA2
SILVA, DADA2’s q2-

feature-classifier
- Cheng et al. (2024)

NGS library QIIME1.9.1 SILVA, QIIME -
Murillo-Roos et al. 

(2022)

- QIIME1.17 RDP Classifier PICRUSt/FUNGuild Zhao et al. (2023)

- DADA2 GreenGenes PICRUSt/KEGG Pei et al. (2022)

V4

- QIIME2/DADA2 SILVA QIIME PICRUSt2/KEGG Trego et al. (2021)

Illumina MiSeq

FastQC/USEARCH

QIIME1.9.1/Uclust 

Consensus Taxonomy 

Assigner/de novo 

taxonomy

-
Vendruscolo et al. 

(2020)

V4-V5

QIIME SILVA, UPARSE - Chen et al. (2024)

MOTHUR MOTHUR -
Venkiteshwaran et al. 

(2017)

16S rRNA gene 

pyrosequencing

Ion PGM System Ion PGM Hi-Q Ion Reporter Greengenes, Ion Reporter - Han et al. (2017)

Illumina HiSeq 2000 V3-V4 Illumina HiSeq 2000 MOTHUR MOTHUR KEGG Zhang et al. (2024)

Shotgun sequencing

Illumina Novaseq 6,000

Whole genome

Nextera DNA Flex Trimmomatic GTDB-Tk1.7.0
Prodigal2.6.2/

METABOLIC/KEGG
Greses et al. (2023)

NextSeq 500 Nextera XT Trimmomatic PhyloPhIAn/CheckM

Prodigal2.6.2/

GhostKOALA-KEGG/

EggNOG/MAPLE2.3

Fontana et al. (2018)

Pyrosequencing Roche 454 FLX In-house script MEGAN MG-RAST Bedoya et al. (2019)

Long
Oxford nanopore 

sequencing
MinION sequencer Whole genome LSK-108 LSK-109 Nanoplot Centrifuge Brandt et al. (2020)

Short/Long

Hybrid (Shotgun 

sequencing/Oxford 

nanopore sequencing)

Illumina NextSeq 500/

Oxford Nanopore 

MinION sequencer

Whole genome
Nextera DNA Flex/SQK rapid 

sequencing
Trimmomatic GTDB-Tk1.3.0

Prodigal2.6.2/

EggNOG2.0.1/

Diamond/RAST/

KEMET

De Bernardini et al. 

(2022)
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microbiota composition in relation to different substrates in the two 
feeding regimes, mono- and co-digestion in AD, will be explored.

4.1 Microbial community composition 
during mono-digestion

Understanding the MC is fundamental for optimizing AD. In 
mono-digestion, a single type of substrate is used as the sole feedstock 
for biogas production. Some common single substrates include pig 
manure, rice straw, corn stalk, or silage. These last two are differentiated, 
with the first consisting of plant residues that remain after harvest and 
silage referring to the fermented forage from the entire plant.

The substrate choice, carbon-to-nitrogen ratio (C/N), and total 
solids content are crucial factors affecting the OLR. High total solids 
content may require inconveniently large water additions, while a low 
C/N ratio might necessitate adjusted feeding strategies to avoid 
digester overload and process imbalances due to acidification or VFA 
accumulation (Pore et  al., 2016). A feeding regime is essential to 
maintain a stable MC, ensuring they have sufficient time to adapt and 
function effectively.

An analysis was conducted using data from different studies 
under mesophilic conditions to understand the relative abundance of 
the MC using different substrates and their relative C/N ratio, TS%, 
CH4% content, and CH4 yield. Each study focused on a different 
substrate and described the MC abundance through a 16S rRNA gene 
metataxonomic, taking a sample once the system was stable. The 
resulting figures highlight the most common phyla (Figures 2A,B) and 
the relation to each substrate’s TS% and C/N ratio (Figure 2C).

This analysis reveals that Firmicutes, Bacteroidetes, and Proteobacteria 
are the most abundant bacteria across the four analyzed substrates 
(Figure 2A). Bacteroidetes, the dominant phylum, account for 23–36% of 
the MC and play a key role in breaking down cellulose and hemicellulose 
during acidogenesis into heteropolysaccharides like glucose and D-xylan, 
essential for lignocellulose degradation (Wirth et al., 2015; Heyer et al., 
2016; Jia et al., 2016). Common hemicellulose-degrading species include 
Bacterioides fibrisolvens, Bacterioides ruminicola, Ruminococcus albus, 
and Ruminococcus flavenfaciens (Maspolim et al., 2015). Streptomyces is 
notable for its metabolite production and lignocellulose degradation, and 
it is frequently highlighted (de Lima Procópio et al., 2012; Zhang et al., 
2019a). The consistent abundance of Bacteroidetes (Figure 2C), despite 
varying TS% and C/N ratios, highlights their adaptability and critical role 
in AD processes.

The second most abundant phylum, Firmicutes, involved in 
cellulose degradation (Wirth et al., 2015), accounted for 42% relative 
abundance in maize silage, with lower levels observed in corn stalk 
and pig manure. High TS% is believed to promote both Bacteroidetes 
and Firmicutes, though the lower C/N ratio in corn stalk compared to 
silage may have affected the abundance of Firmicutes.

The elevated TS% in corn stalks (Figure 2C) delays the initiation 
of microbial activity. Therefore, during hydrolysis and acidogenesis, 
key degradative bacteria from the Firmicutes and Bacteroidetes phyla 
can reach abundances of 60% (Pore et al., 2016; Wang et al., 2017) to 
90% (Liu et al., 2019). Firmicutes is considered a versatile phylum 
capable of degrading lipids, carbohydrates, and proteins, reflecting the 
digester’s ability to metabolize cellulose, lignin, proteins, and sugars, 
which highlights the importance of this phylum in AD.

Furthermore, Proteobacteria were present to a lesser extent, with 
a relative abundance between 2 and 17% across samples (Figure 2A). 
Reduced Proteobacteria could be attributed to the high water content 
in materials like pig manure, which is associated with low TS%. This 
condition is believed to promote the proliferation of Bacteroidetes and 
Firmicutes while diminishing the population size of Proteobacteria (Xu 
et  al., 2018b). Furthermore, the C/N ratio in pig manure is low 
compared to the optimal C/N value of 20–30 (Wang Y. et al., 2018; Xu 
et al., 2018b). This characteristic of pig manure as a single substrate is 
likely a limiting factor for microbial activity.

Archaea, single-celled prokaryotes, are found in a smaller 
proportion compared to bacteria, with ratios varying from 50 to 1,000 
(Wang Y. et al., 2018) to 34.2 to 67.78% (Heyer et al., 2016). Some 
authors attribute these variations to methodological bias (Heyer et al., 
2016). Despite their lower numbers, they are crucial in AD, serving as 
dominant methanogens, though many archaea contributing to 
methanogenesis remain unidentified (Bedoya et al., 2019; Pore et al., 
2016). This study found many archaea that had not yet been described 
(Figure  2B). However, organisms such as Methanosarcina and 
Methanosaeta, known to play key roles in methanogenesis, were 
identified (Pore et al., 2016; Wang et al., 2017).

Methanoculleus, a hydrogenotrophic methanogen, was identified 
in rice straw as vital for biogas production (Xu et al., 2018b). In corn 
silage, Methanosarcina likely performed the entire methanogenesis 
phase, including hydrogenotrophic, acetoclastic, and methylotrophic 
reactions (Wang et al., 2017), while Methanothrix is related to methane 
production from acetate (Wirth et al., 2015).

In mono-digestion, pig manure exhibited the highest CH4% 
content, while rice straw achieved the highest CH4 yield. Bacteroidetes 
likely played an important role in degrading cellulose and hemicellulose 
in pig manure and corn stalks (Ren et al., 2014). The shared preference 
for acetate between Firmicutes and Methanosarcina may have enhanced 
acetoclastic methanogenesis (Xu et al., 2018b). The C/N ratio in single-
substrate digestion is crucial, as imbalanced ratios can disrupt digester 
operation and diminish buffering capacity. Since single monodigestion 
substrates are rich in either carbon or nitrogen, careful selection of raw 
materials is essential to maintain a balanced C/N ratio, ensuring stable 
MC and system performance (Wirth et al., 2015; Wang P. et al., 2018).

4.2 Microbial community composition and 
associated syntrophic during codigestion

Co-digestion involves the simultaneous anaerobic digestion of 
two or more substrates, often developed to optimize biogas production 
and improve the stability of the digestion process. In this study, a 
comparative analysis of the MC in the codigestion system was 
analyzed by comparing two mesophilic digesters and three 
thermophilic digesters, each with different substrates. The mesophilic 
systems used a co-digestion base mixture of pig manure and corn 
stalk, with one system incorporating activated sludge as inoculum and 
the other adding cucumber residue. The thermophilic systems used a 
base mixture of food waste and activated sludge: one with a 
two-chamber configuration, another with a three-chamber 
configuration, with two adding horticultural waste, and a third with a 
single-chamber setup with the addition of biochar as a conductive 
material. Data from each digester was sourced from different studies, 
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FIGURE 2

Microbial community composition during monodigestion: (A) bacteria and (B) Archaea composition and (C) substrate characteristics in terms of total 
solids (TS%), methane content (CH4), methane yield (CH4y) and carbon/nitrogen ratio (C/N) described in mesophilic digesters using average levels from 
different studies exemplifying corn stalk (Wang et al., 2017), pig manure (Wang et al., 2017), rice straw (Pore et al., 2016), and corn silage (Wirth et al., 
2015).

with samples taken for metagenomic analysis after system stabilization 
(Figure 3).

The phyla Bacteroidetes and Firmicutes, dominant acid-forming 
bacteria, were prevalent in mesophilic digesters. Chloroflexi, an acetic 
acid producer capable of degrading polysaccharides and 
monosaccharides (Wang et al., 2017), was prominent in mesophilic 
systems without cucumber residue and less abundant in thermophilic 
systems (Figure  3A). Bacteroidetes, known for strong adhesion to 
starch particles (Ren et  al., 2014), were abundant in mesophilic 
digesters, likely facilitating the production of VFA, CO2, and H2 
(Murillo-Roos et al., 2022). For mesophilic treatment (Wang Y. et al., 
2018), pure cucumber residue led to acidification and low methane 
production during mono-digestion. However, a 5:2:3 mixture of pig 
manure, corn stalks, and cucumber residue improved microbial 
diversity and methane production, highlighting the benefits of 
co-digestion (Figure 3C).

Firmicutes were abundant in both mesophilic and thermophilic 
treatments, with a particularly high abundance in thermophilic 
systems. In thermophilic systems, Thermotogae was commonly 
observed, with its abundance increasing as the number of digestion 
stages grew. It is believed that Thermotogae, through syntrophic 

degradation of acetate with hydrogenotrophic methanogens, thrives 
in multi-stage digesters where acidogenesis and methanogenesis are 
separated. This separation allows for the proliferation of more 
specialized methanogenic bacteria (Xu et al., 2018b). This syntrophic 
relationship between Thermotogae and methanogens likely 
contributed to the higher methane content and yield observed in the 
three-chamber configuration system.

The use of biochar in thermophilic systems improved microbial 
diversity, methane content, and yield, demonstrating its potential to 
stabilize systems by promoting direct interspecies electron transfer 
(DIET) to accelerate microbial metabolism (Gahlot et  al., 2021; 
Johnravindar et al., 2021; Su et al., 2023), and mitigate high OLR 
impacts (Ye et  al., 2018; Zhang et  al., 2020b). Biochar treatments 
yielded the highest CH4 at the lowest OLR (1.52gVS/l/d) and showed 
the greatest BSI and BChao1 (Wang Y. et  al., 2018; Zhang et  al., 
2020b), indicating greater microbial diversity and richness (Xu et al., 
2018a; Zhang et al., 2020a, 2020b).

Figure  3B shows that codigestion increased the abundance of 
dominant archaea and introduced new participants, such as 
Methanothermobacter, in thermophilic systems and Methanoculleus 
in mesophilic and thermophilic treatments. No single dominant 
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archaea phylum was present across all digesters, though 
Methanosarcina appeared in all treatments, particularly dominating 
the three-chamber thermophilic system. This dominance may be due 
to its ability to utilize diverse substrates like acetate, methanol, and H2 
and thrive across a wide temperature range (Ali Shah et al., 2014; 
Murillo-Roos et al., 2022).

Methanothrix dominated over Methanosarcina in mesophilic 
digesters, with the latter absent in thermophilic treatments. 
Methanothrix likely prevailed due to its higher acetate affinity, 
effectively lowering acetate concentration compared to Methanosarcina 
(Xu et  al., 2018b; Oosterkamp et  al., 2019). Methanoculleus and 
Methanothermobacter were identified in thermophilic digesters at 
different OLRs (Figure 3C), with low OLR favoring Methanoculleus in 
the two-chamber system, while high OLR advantaged 
Methanothermobacter in three-chamber systems (Zhang et al., 2020a). 
Both Methanothermobacter and Methanosarcina, key 
hydrogenotrophic microorganisms, were identified (Bedoya 
et al., 2019).

Phylum Chloroflexi such as Anaerolineae class is related to 
hydrogenotrophic methanogens (Xu et  al., 2018b), Archaea 
Methanosaeta spp. (Bovio-Winkler et  al., 2021), and acetoclastic 
methanogens like Methanosarcinaceae (Liang et al., 2015; Murillo-
Roos et  al., 2022), where Anaerolineae is an acetate or hydrogen 
contributor to methanogens (Bovio-Winkler et  al., 2021; 

Murillo-Roos et al., 2022). This potential syntrophy could promote a 
flow of metabolites between the three, leading to higher methane yield.

Since syntrophy activity is an important aspect of AD system 
stoutness (Oosterkamp et al., 2019), Figure 4 displays common trophic 
microbial associations, identified through metagenomic studies, that 
have assisted biogas production.

To reiterate, Firmicutes stands out as a key player, linked to all 
archaea organisms Figure  4. It co-cultures acetate with 
Methanobacteriales, Methanobacterium, Methanococcus, 
Methanoculleus, Methanothrix, or Methanosarcina (Saha et al., 2019; 
Han et  al., 2020; Tabatabaei et  al., 2020); and butyrate with 
Methanobacterium to produce propionic acid, which is converted into 
biogas (Han et al., 2020). As shown in Figure 4, Proteobacteria also 
contribute to biogas production from propionic acid when associated 
with hydrogenotrophic methanogens such as Methanobacterium (Han 
et al., 2020). Similarly, syntrophy between Aminivibrio (Synergistetes) 
and Methanobacterium facilitated methanation via VFA from amino 
acid oxidation (Saha et al., 2019). Thermotogae was also observed to 
degrade acetate with hydrogenotrophic methanogens (Xu 
et al., 2018b).

In summary, the treatments shown in Figure 3 had an average 
C/N ratio of 14, which yielded optimal results, suggesting this to 
be  a suitable C/N ratio for enhancing microbial biomass 
digestibility (Wirth et al., 2015). Codigestion consistently proved 

FIGURE 3

Microbial community composition during codigestion: (A) Bacteria and (B) Archaea composition described in mesophilic (M) and thermophilic 
digesters (T), M1 and M2 correspond to mesophilic digesters with one chamber configuration, M1 with substrates such as pig manure, corn stalk and 
activated sludge (Wang et al., 2017) and M2 with pig manure, corn stalk and cucumber residue (Wang Y. et al., 2018). In thermophilic digesters, T1 had a 
one-chamber configuration with substrates of food waste, activated sludge and biochar treatment (Zhang et al., 2020b), T2 had a two-chamber 
configuration with substrates like food waste, horticultural waste and activated sludge (Zhang et al., 2020a); and T3 had a three-chamber configuration 
with substrates as food waste, horticultural waste and activated sludge (Zhang et al., 2020a). (C) Represent main characteristics of the five treatments 
described above in terms of diversity: BSI (Diversity index Shannon-Wiener for bacteria), BChao1 (richness index for bacteria Chao1), substrate trait 
such as C/N ratio, OLR (organic loading rate) and associated CH4% (methane concentration) and CH4y (CH4 yield).
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to be a more cost-effective method than monodigestion, offering 
improvements in buffering capacity, nutrient equilibrium, and 
overall process stabilization (Wang et  al., 2017; Wang Y. et  al., 
2018). Achieving a balance of macronutrients and micronutrients 
while reducing inhibitory and toxic compounds, further supports 
system efficiency (Wang Y. et al., 2018). Then, it could be stated that 
codigestion induces the creation of favorable microenvironments 
that promote methanogen growth and system stabilization, leading 
to increased CH4y yield. These microenvironments are occupied by 
keystone microbial members, considered AD regulation markers, 
which are responsible for sustaining the AD process (Xu et  al., 
2018a). The absence of these key organisms could lead to 
AD failure.

Acidogenic bacteria from the Firmicutes phylum play a 
fundamental role in AD as a dominant, versatile, and functionally 
diverse organism (Figures  3, 4), capable of metabolizing complex 
organic residues like lipids, carbohydrates, cellulose, lignin, proteins, 
and sugars under various conditions (Ren et al., 2014; Venkiteshwaran 
et al., 2017; Zhao et al., 2018). Firmicutes are positively connected to 
biogas production (Xu et al., 2018b). Bacteroidetes, the second most 
dominant acidogenic bacteria, also play a significant role in AD (Wang 
P. et al., 2018). Both phyla are key in degrading substrates, producing 
acetic acid, and secreting lytic enzymes during acidogenesis, 
increasing soluble organic matter concentrations and CH4y yield (Liu 
et al., 2019).

Acetate concentration influences acetotrophic methanogens 
regarding growth, CH4 production, and metabolism. For instance, 
Methanothrix can grow and generate CH4 at low acetate 
concentrations. Firmicutes also appear to have a syntrophic 
relationship with Methanothrix and hydrogenotrophic 

methanogen Methanosarcina, where an increase in Methanosarcina 
correlates with higher acetate levels, potentially stabilizing the 
system and enhancing CH4 generation (Xu et al., 2018b; Zhou 
et al., 2023).

The three main methanogenesis pathways present in AD are 
acetoclastic, hydrogenotrophic, and methylotrophic (Ali Shah et al., 
2014). Methanothrix, an acetoclastic methanogen, efficiently converts 
low-concentration acetate into CH4 and CO2, while Methanosarcina 
can generate CH4 through all three pathways, making it a cornerstone 
organism in co-digestion (Wang et al., 2017; Oosterkamp et al., 2019). 
Methanothrix dominated mesophilic treatments but decreased 
notably in thermophilic treatments, where Thermotogae and 
Methanothermobacter became more prevalent. Methanosarcina was 
present in both treatments.

Inoculum material like activated sludge is vital for system startup 
and stability, balancing populations, and promoting syntrophic 
metabolism (Ali Shah et  al., 2014). Bioaugmentation with H2 
producers has shown that it is a bottleneck, with its reduction leading 
to increased biogas production (Heyer et  al., 2016). Moreover, 
methods such as DIET and conductive materials like biochar improve 
methanogenic bioreactor performance. With its functional groups 
acting as electron shuttles and high electrical conductivity, biochar is 
favored for DIET (Ye et al., 2018; Alghashm et al., 2023). Alternative 
conductive materials like magnetite boost AD performance by adding 
in situ H2S removal and elemental sulfur recovery. Metagenomics 
combined with DIET has uncovered new electric syntrophies between 
sulfide-oxidizing bacteria (SOB) and electrotrophic Methanothrix and 
new routes for anaerobic sulfur metabolism, stimulating electroactive 
microorganisms (Jung et  al., 2023; Zhou et  al., 2023). Syntrophic 
collaboration between hydrogenotrophic methanogens and acetogenic 

FIGURE 4

Common syntrophies in AD.
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bacteria, known as interspecies hydrogen transfer, maintains H2 levels 
low enough to make secondary fermentation thermodynamically 
feasible, harmonizing H2 production and consumption in anaerobic 
reactors (Ali Shah et al., 2014; Gahlot et al., 2021).

5 Advanced metagenomic analyses

5.1 Genome-centric metagenomics in AD 
research

16S rRNA gene sequencing provides a broad overview of MC 
during AD but may lack the depth needed to interpret functional and 
metabolic interactions crucial to process efficiency (Asgarineshat 
et al., 2022). GCM tools have demonstrated significant advantages 
over PCR techniques for enhanced analysis of microbiota 
metagenomes without PCR bias, augments coverage of high-GC 
regions of the genome, reduces duplicate reads (Sims et al., 2014), and 
mitigates inaccuracies in the abundance and diversity of genes 
(Kanagawa, 2003). GCM is a rapidly advancing method that can 
recover high-quality MAGs through efficient binning procedures 
(Treu et al., 2018; Jiang et al., 2023). This technique facilitates the 
elucidation of key microbial players, their functions, shared metabolic 
pathways, interspecies hydrogen transfer, cofactor identification, 
nutrient competition, nutrient exchanges, and the metabolic 
reconstruction of MAGs (Figure 5) (Campanaro et al., 2019; Zhu et al., 
2019; Sun M. et al., 2023; Zhang L. et al., 2023). As a result, more 
accurate predictive models can be  developed, allowing better 
correlations between microbial physiology to ecological fitness, 
organic material selection, digester design, and operation to achieve 
higher performance and biogas generation (Turaev and Rattei, 2016; 
Palù et al., 2022; Greses et al., 2023; Heyer et al., 2024).

Recognizing the importance of compositional structures and 
functional connections in AD, recent studies have characterized and 
compared these aspects under different feeding treatments 
(continuous and discontinuous) and OLRs (high and low), using 
short-chain fatty acids such as acetate, propionate, and butyrate as the 
carbon sources. To address the limitations of existing technologies in 
analyzing complex MCs, a hybrid approach combining Illumina-
based short-read and ONP long-read assemblies can be a feasible 

solution. This methodology is expected to enhance MAG completeness 
and proximity, leading to the discovery of potentially novel organisms 
such as Syntrophobacteraceae species, associated with syntrophic 
short-chain fatty acid oxidation; Syntrophomonadaceae species, 
implicated in butyrate oxidation; and Methanoculleus species, linked 
to hydrogenotrophic methanogenesis (Becker et al., 2023).

Additionally, it has been learned that MC responsible for 
fundamental processes may have a broader role in the food web, 
potentially leading to the discovery of unknown metabolite cross-
feeding interactions and new participants like scavengers in biomass 
turnover. For instance, Syntrophobacter and Pelotomaculum have been 
identified as syntrophic oxidants for propionate, while pathway 
analysis might reveal common butyrate degradation gene patterns, 
probably caused by novel butyrate-degrading bacteria like 
Syntrophomonas. In the oxidation of propionic and butyric acid, 
Cloacimonetes, Cryptanaerobacter, and Desulfovibrio can be identified. 
Unclassified Bacteroidetes, Candidatus Cloacimonas, Mesotoga, 
Desulfovibrio, or Endomicrobium may not exhibit significant 
abundance unless butyrate degradation is completed. 
Desulfotomaculum, which utilizes acetate, butyrate, and propionate 
oxidation, can be considered a metabolically versatile genus.

Similarly, hydrogenotrophic and acetoclastic methanogenesis 
pathway genes identified in the archaeal genus Methanothrix are 
believed to generate CH4 through DIET (Zhang X. et  al., 2023). 
Methanosarcina has been identified as a resilient and abundant 
archaeon, capable of overtaking Methanothrix at high OLRs. This 
indicates that stress tolerance can be alleviated if Methanosarcina is 
promoted in exchange for more vulnerable species, boosting system 
resilience during AD. The increase in methanosarcina abundance 
through discontinuous regimes is interesting, advocating that feeding 
regimes might influence temporal niches and provide optimal 
conditions for archaeal community motion. This type of study 
emphasizes the significance of syntrophic activity between bacteria 
and methanogenic archaea, which could enhance system buffering 
and stability.

Innovative research by Gaspari et al. (2024) used GCM to assess 
the impact of rising ammonia levels on the resilience and functional 
dynamics of AD systems, with a focus on microbial responses to 
ammonia stress, particularly key archaeal species and methanogenesis 
pathways. Ammonia is a well-known inhibitor of biogas production, 

FIGURE 5

Process overview of metagenomic analysis including GCM enhancement and scopes.
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with concentrations of approximately 3,000 mg/L, depending on pH 
levels, potentially affecting AD (Bi et al., 2021; Gaspari et al., 2024).

Concentrations above this threshold, irrespective of pH, 
significantly inhibit microbial activity and biogas production 
(Kalamaras et al., 2023; Gaspari et al., 2024). Gaspari et al. (2024) 
revealed that under high ammonia conditions, hydrogenotrophic 
methanogenesis pathways were favored over the acetoclastic pathway. 
Dominant species identified included Methanoculleus bourgensis 
MX4, Methanoculleus sp. MA7, Methano-thrix sp. MA6, and 
Methanosarcina flavescens MX5.

Furthermore, the findings suggest that certain archaeal species, 
such as M. flavescens MX5 and Methanothrix sp., MA6 may adapt their 
metabolic strategies to survive and continue methane production via 
CO2 reduction, potentially utilizing DIET, indicating ecological 
fitness. The presence of syntrophic acetate-oxidizing bacteria (SAOB), 
such as Syntrophomonadaceae sp. MX66, likely contributed to 
increased hydrogenotrophic activity by producing H2 and CO2 from 
acetate, which could then be reduced via the acetyl-CoA pathway to 
sustain methane production (Becker et al., 2023; Gaspari et al., 2024).

This research highlights the importance of expanding 
metagenomics approaches to achieve deep insights into microbial 
dynamics and their response to environmental stressors. Advanced 
metagenomics techniques, like GCM, allow detailed analysis 
recognizing microbial interactions and metabolic pathways, providing 
a valuable foundation for informed decision-making in AD process 
optimization. For example, understanding the MC’s tolerance to 
specific stress factors like ammonia can guide the selection of suitable 
feedstock compositions. Additionally, by modifying procedure 
parameters like pH and temperature based on metagenomic insights, 
it becomes possible to enhance biogas production and identify 
potential diagnostic biomarkers for monitoring and controlling AD.

In a significant step forward for AD research, Greses et al. (2023) 
demonstrated the power of GCM in deciphering the intricate microbial 
dynamics of open-mixed cultures for producing value-added 
biochemicals. By focusing on functional metabolic pathways, the study 
assessed the potential of food waste as a sustainable feedstock for 
generating these valuable compounds, with the aim of replacing 
traditional petrochemical-based products. The researchers employed 
an in-silico community-level simulation to elucidate single-species 
activities and essential interspecies interactions within the culture.

From 58 high-quality reconstructed MAGs, key players such as 
Bifidobacterium subtile IE007 and Eubacteriaceae IE027, associated 
with acetate, butyrate, and ethanol production, were favored at a pH 
of 6.5. However, a slight pH decreases to 6.1 shifted metabolic activity, 
promoting caproate and H2 production, primarily mediated by 
Eubacteriaceae IE037. The study also demonstrated the feasibility of 
achieving high ethanol titers (comparable to those from pure yeast 
cultures) using non-pretreated open-mixed cultures, highlighting the 
potential for cost-effective bioethanol production from waste. The 
research further revealed that microbial metabolisms can 
be modulated to obtain targeted products and that pH alteration can 
modify the AD process to help the production of valuable market 
intermediate compounds over biogas. This study underscored the 
importance of GCM in understanding MC interactions and dynamics, 
revealing how factor adjustment can shape microbial metabolism to 
generate added-value products, offering a promising approach to 
sustainable biorefinery development.

Table  5 presents a detailed comparison of the advanced 
metagenomics (GCM) tools employed in AD research. It organizes 
them by the specific processes they support and provides insights into 
their suitability, innovation, computational demand, and 
user-friendliness.

Recent studies in GCM applied to AD illustrate distinct 
approaches to the field, showing an evolution towards more refined 
and comprehensive tools. Becker et al. (2023) used well-established 
methods, Greses et  al. (2023) joined traditional and cutting-edge 
techniques, while Gaspari et al. (2024) pushed the boundaries with 
innovative approaches. This progression reflects a pattern of evolution 
in metagenomics, with a trend toward increasingly sophisticated and 
computationally intensive tools that offer higher accuracy and detail.

Unlike 16S rRNA metataxonomics, generally limited to genus-
level taxonomic resolution and lacking in functional detail, being 
confined to known organisms within reference databases, and often 
unable to detect novel microbes, these findings demonstrate the 
importance of furthering metagenomics through GCM. Using long, 
high-quality reads, GCM has confirmed the association of specific 
organisms with essential catabolic pathways, optimizing these routes 
under suboptimal conditions. For example, syntrophic interactions 
involving Syntrophobacter and Syntrophomonas are integral to the 
degradation of short-chain fatty acids and biogas production. 
Moreover, hydrogenotrophic methanogenesis becomes more 
prominent under ammonia stress, with Methanoculleus species 
contributing to system resilience.

GCM’s ability to uncover novel genomes missed by short-read 
studies and reveal new functional competencies refines the 
understanding of microbial metabolic diversity, challenging the 
conventional four-step AD scheme. As GCM techniques advance, they 
provide more accurate predictions of biogas production, transforming 
AD from a “black box” into a more manageable system. However, the 
increased accuracy and detail come at a higher cost, requiring a 
balance between precision and resources in sustainable biorefinery 
development. This overview helps researchers align established 
methods with cutting-edge techniques, highlighting the growing 
sophistication of metagenomics in unraveling the AD microbiome.

5.2 Strain-resolved metagenomics applied 
to biogas production

Although the recovery of high-quality MAGs denotes a substantial 
advancement in GCM within AD research, underexplored layers of 
microbial genome diversity remain. These hidden layers require more 
sophisticated methodologies to fully elucidate comprehensive 
microbial adaptive strategies, surpassing the limitations of species-
level resolution (Greses et al., 2023; Ghiotto et al., 2024a). For instance, 
advanced microbiome evolutionary, functional, and metabolic 
tracking mechanisms are essential. Such a mechanism would enable 
the selection of microorganisms at a higher level of diversity through 
metagenome strain identification (Bucci et al., 2024; Ghiotto et al., 
2024a), recognizing strains as the fundamental unit of microbiological 
diversity, a group of single-cell clonal descendants (Quince et al., 2021; 
Setubal, 2021). This approach allows for monitoring diversity beyond 
the species level, with the capacity to detect genetic changes even 
without microbial abundance fluctuations (Ghiotto et al., 2024b).
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TABLE 5 Comparison of GCM tools in AD studies.

Process
Becker et al. 
(2023)

Greses et al. 
(2023)

Gaspari et al. 
(2024)

Overall Suitability Innovation
Computational 
Intensity

User-Friendliness

Read Alignment Bowtie2 v2.3.3.1 Bowtie2 v2.2.4 Bowtie2 v2.4.5
Highly Suitable: Bowtie2 (all 

versions)
Low: Standard but effective Medium: Increase with dataset size

High: Well-documented and 

user-friendly

MAGs Assembly

SPAdes v3.11.1, 

Canu v1.9, 

Unicycler v0.4.8

MEGAHIT v1.1.1 MEGAHIT v1.2.9

Highly Suitable: SPAdes, 

MEGAHIT Suitable: Canu (strong 

for long-reads)

High: if Canu + MEGAHIT 

cutting-edge Medium: 

SPAdes is reliable

High: Canu Medium: MEGAHIT

Medium: SPAdes is user-

friendly; Canu requires 

more expertise

Gene Prediction
Metaxa v2.1.3, 

Prodigal V2.6.3
Prodigal v2.6.2 Prodigal v2.6.3

Highly Suitable: Prodigal the top 

choice

Medium: Prodigal, well-

established tool
Low: Lightweight

High: Easy to use, widely 

adopted

MAGs Binning

MaxBin v2.2.7, 

Concoct v1.1.0, 

MetaBAT v2

MetaBAT v1.2.15, 

MetaBAT2 v2.2.15, 

Concoct v1.1.0, 

MaxBin2 v2.2.7, VAMB 

v3.0.2

MetaBAT2 v2.12.1, 

MaxBin2 v2.2.6, Concoct 

v1.1.0

Highly Suitable: Multi-tool 

Suitable: MaxBin alone

High: Multi-tool improves 

accuracy; Concoct adds 

binning robustness

High: Multi-tool is computationally 

intensive; Concoct alone is 

moderate

Medium: Concoct is user-

friendly; MaxBin alone is 

simpler

MAG Quality 

Assessment

QUAST v4.5 

CheckM

QUAST v3.1, CheckM 

v1.0.3
CheckM v1.1.3

Highly Suitable: CheckM + 

QUAST Suitable: CheckM alone

Medium: QUAST is 

standard; CheckM is well-

established

Medium: Moderate resources
High: User-friendly and 

widely used

MAG Refinement

refineM v0.1.1, 

MetaWrap v1.2.1, 

Unicycler v0.4.8

Not reported Not reported
Highly Suitable: MetaWrap + 

Unicycler

High: Modern approach to 

MAG improvement

High: Computationally intensive, 

multi-step process

Medium: More complex, 

requires expertise

MAG Dereplication dRep dRep v3.2.2 DAS v1.1.2 Highly Suitable: dRep or DAS Medium: Established tools Medium: Moderate resources High: User-friendly

Taxonomic 

Assignment
GTDB-Tk v1.0.2 GTDB-Tk v1.7.0 GTDB-Tk v2.1.0

Highly Suitable: GTDB-Tk (latest); 

Suitable: Older versions

Medium: Incremental 

improvements
Medium: Moderate resources

Medium: User-friendly with 

good documentation

Phylogenetic Analysis Not reported Not reported
PhyloPhlAn v3.0.51, iTOL 

v6.5.8

Highly Suitable: PhyloPhlAn + 

iTOL; Suitable: PhyloPhlAn alone

Medium: iTOL adds 

visualization; PhyloPhlAn 

is robust

Medium: PhyloPhlAn is 

moderately intensive, iTOL is light

High: iTOL is user-friendly; 

PhyloPhlAn requires some 

expertise

Pathways and 

Functional 

Annotation

DIAMOND v0.9.8, 

MEGAN5 and 6 

v6.12.0, Prokka 

v1.0.2, Prodigal 

v2.6.3, KEGG, 

EggNOG, 

HUMAnN 2.0

METABOLIC, Prodigal 

v2.6.2, KEGG

Prodigal v2.6.3, EggNOG 

v2.1.9, HTSeq v2.0.2, 

KEGG, MicroAnnotator 

v2.0.4

Highly Suitable: 

METABOLIC+KEGG; HTSeq, 

MicroAnnotator Advance 

Function Annotation; Multi-Tool 

Suitable: DIAMOND, MEGAN, 

EggNOG, HUMAnN

High: METABOLIC, 

HUMAnN2.0

Medium High: 

MicroAnnotator, HTSeq

Medium Low: KEGG, 

EggNOG

High: METABOLIC, HUMAnN, 

HTSeq for large datasets

Medium: MicroAnnotator

High: Prokka, MEGAN, 

DIAMOND, Prodigal

Medium Low: METABOLIC 

and HUMAnN need 

expertise

Community 

Simulation
Not reported

gapseq v1.1, Micom 

v0.10.1, Cplex v12.8.0.0
Not reported

Highly Suitable: gapseq + Micom 

for advanced simulations

High: Cutting-edge for 

community-level 

predictions

High: Computationally intensive 

for complex simulations

Medium: Requires expertise 

to implement
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In AD research, merely evaluating species dynamics often falls 
short of capturing the nuanced changes within species and the 
temporal succession of coexisting strains (Bucci et al., 2024; Ghiotto 
et al., 2024b). Single-nucleotide variants (SNVs) analysis emerges as a 
promising approach to bridge this gap. This method permits the 
detection of SNVs at specific genomic positions, whether within 
protein-coding sequences or intergenic regions (Zou et al., 2020). By 
revealing shared gene variations, such as insertions and deletions, 
SNV analysis makes it possible to track strains within a species based 
on allele pattern detection (Quince et al., 2021; Bucci et al., 2024; 
Ghiotto et al., 2024b).

A complementary strategy known as strain deconvolution uses 
shotgun metagenomics reads to concurrently determine strain 
genotypes and relative abundances across samples. This is 
accomplished via statistical deconvolution of allele frequencies, a 
process that separates mixed genetic signals into their parts, allowing 
the identification of multiple genotypes from pooled data (Smith et al., 
2022). This procedure has proven effective in evaluating the genetic 
dynamics and ecological fluctuations of AD species, especially in 
tracking emerging mutations at species and strain levels (Bucci et al., 
2024; Ghiotto et al., 2024b). These interrelated methods allow the 
tracking of microbial strains, assessment of their relative abundances, 
identification of dominant organism variations, and monitoring of 
evolutionary trends, thereby aiding in the identification of suitable 
environmental conditions for archaea and bacteria syntrophies during 
AD (Ghiotto et al., 2024b).

Bucci et  al. (2024) explored the impact of escalating ammonia 
concentrations on MC within AD. The study sought to delve deeper into 
microbial evolution by applying SRM, focusing on monitoring SNVs over 
time. By gradually increasing ammonia levels across cultivation 
generations, the study aimed to unravel the dynamics of ammonia-
tolerant methanogenic consortia at both species and strain levels. Strain 
deconvolution was employed to isolate genetic variants from shotgun 
metagenomics data, providing a granular view of allele occurrences. This 
approach enabled a detailed examination of how microbial consortia 
adapt to increasing ammonia stress at a finer genetic resolution.

The investigation identified 179 MAGs (172 bacterial and 7 
archaeal), with Firmicutes as the predominant bacterial phylum. 
Among the archaeal species, Methanoculleus bourgensis vb3066 was 
notably abundant, likely due to its syntrophic interactions with 
bacteria involved in the Wood-Ljungdahl (WL) pathway, a carbon 
fixation process crucial for converting CO2 to acetate, and the 
glycine synthase reductase pathway. SAOBs like Keratinibaculum 
sp. ma44 and Acetomicrobium sp. ma133 were also key players. 
Over time, the relative abundance of Clostridium cochlearium 
ma73, Keratinibaculum sp. ma44, and M. bourgensis vb3066 
increased, while Acetomicrobium sp. ma133 and Firmicutes sp. 
ma48 showed reduced relative abundance at later generations, 
possibly because of competition and ammonia tolerance 
thresholds. The study identified Acetomicrobium sp. ma133, 
C. cochlearium ma73, Firmicutes sp. ma48, Firmicutes sp. mb175, 
Keratinibaculum sp. ma44, Keratinibaculum sp. mb43, and 
M. bourgensis vb3066 as key organisms capable of thriving in high 
ammonia conditions. These findings accentuate the importance of 
specific microbes in maintaining metabolic balance under 
challenging conditions.

Notably, 148 non-synonymous SNVs were identified in enzymes 
associated with the WL and glycine synthase reductase pathways in 

Acetomicrobium sp. ma133148, indicating significant selective 
pressures that allowed these enzymes to maintain their functionality 
under elevated ammonia concentrations. The persistence and 
dominance of M. bourgensis vb3066 and Acetomicrobium sp. ma133 
suggest that these strains have adapted to stabilize the system by 
mitigating inhibition and fostering robust syntrophic relationships. 
Genes associated with the WL and glycine synthase reductase 
pathways in C. cochlearium ma73, Keratinibaculum sp. ma44, and 
Tepidanaerobacteraceae sp. ma135 might imply that all or some of 
these organisms may have taken on roles as putative SAOB (Bucci 
et al., 2024). Strain deconvolution was thus proven to be an effective 
technique for identifying intraspecific diversity, displaying coexisting 
strains with diverse phenotypes as organisms respond uniquely to 
environmental pressures. This genetic evidence emphasizes the critical 
role of SNVs in supporting microbial adaptation and survival, 
reinforcing the importance of genetic diversity.

Recognizing the need to improve AD products, such as increasing 
CH4 content and reducing H2S concentration, Ghiotto et al. (2024a) 
studied the evolution of a mixed-methanogenic culture using a novel 
approach involving variant calling and strain deconvolution. The 
research subjected the methanogenic community to high H2S levels in 
a trickle bed reactor, a type of packed bed reactor that facilitates 
interaction between solid, liquid, and gas phases during chemical 
reactions driven by gravity-assisted flow (Malolan et al., 2022). The 
experiment was divided into three stages: S1 (artificial and sulfur-rich 
biogas), S2 (pure H2 with biogas from a lab-scale continuous stirred-
tank reactor), and S3 (microaerophilic conditions with 0.002% v/v 
O2). These stages aimed to evaluate the combined biomethanation and 
desulfurization processes of anoxic and limited oxygen conditions 
while assessing the metabolic capabilities of AD microbiota to achieve 
biogas upgrading as a sustainable alternative to conventional 
chemical methods.

Throughout the study, 97 to 146 high-quality MAGs were 
identified, revealing 171,545 distinctive SNVs across six samples, 37% 
of which were nonsynonymous. In S1, the microbial landscape was 
prominently shaped by Methanobacterium sp. DTU45, a 
hydrogenotrophic methanogen that prevailed under sulfur-enriched 
conditions due to its capacity to utilize the elevated H2 levels. Its 
biofilm-forming ability could have offered protection against toxic 
agents like oxygen, further contributing to its resilience. Concurrently, 
Gammaproteobacteria sp. DTU53 began to proliferate, capitalizing on 
the controlled conditions. This initial phase provided critical insights 
into the early adaptive mechanisms of the methanogenic community 
when exposed to elevated H2S levels. During S2, putative SOB such as 
Gammaproteobacteria sp. DTU53 benefited from a gas injection, with 
an alteration in abundance indicating a possible electron redirection 
to the sulfate-sulfur receptor pathway. In S3, 81% of H2S was 
successfully removed, and Gammaproteobacteria sp. DTU53 
reappeared, potentially exhibiting a metabolic modification from 
fermentation to aerobic respiration, utilizing sulfur compounds as 
electron donors. Facultative anaerobes like A. equifetale DTU58 also 
contributed to desulfurization as a potential oxygen-resistant species 
in this microaerophilic environment. Additionally, the identification 
of a molecular marker for potential SAOB, the formate-
tetrahydrofolate ligase gene, in Limnochordia sp. DTU66, 
Proteinivoracia sp. DTU68, and Firmicutes sp. DTU69, participants in 
the WL pathway, could have encouraged facultative syntrophies with 
Methanobacterium species.
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The study demonstrated that genomic variant growth persuades 
phenotypic changes, improving functional redundancy and resilience 
within the microbiome. Strain deconvolution effectively revealed 
intraspecific diversity, allowing for successful microaerophilic 
biomethanation (95% CH4) and hydrogen sulfide removal (81%), 
without hindering hydrogenotrophic archaea. However, while these 
findings are promising, the controlled experimental conditions may 
not fully reflect the complexities of industrial-scale systems. The 
scalability and wider applicability of these results required additional 
validation in more varied and realistic environments.

Seeking to promote sustainable practices within the Carbon Capture 
and Utilization concept, Ghiotto et al. (2024b) focused on achieving 
biological biogas upgrading through autotrophic approaches. The study 
highlighted the relevant role of hydrogenotrophic archaea in balancing H2 
levels while cooperating with sulfate-reducers and SAOB to remove 
acetate and sulfur. Given the limited knowledge of SNVs’ impact on 
hydrogenotrophic archaea, this research analyzed how SNVs influence 
the functional properties of these organisms for biomethane production, 
aiming to uncover new genetic insights.

Two case studies were conducted: the first assessed various 
feedstock substrates, while the second evaluated the effect of 
continuous H2 addition on the microbiota. In the first experiment, 47 
high-quality MAGs were identified, with Firmicutes dominating at 
93% abundance. Methanothermobacter wolfeii MA_1 was notably 
abundant, primarily using the CO2 to CH4 reduction pathway and 
acetate, formate, and methanol when H2 was unavailable. 
Sphaerobacter thermophilus CO_9, Caldanaerobacter subterraneus 
MX_27, and Limnochordia sp. MA_37 were the predominant bacteria.

The second experiment yielded 50 high-quality MAGs, with 
Firmicutes as the most abundant bacteria. Methanosarcina thermophila 
MB_65 and Methanocullus thermophilus MA_62 were the dominant 
archaea, each with distinct metabolic preferences: acetate for 
M. thermophila and H2 for M. thermophilus, which thrived with H2 
addition. Limnochordia sp. MB_100, Bacteroidales sp. VB_122, and 
Acetomicrobium sp. MX_67 showed the highest relative abundance.

It is likely that syntrophic relationships between acetate-oxidizing 
bacteria, M. wolfeii MA_1, and M. thermophilus MA_62 might have 
promoted the high abundance of both archaea. A total of 76,229 SNVs 
were identified and categorized as synonymous (56%), 
nonsynonymous (30%), and intergenic (14%) variations. Analysis of 
relative abundance and SNV accumulation over time indicated that 
species dominance was linked to a higher number of genetic variants. 
Defined environmental parameters facilitated cooperative coexistence 
within the MC during methanogenesis, involving conventional and 
alternative WL pathways. Notably, it is suggested that the efficiency of 
carbon capture and utilization within MC be prioritized over isolation 
experiments to enhance biogas production by identifying the most 
efficient and resilient strains (Ghiotto et al., 2024b).

Table 6 provides a clear and concise comparison of the field’s 
current state in strain-level analysis in AD research, showcasing key 
tools and their applications. This overview, grounded in insights from 
rigorous and recent studies, serves as a valuable guide for researchers 
in selecting suitable techniques for their specific research needs.

InStrain v1.6.3 is a widely used tool for SNV identification, known for 
its precision, though it requires moderate computational resources and 
expertise (Lindner et al., 2024). STRONG, integral to strain resolution, 
delivers high accuracy via its BayesPaths algorithm but is computationally 
intensive and complex to implement (Quince et al., 2021).

AlphaFold, used in one study for 3D protein modeling, provides 
cutting-edge insights but is also demanding in terms of computational 
power. Gene annotation relies on well-established tools, with Microbe-
Annotator v2.0.4 being the most innovative, providing comprehensive 
analyses but with considerable computational requirements. For 
phylogenetic analysis, PhyloPhlAn v3.0 and iTOL are reliable options, 
requiring moderate computational power. The choice of tools varies 
in complexity, computational load, and user-friendliness, often 
demanding substantial expertise to achieve optimal results.

The exploration of advanced GCM and SRM in AD research 
represents a shift from species-level analysis to more refined strain-
level insights. Studies by Ghiotto et al. (2024a), Bucci et al. (2024), and 
Ghiotto et al. (2024b) used SRM to reveal hidden layers of microbial 
genome diversity that traditional 16S rRNA gene-based 
metataxonomics or even GCM could not fully capture. SRM’s ability 
to track SNVs and analyze their influence on functional and metabolic 
traits provides a more comprehensive understanding of microbial 
adaptation to stressors such as high ammonia or H2S levels.

These studies consistently identified resilient strains of 
hydrogenotrophic archaea, which maintained metabolic balance 
through DIET and biofilm formation. A common theme was the 
discovery of numerous SNVs contributing to phenotypic variation, 
species dominance, increased functional redundancy, and overall 
microbial success under various conditions.

Implementing SRM and high-quality MAG recovery involves 
substantial computational and sequencing costs compared to 16S 
rRNA gene analysis. The need for deep sequencing, extensive 
computational resources for SNV analysis, and specialized software 
for strain deconvolution all contribute to higher expenses. 
Nevertheless, the added cost is justified by the richer, more actionable 
insights that SRM provides for optimizing AD operations.

Variant analysis grants critical perceptions into AD metabolic 
pathways by revealing how microbial evolution and strain dominance 
occur. Nonsynonymous SNVs can influence microbial metabolism and 
functional potential by altering protein structures, leading to gains or 
losses in function that can enhance biogas yields. The strain-level 
resolution provided by SRM is essential for knowing the impacts of 
selective pressures on MC structure and elucidating the adaptive 
mechanisms that support stable bioconversion and resistance 
development in inhibitory environments.

While GCM is valuable for understanding community compositions, 
it often lacks the precession needed to capture strain-level diversity and 
the functional implications of SNVs. In contrast, SRM offers novel 
insights into the evolution and interactions of AD microbiota, particularly 
under adverse conditions. Future efforts should prioritize identifying and 
enhancing the most robust and efficient strains within diverse MCs, 
ensuring that detailed genetic knowledge is applied with cost-effectiveness 
and wider practical implementation.

6 Challenges and perspectives of 
metagenomics in AD research

In AD research, replication is frequently neglected due to cost and 
time constraints, yet it is essential for ensuring statistical robustness 
and improving pattern detection in microbial ecology. This lack of 
replication is especially problematic in metagenomic studies, where 
sampling and storage biases can distort MC analysis. Additionally, the 
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incomplete nature of metagenomics data hinders the identification of 
functional genes and the detection of uncharacterized microorganisms 
in biogas samples. Expanding gene databases is crucial to address 
these limitations, providing stronger evidence for functional 
predictions and capturing microbial diversity more effectively.

Combining GCM with SRM could offer a robust approach to 
refining functional predictions and exploring ecological interactions 
within complex MC (Kim et al., 2022). GCM reconstructs MAGs, 
providing insights into the genetic makeup and functional potential 
of different microbial populations in a community. However, it may 
not distinguish between closely related strains within a species. 
SRM addresses this limitation by resolving the strain level and 
uncovering the genetic diversity and specialized functions that dive 
into processes like organic matter degradation and methane 
production. Together, they might display a profound perspective on 

community-wide functions and the distinct contributions of 
individual strains.

Further integration of advanced metagenomics with multi-omics 
and molecular technologies would provide new depth in 
understanding MC functions (Kim et al., 2022; Li et al., 2022). This 
integration enhances the accuracy of functional predictions and 
allows for more precise manipulation of microbial consortia to achieve 
desired outcomes in AD processes, such as efficiently producing 
biochemicals and biofuels, supporting the shift toward sustainable 
production systems (Greses et al., 2023).

Molecular methods permit a detailed exploration of microbial 
ecological roles and metabolic capabilities through synergistic 
networks supported by catabolic complementarity, electron transfer 
balance, and energy conservation. In this context, the promising 
scientific discipline, ecogenomics, which studies the relationships 

TABLE 6 Comparison of the current tools used for strain-level analysis in AD research.

Process
Bucci 
et al. 
(2024)

Ghiotto 
et al. 
(2024a)

Ghiotto 
et al. 
(2024b)

Overall 
Suitability

Innovation
Computational 
Intensity

User-
Friendliness

SNV Identification 

and Analysis
InStrain v1.6.3

InStrain 

v1.6.3
InStrain v1.6.3

Highly Suitable: 

Specialized for 

SNV analysis

High: Focused on 

SNV identification

Medium: Moderate 

computational demand

Medium: Requires 

some expertise

Variant Clustering

Mann–

Whitney U 

Test

No reported No reported

Highly Suitable: 

Accurate variant 

clustering

Medium: 

Traditional 

statistical approach

Low: Low computational 

demand

Medium: Moderate 

difficulty in 

implementation

Strain Resolution 

and 

Deconvolution 

Pipeline

STRONG STRONG STRONG

Highly Suitable: 

Accurate strain 

resolution

High: Novel 

approach with 

BayesPaths 

algorithm

High: Computationally 

intensive due to graph 

disentangling

Low: Complex, 

requires advanced 

expertise

3D Protein 

Structure 

Modeling

No reported AlphaFold No reported

Highly Suitable: 

Cutting-edge for 

protein modeling

High: Advanced 

AI-based modeling

High: Computationally 

intensive

Medium High: 

Requires expertise to 

use effectively

Protein Sequence 

Alignment
No reported

Clustal 

Omega
No reported

Suitable: Standard 

for sequence 

alignment

Low: Established
Medium: Moderate 

computational demand

High: User-friendly, 

well-documented

Graph 

Disentangling
No reported No reported BayesPaths

Highly Suitable: 

Specialized for 

complex graph 

disentangling

High: Innovative 

and complex

High: Computationally 

intensive

Low: Requires 

advanced expertise

SNV Clustering 

Analysis
No reported No reported

Python (scipy.

stats)

Suitable: Versatile 

for statistical 

analysis

Medium: Flexible 

and adaptable

Medium: Depends on 

dataset size

Medium: Requires 

programming 

knowledge

Gene annotation 

and Metabolic 

reconstruction

Prodigal 

v2.6.3, 

eggNOG-

mapper v2.1.9, 

KEGG, 

Microbe-

Annotator 

v2.0.4

Prodigal 

v2.6.3, 

eggNOG-

mapper 

v2.1.9, KEGG, 

Microbe-

Annotator 

v2.0.4

Prodigal 

v2.6.3, 

eggNOG-

mapper v2.1.9, 

KEGG

Highly Suitable: 

Multi-tool 

comprehensive 

annotation and 

reconstruction

Medium High: 

Microbe-Annotator 

Medium: 

Established and 

reliable tools

Medium: Moderate 

computational demand

Medium: Requires 

some expertise

Phylogenetic 

analysis

Phylophan 

v3.0, iTOL
No reported No reported

Highly Suitable: 

Robust for 

phylogenetic 

analysis

Medium: Establish 

method

Medium: Moderate 

computational demand

Medium: Requires 

some expertise
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between microbial functions and their environments, is valuable 
(Nobu et al., 2015; James and Richardson, 2020).

Concepts such as quorum sensing, a microbial cell-to-cell signal 
molecules communication system bridging biological processes 
between MC by regulating gene expression, population behavior, 
and density via extracellular autoinducers (Zhang et al., 2021; Wang 
et  al., 2023), should be  considered in microbial connectivity 
techniques in AD. This system can regulate AD metabolic processes 
such as chemical oxygen demand removal and methanogenesis (Lv 
et al., 2023). Similarly, metagenomics could become a useful tool for 
identifying microbiota with an affinity for conductive materials, 
thereby promoting DIET and enhancing CH4 production (Lei et al., 
2019). A deeper understanding of microbiome interactions will lead 
to more efficient methodologies to sustain key metabolic 
routes in AD.

Metagenomic analysis through large-scale sequencing faces 
significant challenges, including substantial computing 
requirements, limited storage, extended processing times, and high 
sequencing costs. To address these, integrating supercomputing with 
data mining and ML algorithms on cloud platforms is essential. 
These algorithms should be specifically designed for metagenomics 
and linked to open-source databases to improve accuracy (Zhang 
et  al., 2019a; Yang et  al., 2021). However, AI methods in 
metagenomics are still constrained by high computational demands 
and the need for large, well-annotated datasets, which are often 
lacking in complex environments like AD. This shortage can lead to 
bias and generalization challenges. Therefore, enhancing data 
curation and optimizing models are essential for the wider adoption 
of advanced AI-driven approaches.

The future of AD research may involve developing specialized tools 
within more user-friendly platforms, combining precision with ease of 
use. This would make technologies accessible to a wider range of 
researchers and practitioners. Additionally, using real-time 
metagenomic data alongside operational controls could allow for 
dynamic adjustment to process parameters, enhancing system 
resilience and efficiency. This approach provides a comprehensive view 
of the functional potential within microbial populations, enabling 
more responsive and efficient management.

In summary, metagenomics has significantly advanced the 
analysis of microbial communities (MC) in anaerobic digestion (AD), 
but further progress in technology and methodology—particularly in 
real-time monitoring, multi-omics integration, and machine 
learning—will be crucial for optimizing these systems. Addressing 
these current challenges in sampling, data handling, computational 
demands, and data completeness while continuously expanding gene 
databases and providing direct evidence for predicted functionalities, 
will be  key to fully unlocking the potential of metagenomics in 
AD research.

7 Conclusion

This review has thoroughly explored the transformative 
potential of metagenomics in revolutionizing AD processes. By 
providing a detailed understanding of the microbiome involved, 
metagenomics has clarified the crucial role of MCs in converting 
residual biomass into valuable products such as biogas, 

biomethane, biochemicals, and biofuels. The review also 
highlights how feedstock composition and operational conditions 
significantly shape MC structure and function.

Metagenomics is a powerful tool for identifying and characterizing 
entire microbiomes, including non-cultivable organisms while 
providing valuable insights into their metabolic pathways and 
interactions. The integration of advanced techniques, such as GCM 
and SRM, has further deepened the understanding of microbial 
dynamics, evolution, adaptations, and functional capabilities within 
AD systems.

This enhanced understanding of MC interactions paves the way 
for targeted interventions and process optimization, helping to unravel 
the complexity of the AD system. Identifying and isolating key MCs, 
combined with the development of user-friendly tools and real-time 
monitoring systems, holds immense promise for optimizing AD 
operations, achieving higher biogas yields, and ultimately developing 
more efficient and sustainable AD technologies. By empowering 
researchers and practitioners with critical insights, the application of 
metagenomics is poised to play a pivotal role in advancing the 
AD field.
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