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Plant microRNAs regulate the
defense response against
pathogens
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Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological
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MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20–25

nucleotides in length, that play a crucial role in regulating gene expression

post-transcriptionally. They are involved in various biological processes such as

plant growth, development, stress response, and hormone signaling pathways.

Plants interact with microbes through multiple mechanisms, including mutually

beneficial symbiotic relationships and complex defense strategies against

pathogen invasions. These defense strategies encompass physical barriers,

biochemical defenses, signal recognition and transduction, as well as systemic

acquired resistance. MiRNAs play a central role in regulating the plant’s innate

immune response, activating or suppressing the transcription of specific genes

that are directly involved in the plant’s defense mechanisms against pathogens.

Notably, miRNAs respond to pathogen attacks by modulating the balance of

plant hormones such as salicylic acid, jasmonic acid, and ethylene, which

are key in activating plant defense mechanisms. Moreover, miRNAs can cross

boundaries into fungal and bacterial cells, performing cross-kingdom RNA

silencing that enhances the plant’s disease resistance. Despite the complex and

diverse roles of miRNAs in plant defense, further research into their function in

plant-pathogen interactions is essential. This review summarizes the critical role

of miRNAs in plant defense against pathogens, which is crucial for elucidating

how miRNAs control plant defense mechanisms.
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1 Introduction

Plants interact with diverse microbiota, including bacteria and fungi, which can have
beneficial, detrimental, or neutral effects on the plants (Mendes et al., 2013). In symbiotic
interactions between plants and microorganisms, both partners mutually benefit. Plants
provide microbes with carbon fixed through photosynthesis, in the form of root exudates
and litter, while microbes enhance the plants’ resistance to biotic and abiotic stresses (Bais
et al., 2006; Bonfante and Genre, 2010; Sun et al., 2021; Kong and Liu, 2022). Pathogens,
such as bacteria, viruses, nematodes, and fungi, can cause diseases by manipulating
host cells with protein effectors that disrupt vital cellular functions and suppress both
adaptive and innate immune responses of the host (Wang W. et al., 2018; Ahmed et al.,
2022; Dai et al., 2023). To defend against such threats, plants have evolved various
defense mechanisms, including structural and chemical defenses, hypersensitive responses,
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and systemic acquired resistance (Wang et al., 2019). Specifically,
these defense mechanisms involve microRNAs (miRNAs), which
trigger self-protective reactions that are crucial for plants lacking
specialized cells responsible for immune functions (Xie et al., 2017;
Islam et al., 2018).

Small RNAs (sRNAs) in plants play crucial roles in regulating
development, stress tolerance, and antiviral defenses (Kamthan
et al., 2015). These sRNAs can be divided into two types
based on their biogenetic pathways and functions: miRNAs
and small interfering RNAs (siRNAs) (Islam et al., 2017).
MiRNAs are noncoding RNAs that bind to complementary
sequences on messenger RNAs (mRNAs), enabling them to
regulate gene expression and inhibit various signaling pathways in
eukaryotic cells (Bartel, 2004). Recent research has highlighted the
involvement of miRNAs in a wide array of biological processes,
including mammalian reproduction, fertility, human stress-related
illnesses, interactions with the gut microbiota, and plant growth
and stress responses. They also play a role in regulating key
agronomic traits (Li et al., 2017, 2020; Du et al., 2019; Salilew-
Wondim et al., 2020; Šečić et al., 2021). As of the latest release
of the miRBase blog,1 there are 48,885 mature miRNAs cataloged
from 271 different species, including Arabidopsis thaliana (428
miRNAs), Medicago truncatula (756), Brachypodium distachyon
(525), Oryza sativa (738), Triticum aestivum (125), Zea mays (325),
and Solanum lycopersicum (147) (Kozomara et al., 2019; Šečić
et al., 2021). However, given the complex and evolving nature of
plant–pathogen interactions, it remains challenging to generalize
the specific role of each miRNA in pathogen defense based on
the results reported in studies. This review discusses the critical
role of plant miRNAs in modulating the plant’s defense response
to pathogens, including how they enhance disease resistance by
regulating the balance of plant hormones and gene expression. In
addition, the complex mechanism of plant-pathogen interaction
is summarized, providing a valuable reference for research in the
fields of biotechnology and molecular biology.

2 Plant defense mechanism against
pathogen attack

Viruses, bacteria, fungi, and nematodes are the primary agents
of diseases in plants. These pathogens can directly destroy plant
cells. For example, fungi destroy plant cells either by inserting
the mycelium or hijacking host mechanisms to disrupt plant cell
reproduction (Islam et al., 2017, 2018; Adnan et al., 2017). Over
time, plants have evolved a complex array of defense mechanisms
to adapt to environmental changes and resist pathogen invasion.
These defenses are organized into multiple layers, including
physical barriers, biochemical defenses, signal recognition and
transduction, and the systemic acquisition of resistance (Figure 1;
Jones and Dangl, 2006; Ngou et al., 2022). One of these
sophisticated mechanisms involves the activation of self-defense
responses through the involvement of miRNAs due to absence of
some specialized plant cells with immune functions (Islam et al.,
2018). In this mechanism, plant cells detect pathogen-associated

1 https://mirbase.org/

molecular patterns (PAMPs) that trigger the primary immune
response in the host plant, known as the PAMP-triggered immunity
(PTI). To circumvent the PTI in plants, pathogens have also evolved
specific effectors that disrupt the signal transmission associated
with PTI (Thomma et al., 2011; Stam et al., 2014). In response,
plants have developed a secondary defense system called effector-
triggered immunity, mediated by various resistance (R) proteins.
These R proteins specifically target and inhibit the spread of
bacterial pathogen effectors, such as avirulence (avr) proteins, with
high precision (Rouxel and Balesdent, 2010; Islam et al., 2018).
Additionally, miRNAs play a role in modulating gene expression,
either enhancing or suppressing it at both transcriptional and
posttranscriptional levels. They respond to pathogen attacks by
regulating gene expression through changes in hormonal signaling
pathways including those of auxin, abscisic acid (ABA), and
jasmonic acid (JA). Various miRNAs are actively involved in these
defense mechanisms, playing crucial roles in plants’ response to
different pathogens.

3 Plant miRNAs

3.1 Biosynthesis and functions of plant
miRNAs and their role in gene expression
regulation

MiRNAs are a class of small RNA molecules that typically range
in length from 20 to 24 nucleotides (nt), having crucial roles in the
regulation of gene expression in eukaryotes (Friedman et al., 2009;
Tarver et al., 2012). These miRNAs are expressed across various
tissues and developmental stages, where they significantly affect
disease resistance and stress tolerance. They are also implicated
in macroevolutionary changes and are promising targets for
bioengineering in domesticated species (Figure 2; Rubio-Somoza
and Weigel, 2011; Tarver et al., 2013). In plants, miRNAs are
produced from MIR genes primarily located in intergenic regions
of genes that do not code for proteins. Conversely, the introns of
protein-coding genes contain fewer MIR genes (Yang et al., 2012;
Zhan and Meyers, 2023). These genes are transcribed by DNA-
dependent RNA polymerase II (Pol II) into primary miRNAs (pri-
miRNAs). Pri-miRNAs are single-stranded and polyadenylated
RNA molecules. Their self-complementary nature allows them
to fold into hairpin-like structures. These structures are then
recognized and cleaved by the enzyme Dicer-like 1 to produce
mature miRNA/miRNA duplexes (Reinhart et al., 2002; Zhan and
Meyers, 2023). The mature miRNA duplex consists of the active
miRNA strand, called the guide strand, and the complementary
miRNA∗ strand, called the passenger strand (Liu et al., 2017).
After methylation, both strands are transported to the cytoplasm
where they integrate into the RNA-induced silencing complex
(RISC). This complex is a ribonucleoprotein assembly comprising
argonaute (AGO) proteins and small RNAs. Once integrated, the
miRNA guides the RISC to either degrade the mRNA of the target
gene or inhibit its translation, thus regulating gene expression
(Voinnet, 2009; Zhan and Meyers, 2023). Typically, plant miRNAs
are 21-nt long, although some are 20–22 nt long, with 23- or 24-
nt miRNAs being less common (Chávez Montes et al., 2014; Axtell
and Meyers, 2018).
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FIGURE 1

Schematic model of defense and attack strategies deployed during plant pathogen interactions. Plants activate their defense mechanisms in
response to the detection of PAMPs and/or effectors from pests and pathogens by PRR proteins in plants. This recognition leads to the
reprogramming of transcriptional regulation in defense gene and plant hormonal responses. Certain effectors bind to target genes or proteins,
either inducing or reducing their expression or activity. Abbreviations: PAMPs, Pathogen-Associated Molecular Patterns; PRR, Pattern Recognition
Receptors; R gene, Resistance gene; S gene, Susceptibility gene; RBOHD, Respiratory Burst Oxidase Homologue D; PR, Pathogenesis-Related;
MAPK, Mitogen Activated Protein Kinases; HR, Hypersensitive Response; PCD, Programmed Cell Death; TF, Transcriptional Factor; ROS, Reactive
Oxygen Species.

3.2 The role of plant miRNAs in plant
growth and development and their
regulatory mechanisms

Plant miRNAs play essential roles in various aspects of plant
growth and development, including organ morphogenesis,
hormone function, signal transduction, and response to
environmental stimuli (Figure 2; Zhao et al., 2019). There are
two primary mechanisms through which miRNAs function in
plants. The first mechanism is similar to that of siRNAs, where
plant miRNAs are complementary to their target mRNAs; the
5′- untranslated region (UTR) of miRNAs interact with the open
reading frame of the target mRNA. This interaction results in
the cleavage and degradation of the target mRNA, preventing it
from being translated. This mode of action is common in plants
(Bartel, 2009; Khraiwesh et al., 2012; Hou and Zhao, 2013). The
second mechanism involves miRNAs binding imperfectly to their
target mRNAs and affecting translation, rather than transcription
(Bushati and Cohen, 2007). In this process, miRNAs attach to
the 3′-untranslated region (UTR) of the target mRNA. This
binding either alters ribosome density on the mRNA or promotes
degradation of the newly synthesized polypeptide chain, thereby
inhibiting mRNA translation (Chen, 2004; Liu et al., 2022).

A subset of miRNAs, known as intronic miRNAs, are present
within the introns of genes they regulate, playing a significant
role in modulating gene expression (Figure 3; Kim et al., 2015).
The expression patterns of most intronic miRNAs align with those
of their corresponding target genes. These intronic miRNAs can
affect the expression of their target genes by affecting upstream
transcriptional mechanisms. For example, they may downregulate
transcriptional suppressors, thereby enhancing the expression of
host genes (Lutter et al., 2010). In addition, some plant miRNAs
can enhance the expression of target genes by binding to specific
regulatory elements or proteins, which then adjust gene expression
to cope with growth demands and environmental stresses (Jin et al.,
2012; Zhao M. et al., 2015).

4 MiRNAs boost plant defense
against phyto-pathogen

MiRNAs and effector proteins play a pivotal role in
regulating and suppressing immunity in the interaction
between plants and pathogenic microorganisms. In plants,
miRNAs regulate the expression of immune receptor R genes
through a mechanism known as RNA interference, helping
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to maintain a delicate balance between growth and defense.
For instance, without pathogen infection, persistent high
expression of the R protein could inadvertently trigger an

FIGURE 2

Roles of some miRNAs in plant life.

autoimmune response, potentially inhibiting normal plant
development. Consequently, a reverse regulatory mechanism
involving miRNAs controls the expression of R genes to sustain
background immune activity at an optimal level (Zhao and Guo,
2019; Cui et al., 2020). When soil-borne pathogens infect
plants, miRNAs can be transported into fungal cells and
play a trans-boundary disease resistance role. This suggests
that miRNAs not only play a role within plant cells, but
may also play a key role in the interaction between plants
and pathogens (Zhao and Guo, 2019). Plant miRNAs not
only function within plant cells, but can also be transported
into bacterial cells, where they play a role in cross-kingdom
RNA silencing. This trans-kingdom regulation represents
an important signaling mechanism in the rapid response of
plant-microbial interactions (Salvador-Guirao et al., 2018;
Wang Z. et al., 2018).

Host-induced gene silencing (HIGS) is a technique based on
RNA interference (RNAi) in plants in which sRNAs produced
by the host plant are used to target the genetic material of
intruders. This method has been successfully used to enhance
plant resistance to various pathogens (Govindarajulu et al., 2015).
In transgenic crops, artificial miRNAs (amiRNAs) have been
effectively used to suppress gene expression in pests (such as
aphids) and filamentous pathogens (such as oomycetes), amiRNA-
mediated targeting represents a promising approach for increasing

FIGURE 3

Schematic diagram of the regulatory role of miRNA in plant pathogen defense. The miRNA biogenesis and miRNA strand is incorporated into a
member of the AGO protein family to form miRNA-induced silencing complex. By base-pairing, miRNA guides RISC to cleave target mRNA or
repress target mRNA translation, and regulate other key processes. Abbreviations: PAMPs, pathogen associated molecular patterns; DCL, Dicer-like;
AGO, argonaute; HYL1, hyponastic leaves 1; SE, serrate; HEN1, hua enhancer 1; RISC, RNAi-induced silencing complex.
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the effectiveness of HIGS (Zand and Innes, 2022). Specifically,
the targeted use of amiRNAs against three soybean cyst nematode
genes—J15, J20, and J23—resulted in reduced gene expression
within nematode eggs in populations feeding on transgenic hairy
roots (Tian et al., 2016). In another study, gene silencing in
Helicoverpa armigera was achieved by introducing an amiRNA
construct, derived from an insect miRNA precursor gene, into
Nicotiana benthamiana plants. Despite the minimal processing of
the altered amiRNA precursor by the plant’s Dicer-like enzymes,
the ingestion of transgenic leaves by H. armigera effectively
suppressed the target genes, leading to increased mortality and
developmental irregularities in the insects (Bally et al., 2020).
Insects, such as aphids, can absorb long double-stranded RNAs
(dsRNAs) and hairpin RNAs, with miRNAs and siRNAs also
capable of inducing gene silencing in these organisms. Notably,
the gene silencing effects of amiRNAs derived from plant
miRNA precursors and siRNAs generated from the expression
of long dsRNAs can persist across multiple parthenogenetic
generations in aphids (Sitobion avenae), continuing even after
they return to feeding on nontransgenic plants (Pitino et al.,
2011; Guo et al., 2014; Abdellatef et al., 2015; Zand and
Innes, 2022). These findings highlight that HIGS, through the
use of amiRNAs, not only boosts plant resistance to pests
but may also produce lasting effects on pest reproduction and
development by inducing gene silencing in both plants and
insects.

5 MiRNAs act as regulators of gene
expression in response to pathogen

The conserved canonical target genes of several dozen miRNA
families are not directly involved in plant immunity. Instead, these
genes regulate other critical processes, including development,
hormone signaling, and nutritional homeostasis (Figure 3; Zhang
et al., 2006; Jones-Rhoades, 2012; Asadi and Millar, 2024).

MiR156 of the miRNA family affects plant development
and disease resistance by targeting SBP/SPL transcription factors
(Poethig, 2013). Although manipulating the miR156-SPL pathway
can enhance disease resistance in plants, it may have negative
impacts on plant growth and yield. For example, in rice, reducing
miR156 activity boosts resistance to a bacterial pathogen but at
the cost of reduced yield. However, this trade-off can be mitigated
by expressing an SPL homolog (ideal plant architecture1) under a
pathogen-inducible promoter, which improves both resistance and
yield (Liu et al., 2019).

MiR168 triggers cleavage of AGO1 mRNA by binding to the 3′

UTR of AGO1 mRNA, thereby reducing AGO1 protein synthesis
(Vaucheret et al., 2006). In rice, miR168 silencing was reported to
enhance yield, alter flowering time, and increase plant resistance
to the rice blast fungus Magnaporthe oryzae (Wang et al., 2021).
Genetic studies have indicated that the antiviral function of another
AGO protein, AGO18, relies on its ability to sequester miR168,
thereby reducing the repression of AGO1, which is crucial for
antiviral RNAi (Wu et al., 2015).

MiR164 targets a family of genes encoding NAC transcription
factors, which are involved in numerous biological processes
(Sieber et al., 2007). In Arabidopsis, an miR164-regulated NAC has

been suggested to promote programmed cell death, associated with
the hypersensitive response, a plant’s localized defense mechanism
(Lee et al., 2017). However, in rice, overexpression of miR164
suppressed immunity against the rice blast fungus M. oryzae (Wang
Z. et al., 2018). The role of numerous miRNAs in plant defense
response against pathogens has been documented (Table 1). The
interaction between rice and M. oryzae has been most widely
investigated. In addition to miR164 and miR168, other miRNAs
including miR160, miR167, miR319, and miR398 have been
reported to play a role in rice plants’ immune response to M. oryzae
(Li et al., 2014; Zhang et al., 2018; Zhao et al., 2019). While
miR167 and miR319 act as negative regulators of the immune
response, miR160 and miR398 function as positive regulators,
enhancing the plant’s ability to defend against pathogen invasion
(Asadi and Millar, 2024).

MiR319 plays a crucial role in biological stress
responses. In tomatoes, miR319 targets the gene TEOSINTE
BRANCHED/CYCLOIDEA/PCF 4 (TCP4), which is involved in
the plant’s resistance to root-knot nematodes. This interaction
affects the expression of genes related to JA synthesis and alters
the levels of endogenous JA in leaves (Zhao W. et al., 2015). In
rice, the expression of miR319 can be specifically induced by an
infection with Aspergillus oryzae, leading to the suppression of its
target gene, OsTCP21. When rice plants overexpressing miR319b
(miR319b-OE) are infected with A. oryzae, this overexpression
results in the inhibition of key enzymes involved in JA synthesis,
such as lipoxygenases 2 and 5, which impact the plant’s defense
mechanisms (Zhang et al., 2018).

Plants have developed various strategies to defend against
microbial pathogens, with many miRNAs specifically targeting
resistance-related nucleotide-binding site-leucine-rich repeat
(NBS-LRR) genes, which are crucial for pathogen recognition
and defense response (Park and Shin, 2015). MiRNAs regulate
the NBS-LRR gene family by targeting their conserved domains.
For example, a recent study indicated that miR482 limits the
defense capabilities of potato plants by suppressing NBS-LRR
genes in response to Verticillium dahliae invasion (Yang et al.,
2015). Similarly, in cotton plants, reduced levels of miR482
correlate with increased NBS-LRR transcript abundance, leading
to enhanced resistance against V. dahliae (Zhu et al., 2013). In
poplar, miR472a plays a critical role in defense against the fungi
Colletotrichum gloeosporioides and Cytospora chrysosperma by
targeting NBS-LRR transcripts, the Arabidopsis miR472-RDR6
silencing pathway modulates PAMP- and effector-triggered
immunity through the post-transcriptional control of disease
resistance genes (Zhou et al., 2014; Su et al., 2018). In tomato
plants, infection by Pseudomonas syringae suppresses miR482,
which in turn triggers the activation of R genes, thereby boosting
the plants’ defense against the pathogen (Shivaprasad et al.,
2012). These results suggest the role of conserved target genes
of the miRNA family in other key processes beyond plant
immunity, such as development, hormone signaling, and
nutritional homeostasis. miRNAs such as miR156, miR168,
and miR164 influence plant development and disease resistance
by targeting specific transcription factors, and these miRNAs play
a role as positive or negative regulators of the plant’s immune
response.
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TABLE 1 Characteristics of miRNAs against various pathogens.

miRNA Target Function Related function against pathogenic
bacteria

Reference(s)

miR156 SPL2, SPL3, and SPL10 Transcription factor miR156/SPL9 regulates the accumulation of reactive
oxygen species and the immune response, enhancing
resistance of rice plants to brown planthopper through the
silencing of miR156.

Mao et al., 2017
Ge et al., 2018
Yin et al., 2019

miR160 ARF10 Signaling transduction Antagonizes the crosstalk between SA-mediated pathogen
defense pathways and auxin-mediated growth processes.

Natarajan et al., 2018

miR164 NAC1 Auxin signaling and
root development

NAC4 promotes pathogen-induced cell death under
negative regulation by miR164.

Lee et al., 2017
Zeng et al., 2022

miR167 ARF8 Signaling transduction Play crucial roles in regulating perception and signaling of
auxin.

Ulmasov et al., 1999
Jeyaraj et al., 2019

miR168 AGO1 siRNA biogenesis Targets ARGONAUTE1 and confers resistance against
Botryosphaeria dothidea infection by altering defense
responses.

Yu et al., 2017

miR390 ARF siRNA biogenesis Regulates Nicotiana attenuata’s response to Manduca sexta
herbivory; modulates anthracnose resistance in apple.

Pradhan et al., 2021
Shi et al., 2022

miR319 TCP GA signal transduction The miR319/TCP4 module affects the expression of genes
involved in the synthesis of JA and the endogenous JA
concentration in leaves, thus playing a role in resistance to
root-knot nematodes.

Zhao W. et al., 2015

miR393 TIR1/F-box AFB Hormone response
and others

Plays a role in the response of Arabidopsis to bacterial
pathogens via recognition of pathogen-associated
molecular patterns. It aids in pathogen resistance by
downregulating the transcripts of auxin receptor genes.

Navarro et al., 2006;
Wong et al., 2014

miR394 LCR JA synthesis pathway Negatively regulates the resistance of Arabidopsis to
B. cinerea infection by targeting leaf curling responsiveness;
it is also involved in the process of plant resistance to
Sclerotinia sclerotiorum infection.

Tian et al., 2018
Zhang et al., 2021

miR398 CSD1, CSD2, CDS3,
and CCS

Participates in an inverse regulatory mode against bacterial
and fungal pathogens, and it may also be involved in the
defense mechanism of plants against Verticillium dahliae
infection.

Yang et al., 2021
Mei et al., 2022

miR472 NBS-LRR Transgenic plants overexpressing miR472 exhibited higher
susceptibility to Pst DC3000. However, knockdown of
miR472 increased the resistance of plants to this pathogen,
contributing to pathogen-associated molecular PTI in
plants.

Navarro et al., 2006
Zhou et al., 2014
Jiang et al., 2020

miR528 Accumulation of
reactive oxygen species

AO Negatively regulates viral resistance in rice. Transcriptional
regulation of miR528 by OsSPL9 orchestrates antiviral
response in rice.

Wu et al., 2017
Yao et al., 2019

miR773 MIM773/MET2 Acts as a negative PTI regulator against bacterial pathogens. Li et al., 2010

6 MiRNA regulates hormone
homeostasis in response to
pathogen infection

Various plant hormones, such as auxins, salicylic acid (SA),
JA, and ethylene, regulate defense responses triggered by pathogen
invasion. Although auxin promotes plant development and
provides carbon and nitrogen, it can enhance the pathogenic
potential of biotrophic pathogens by suppressing SA-mediated
defense mechanisms. However, miRNAs play a crucial role in
mediating these responses (Figure 3; Zhang et al., 2011; Kulshrestha
et al., 2020; Šečić et al., 2021). MiR393 was the first miRNA
identified to be regulated under biotic stress, where a modified
rapid amplification of cDNA ends assay confirmed that it cleaves

the auxin receptors transport inhibitor response 1 (TIR1) and
auxin signaling F-Box (AFB) proteins (Navarro et al., 2006). The
expression of miR393 is triggered by flg22, a molecular pattern
derived from bacteria, leading to the RNA-mediated inhibition
of TIR1/AFB proteins and regulation of auxin signaling (Navarro
et al., 2006). This expression usually correlates positively with
disease resistance, as evidenced by increased resistance through
overexpression and enhanced susceptibility when miR393 is
suppressed (Robert-Seilaniantz et al., 2011; Asadi and Millar,
2024). MiR393 also affects the production of tryptophan-derived
secondary metabolites, such as indole-3-acetic acid, camalexin
(CL), and indole glucosinolates (IG). Both CL and IG have
antimicrobial properties; CL aids in defense against necrotrophic
fungi by disrupting their cell membranes, whereas IG is effective
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against insects, biotrophic pathogens, and bacteria (Sugawara
et al., 2009; Zhao et al., 2002; Robert-Seilaniantz et al., 2011).
Similarly, miR160 and miR167, which target auxin response factors
(ARFs), regulate the auxin signaling pathway (Ulmasov et al.,
1999). MiR160 plays a pivotal role in local defense and systemic
acquired resistance during interactions with Phytophthora infestans
by regulating the crosstalk between auxin and SA pathways
through its target StARF10, affecting the plant’s defense response
(Natarajan et al., 2018). A study reported that miR160 and
miR167 that target ARFs were both induced by all of the three
Pseudomonas syringae pv. tomato (Pst) strains at 6 h post infection
(hpi). Possibly, miR160, miR167, or miR390/TAS3-derived trans-
acting siRNAs (tasiRNAs) can regulate over 30% of the 23 ARFs
found in Arabidopsis, which function as positive or negative
regulators of auxin signaling. Additionally, studies have reported
that miR393, which targets the auxin receptors TIR1, AFB2,
and AFB3, was differentially regulated by Pst DC3000 (EV), Pst
DC3000 hrcC and Pst DC3000 (avrRpt2) (Guilfoyle and Hagen,
2007; Zhang et al., 2011). MiR319a/TCP plays a role in GA
signal transduction and trichome formation in Populus tomentosa.
Overexpression of miR319a leads to decreased levels of the targeted
TCP transcription factors, significantly increasing leaf hair density
in P. tomentosa and effectively reducing damage caused by insects
(Fan et al., 2020).

In tomato plants, miR394 is involved in the negative regulation
of the biological stress response. Overexpression of miR394 led to
the inhibition of its target gene, leaf curling responsiveness (LCR),
which, in turn, suppressed the expression of genes involved in
JA synthesis. These results indicated that miR394 overexpression
reduces the tomato plants’ resistance to P. infestans (Tian et al.,
2018; Zhang et al., 2021). In Arabidopsis infected with Botrytis
cinerea, an increase in miR394 level was observed, resulting
in the decreased expression of LCR (Jin and Wu, 2015). In
Brassica napus, miR394 is predicted to play a role in defense
against Sclerotinia sclerotiorum infection by interacting with the
JA signaling pathway (Joshi et al., 2016). Similarly, in garlic
plants infected by Fusarium oxysporum f. sp. cepae, the expression
of miR394 showed an increasing trend and disrupted the JA-
dependent defense mechanism by directly affecting LCR (Chand
et al., 2016).

When rice plants are infected by viruses, the expression
of miR528 is suppressed, which leads to increased activity
of its target gene, L-ascorbate oxidase (AO), reducing the
accumulation of AO-mediated reactive oxygen species (ROS), a
critical component of the plant’s defense response (Wu et al.,
2017). Additionally, the miR528-AO defense pathway is regulated
by SPL9, which activates miR528 gene expression by binding
to specific motifs in its promoter region (Yao et al., 2019).
In Arabidopsis, miR773, a non-conserved miRNA, acts as a
suppressor of defense responses by targeting methyltransferase
2 (MET2), a DNA methyltransferase involved in epigenetic
regulation (Salvador-Guirao et al., 2018). Inhibiting miR773
activity using target mimics (MIM773) resulted in increased
MET2 expression, thereby enhancing the plant’s immunity against
fungal pathogens. This enhanced immune response involves
multiple signaling pathways, including those of ethylene, JA, and
SA, and is characterized by increased callose deposition and
ROS production upon pathogen invasion (Pieterse et al., 2012;
Salvador-Guirao et al., 2018).

7 Perspectives

Pathogens are a persistent threat to global crop production.
MiRNAs are indispensable not only to plant growth, development,
nutrition, stress response, and hormone signaling pathways but
also in plant defense against pathogens (Yang et al., 2021). These
small noncoding RNAs, typically 20 to 25 nucleotides in length,
are abundant in numerous plant species and play significant
roles in posttranscriptional regulation of gene expression. This
regulation impacts plant growth, development, stress responses,
and hormone signaling pathways (Song et al., 2019). Plants interact
with microorganisms in ways that can be either beneficial or
harmful. To combat pathogens, plants have developed a range
of defense strategies, including structural and chemical defenses,
hypersensitivity, and systemically acquired resistance. MiRNAs
are integral to these responses, particularly in regulating plant
hormone homeostasis during pathogen attacks. Hormones such
as auxin, SA, JA, and ethylene are key players in plant defense
mechanisms activated by pathogens (Asadi and Millar, 2024).
MiRNAs modulate the plant’s defense responses by regulating
critical elements within the hormone signaling pathways. Given
their complex and diverse roles in plant defenses, further
investigations into the role of miRNAs in plant–pathogen
interactions are vital. Understanding how miRNAs control plant
defense mechanisms can lead to new strategies for breeding disease-
resistant plants and enhancing crop yields.

8 Conclusion

This review delves into the critical role of miRNAs in the
regulation of plant disease resistance genes. miRNAs, small non-
coding RNAs approximately 20–25 nucleotides in length, are
part of the post-transcriptional regulation of gene expression
that affects a variety of biological processes, including plant
growth, development, stress responses, and hormone signaling
pathways. This review highlights the adaptive response of plants
to pathogen invasions, where miRNAs are involved in activating
or suppressing the transcription of target genes that regulate
the host plant’s defense mechanisms. It discusses the mutually
beneficial relationship in symbiotic interactions between plants
and microbes, as well as the array of defense mechanisms that
plants have evolved, such as structural barriers, chemical defenses,
hypersensitive responses, and systemic acquired resistance (SAR).
During pathogen invasion, plant cells recognize the presence of
the invader through specialized receptors, triggering a complex
signaling cascade. MiRNAs contribute to this process by precisely
controlling the levels of key regulatory proteins, ensuring a
coordinated and effective defense response. For instance, miRNAs
have been shown to regulate the homeostasis of plant hormones,
such as JA, SA, and ethylene, which are crucial players in the defense
against pathogens. By modulating the expression of genes involved
in hormone biosynthesis, perception, and signaling, miRNAs help
plants to maintain the delicate balance of these defense-related
phytohormones. Furthermore, miRNAs can target transcription
factors and other regulatory proteins, further integrating the
defense response at the transcriptional and post-transcriptional
levels. This multilayered regulation allows plants to mount
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a robust and adaptable defense against a diverse range of pathogens.
In summary, miRNAs are essential regulators of plant defense
responses, with a particular focus on maintaining hormone
homeostasis during pathogen attacks. Understanding the intricate
role of these small RNA molecules in plant immunity can provide
valuable insights for developing improved disease-resistant crop
varieties and enhancing sustainable agriculture.

It is essential for future studies to thoroughly investigate the
role of miRNAs in the evolutionary struggle between hosts and
the pathogens that attack them. For example, the mechanisms by
which fungal pathogens release and transport small RNA effectors
to plant hosts, along with the corresponding secretion of sRNAs
by the host to trigger cross-kingdom gene silencing, are not
yet fully understood. Opportunities for the development of new
strategies and technologies aimed at enhancing pathogen resistance
in crops are also being presented by miRNAs and their targets. For
instance, recent advancements in genome editing techniques are
being leveraged to genetically engineer miRNAs and their targets,
enabling the development of pathogen-resistant crops. This trend
is anticipated to continue expanding in the future. In particular,
the CRISPR/Cas9 system could be employed to induce mutations
in miRNAs that negatively regulate plant resistance mechanisms.
This approach would allow for the disruption of miRNA-mediated
suppression of plant defense pathways, potentially enhancing the
plant’s ability to withstand various biotic stresses. Undoubtedly,
the identification of additional miRNA-target modules will make
miRNAs a focus of resistance breeding in crops and trees in the
future. Furthermore, the application of novel genome editing tools
will also contribute to the focus on miRNAs in resistance breeding
(Tang and Chu, 2017; Yang et al., 2021).
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