
Frontiers in Microbiology 01 frontiersin.org

Gut microbiota, plasma 
metabolites, and osteoporosis: 
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Objective: Osteoporosis, characterized by reduced bone density and heightened 
fracture risk, is influenced by genetic and environmental factors. This study 
investigates the interplay between gut microbiota, plasma metabolomics, and 
osteoporosis, identifying potential causal relationships mediated by plasma 
metabolites.

Methods: Utilizing aggregated genome-wide association studies (GWAS) data, 
a comprehensive two-sample Mendelian Randomization (MR) analysis was 
performed involving 196 gut microbiota taxa, 1,400 plasma metabolites, and 
osteoporosis indicators. Causal relationships between gut microbiota, plasma 
metabolites, and osteoporosis were explored.

Results: The MR analyses revealed ten gut microbiota taxa associated with 
osteoporosis, with five taxa positively linked to increased risk and five negatively 
associated. Additionally, 96 plasma metabolites exhibited potential causal 
relationships with osteoporosis, with 49 showing positive associations and 
47 displaying negative associations. Mediation analyses identified six causal 
pathways connecting gut microbiota to osteoporosis through ten mediating 
relationships involving seven distinct plasma metabolites, two of which 
demonstrated suppression effects.

Conclusion: This study provides suggestive evidence of genetic correlations 
and causal links between gut microbiota, plasma metabolites, and osteoporosis. 
The findings underscore the complex, multifactorial nature of osteoporosis 
and suggest the potential of gut microbiota and plasma metabolite profiles as 
biomarkers or therapeutic targets in the management of osteoporosis.
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1 Introduction

Osteoporosis (OP) represents a systemic skeletal disorder that disproportionately affects 
postmenopausal women (Compston et al., 2019). This disease manifests through diminished 
bone mass and deterioration of bone microarchitecture, precipitating increased skeletal 
fragility and susceptibility to fractures (Ensrud and Crandall, 2017). Coinciding with the 
demographic shift towards an older global population, the incidence and prevalence of OP are 
escalating. These trends are having profound consequences for patient health, exerting 
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extensive strain on healthcare infrastructures, and presenting 
formidable challenges to public health (Sambrook and Cooper, 2006; 
Rachner et al., 2011). In the United States alone, the economic burden 
of osteoporosis reached approximately $57 billion in 2018, with 
projections suggesting a potential doubling of this cost by 2040 
(Pinheiro et al., 2020). Consequently, elucidating the etiology of OP, 
as well as advancing its prevention and therapeutic modalities, has 
garnered considerable focus as a critical aspect of health care for the 
middle-aged and elderly populations.

Recent studies have highlighted the significant role of the human 
gut microbiota (GM) in various physiological processes. The human 
GM comprises of approximately 100 trillion microbial cells, 
encompassing an estimated 3.3 million microbial genes (Qin et al., 
2010). This complex community has undergone co-evolution with its 
host and is pivotal in sustaining the host’s health (Bäckhed et al., 2005; 
Round and Mazmanian, 2009; Brestoff and Artis, 2013). A wealth of 
both basic and clinical research has established an association between 
GM and the processes governing bone metabolism, as well as the 
maintenance of bone density (Sjögren et  al., 2012; Ohlsson and 
Sjogren, 2015; Das et al., 2019; Li et al., 2019). Imbalances in GM have 
been linked to a variety of diseases, including OP (Shandilya et al., 
2022). The notion of a gut-bone axis is gaining traction within the 
scientific community as an area of considerable interest, underscored 
by the burgeoning body of research being undertaken (He and Chen, 
2022). However, the pathogenesis of OP is acknowledged to 
be  complex and multifactorial. Contributing elements include 
autophagy dysfunction, imbalances in iron metabolism, the inherent 
processes of aging, stress factors, and perturbations in GM (Cizza 
et al., 2009; Tsay et al., 2010; Chen et al., 2017; Xu et al., 2017; Li et al., 
2020). These factors interact within a highly intricate network, 
ultimately influencing the cascade of pathological events characteristic 
of OP (Song et al., 2022).

Metabolites, small molecules that represent intermediate or end 
products of metabolic processes, are subject to fluctuations influenced 
by a range of factors. These include genetic predispositions, dietary 
habits, lifestyle choices, the composition of GM, and the presence of 
disease states (Bar et al., 2020; Pietzner et al., 2021). Consequently, 
metabolites have the potential to modulate disease risk and serve as 
critical targets for therapeutic interventions (Wishart, 2016). Previous 
investigations have delineated the relationships between blood 
metabolites and bone mineral density (BMD). For instance, one study 
pinpointed 10 blood metabolites that may influence femoral neck 
BMD (Meng et al., 2018). Subsequently, another analysis revealed 
eight blood metabolites with a significant impact on hip BMD (Liu 
et  al., 2018), while a more recent study identified 13 plasma 
metabolites that markedly affect heel BMD (Chen et  al., 2023). 
Consequently, integrating analysis of blood metabolites with GM 
studies could be instrumental in identifying biomarkers and precise 
intervention targets for OP. With the rapid advancements in genomics, 
metabolomics, and macro-genomics of GM, there is a substantial 
opportunity to achieve the aforementioned objectives.

Although observational studies have identified associations 
between GM, blood metabolites, and OP, the potential for residual 
confounders and reverse causation cannot be discounted. Clinical 
randomized controlled trials (RCTs) represent the gold standard to 
validate these findings; however, such approaches are often 
hampered by the high costs involved and ethical considerations, 
making their implementation challenging (Zabor et  al., 2020). 

Mendelian randomization (MR) is an analytical method that 
employs genetic variants as instruments to simulate the conditions 
of an RCT, thereby facilitating the inference of causal relationships 
between risk factors and diseases. This approach mitigates the 
impact of confounding variables and reverses causation (Skrivankova 
et al., 2021). Now that large-scale genome-wide association studies 
(GWAS) data on GM, blood metabolites, and OP are publicly 
available (Visscher et  al., 2017), these resources afford a unique 
opportunity to explore the causal relationships between these 
variables using MR. Few studies have employed MR methods to 
explore the causal relationship between GM and OP (Tu et al., 2021). 
While numerous studies have utilized MR to investigate the 
connection between blood metabolites and BMD (Liu et al., 2018; 
Meng et al., 2018; Yu et al., 2022; Chen et al., 2023; Chen and He, 
2023), research focusing specifically on the OP phenotype is scant. 
Moreover, comprehensive investigations into the associations among 
GM, blood metabolites, and OP remain limited.

In this study, we conducted a comprehensive MR analysis to 
investigate the causal relationships between GM, the plasma 
metabolites, and OP. We  further examined whether the plasma 
metabolites serve as a mediator in the pathway from GM to 
OP. Additionally, through reverse MR analysis, we assessed whether 
genetic predispositions to OP could influence GM and 
plasma metabolites.

2 Materials and methods

2.1 Study design

The study design is illustrated in Figure 1 (by Figdraw). Initially, 
we accessed published GWAS summary data encompassing traits such 
as gut microbiota, plasma metabolites, and osteoporosis. Subsequently, 
two-sample MR analyses were employed to assess the causal 
relationships among these variables. Finally, two-step and 
multivariable MR (MVMR) analyses were utilized to explore the 
mediating effects of plasma metabolites on the association between 
gut microbiota and osteoporosis.

2.2 Data sources

Gut microbiota data analyzed in this study were sourced from the 
MiBioGen consortium, which curated and examined genome-wide 
genotypes alongside 16S rRNA fecal microbiome profiles from a 
cohort of 18,340 individuals distributed across 24 distinct cohorts. 
These data are accessible via.1 The comprehensive dataset encompasses 
211 gut microbial taxa, broken down into 131 genera, 35 families, 20 
orders, 16 classes, and 9 phyla (Kurilshikov et al., 2021). Among these, 
15 taxa belonging to unidentified families or genera were excluded 
from the dataset. Consequently, the dataset for MR analysis was 
narrowed down to 196 taxa. GWAS data pertinent to plasma 
metabolites were sourced from the GWAS Catalog, with specific study 
IDs ranging from GCST90199621 to GCST90201020, and are 

1 http://www.mibiogen.org/
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accessible at: https://www.ebi.ac.uk/gwas/downloads/summary-
statistics. The dataset includes data on 1,091 blood metabolites and 
309 metabolite ratios. The chemical properties of metabolites denoted 
with ‘X-’ remain unknown. This dataset is derived from 8,299 samples, 
and it encompasses approximately 150,000 single nucleotide 
polymorphism (SNP) sites (Chen et al., 2023). The GWAS summary 
data for osteoporosis were sourced from the tenth release of the 
FinnGen consortium, accessible at: https://r10.risteys.finngen.fi/ 
(Kurki et al., 2023).

2.3 Instrumental variable selection

To accurately estimate causal effects using genetic instruments, 
three fundamental assumptions of instrumental variables (IVs) must 
be met: (1) IVs must be associated with the exposure factors; (2) IVs 
must not be linked to any confounding variables; and (3) IVs should 
influence the outcome variables solely through their impact on 
exposure factors (Bowden and Holmes, 2019). In this study, IVs were 
stringently screened under specific criteria to ensure validity: (1) 
We adopted a significance threshold of p < 1 × 10−5 for selecting SNPs 
associated with the GM. These SNPs were used as genetic 
instrumental variables, consistent with methodologies from prior gut 
microbiota MR studies (Sanna et  al., 2019), where p < 1 × 10−5 is 
established as the optimal threshold for identifying genetic predictors 

of gut microbial traits. Similarly, for plasma metabolites, a more 
stringent threshold of p < 5 × 10−8 was applied to select genetic 
predictive factors. (2) A clumping process was undertaken to mitigate 
linkage disequilibrium, selecting SNPs with r2 < 0.001 and distance of 
±10,000 kilobases (kb) (GM) (Myers et  al., 2020), and plasma 
metabolites selecting SNPs with r2 < 0.1 and distance of ±500 kb (Yang 
et al., 2020; Yu et al., 2022). (3) The strength of the selected SNPs was 
assessed via the F-statistic, and SNPs with an F-statistic <10 were 
excluded to minimize weak instrument bias in the MR analysis 
(Burgess and Thompson, 2011). (4) In cases where IVs were absent 
in the outcome dataset, proxies with r2 > 0.8 were incorporated. 
Additionally, to ensure that the effects of the selected SNPs on 
exposure and outcome correspond to the same alleles, palindromic 
SNPs were removed during the harmonization process.

3 Statistical analysis

3.1 Two-sample MR

Two-sample MR methods were used to assess the causal 
relationship between the GM, plasma metabolites, and 
OP. We  implemented a range of analytical techniques including 
inverse-variance weighted (IVW), MR-Egger (Burgess and Thompson, 
2017), weighted median (WM) (Bowden et al., 2016), simple mode, 

FIGURE 1

Study design overview. MR, Mendelian randomization; IVW, inverse-variance weighted; MVMR, multivariable Mendelian randomization.
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and weighted mode (Shardell and Ferrucci, 2016) approaches. The 
IVW method served as the primary analytical tool, with the Wald 
ratios test applied in cases where only one instrumental variable (IV) 
was available (Burgess et al., 2013). MR results were presented as odds 
ratios (ORs) with accompanying 95% confidence intervals (CIs). 
Statistical significance was established when the PIVW < 0.05, along with 
a consistent directional agreement among the IVW, MR-Egger, and 
WM results. Additionally, to address the potential increase in Type 
I error due to multiple comparisons, we applied the false discovery 
rate (FDR) correction employing the Benjamini-Hochberg procedure 
to the primary IVW results (Benjamini and Hochberg, 1995). A 
significance threshold was set at FDR < 0.1 for a significant association 
(Storey and Tibshirani, 2003). Conversely, a result with PIVW < 0.05, but 
FDR > 0.1 was considered to indicate a suggestive association.

3.2 Sensitivity analysis

We employed Cochran’s Q test to assess the heterogeneity across 
each SNP (Cohen et  al., 2015). To evaluate potential horizontal 
pleiotropy effects, we utilized both the MR-PRESSO global test and 
the MR-Egger intercept. MR-PRESSO was used to detect significant 
outliers and to correct the horizontal plural effect by removing outliers 
(Verbanck et al., 2018). Furthermore, a leave-one-out analysis was 
conducted to assess whether causality estimates were influenced by 
any single SNP (Hemani et al., 2018).

3.3 Reverse MR analysis

To investigate the causal effects of OP on GM and plasma 
metabolites (PIVW < 0.05), reverse MR analyses were conducted 
separately. For these analyses, SNPs associated with OP were utilized 
as IVs, with OP considered as the exposure, and both GM and plasma 
metabolites assessed as outcomes. The methodological framework for 
the reverse MR analyses mirrored that of the standard MR analyses.

3.4 Mediation analysis

Mediation analysis is employed to investigate the pathways 
through which exposure influences an outcome, thereby illuminating 
potential underlying mechanisms (Carter et al., 2021). In this study, 
the mediation analysis focused on exploring how osteoporosis-
associated changes in GM and plasma metabolites interrelate. Initially, 
a two-sample MR approach was applied to assess the causal 
relationships between GM and OP, resulting in a calculation of the 
total effect represented by coefficient β. Subsequently, to further 
investigate the role of plasma metabolites as potential mediators in the 
effects of GM on OP, a two-step MR approach was employed. This 
analysis involved examining the causal relationship between plasma 
metabolites and OP, as well as the causal relationship between GM and 
plasma metabolites, the latter providing the regression coefficient (β1). 
In the third phase, MVMR was utilized to discern which plasma 
metabolites maintained a causal relationship with OP, independent of 
the effects attributed to GM. This analysis yielded coefficient β2. To 
quantify the mediating effect, we applied a two-step MR methodology, 
where the mediating effect was defined as β1 × β2. Finally, the mediator 

ratio was calculated with the formula: mediator ratio = (β1 × β2 / 
β) × 100%, providing a percentage that represents the proportion of 
the total effect mediated by the identified pathways.

All statistical analyses were performed using the “TwoSampleMR” 
package (Hemani et al., 2018) and the “MR-PRESSO” package (Ong 
and MacGregor, 2019) in R version 4.3.2.

R code used for the data analysis is available in the 
Supplementary material.

4 Results

4.1 Instrumental variables

We selected valid instrumental variables from GWAS of the GM 
and plasma metabolites, applying the previously specified selection 
criteria. Detailed characteristics of these IVs are presented in 
Supplementary Tables S1, S2. All SNPs utilized in the analyses 
demonstrated an F-statistic greater than 10, ensuring sufficient 
statistical power and reducing the risk of weak instrument bias.

4.2 Causal effects of gut microbiota on 
osteoporosis

Employing a two-sample MR approach, we identified 10 suggestive 
associations between GM and OP (PIVW < 0.05, FDR > 0.1). Notably, the 
family Bifidobacteriaceae, genus Bifidobacterium, genus Eisenbergiella, 
order Bifidobacteriales, and phylum Cyanobacteria were positively 
associated with the risk of OP. Family Actinomycetaceae, genus Bilophila, 
genus Family XIII AD3011 group, genus Ruminococcaceae UCG014, and 
order Actinomycetales were reducing the risk of OP. Further details of 
these associations can be found in Figure 2 and Supplementary Table S3. 
Sensitivity analysis was conducted to confirm the robustness of the MR 
results, as detailed in Figure 3 and Table 1. Detailed data for the circular 
heat map are given in Supplementary Table S12. Cochran’s Q test was 
performed and revealed no significant heterogeneity among the 
instrumental variables used, underpinning the consistency of our 
findings. Furthermore, both MR-Egger regression and MR-PRESSO 
analyses indicated no evidence of horizontal pleiotropy, thereby 
supporting the validity of the causal inferences derived from our MR 
study. Detailed information on forest plots, scatter plots, funnel plots, and 
leave-one-out plots, utilized in the two-sample MR analysis exploring the 
effect of GM on OP, is presented in Supplementary Figures S1–S4. For 
the above-identified potential causal relationship between GM and OP, 
reverse MR analysis was conducted. This analysis did not identify a 
causal relationship in the reverse direction. Further details of this analysis 
are provided in Supplementary Table S4.

4.3 Causal effects of plasma metabolites on 
osteoporosis

As shown in Figure 4, according to the IVW method, the results 
showed 96 causal relationships between plasma metabolomics and OP 
(PIVW < 0.05). Notably, a significant positive causal relationship with OP 
was observed for X-24544 levels (OR = 1.094, 95% CI [1.055–1.134], 
p < 0.001, FDR < 0.1). Conversely, (S) − 3 − hydroxybutyrylcarnitine 
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FIGURE 2

Results of Mendelian randomization analysis of the gut microbiota associated with osteoporosis. IVW, inverse-variance weighted.
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levels were significantly negatively associated with OP (OR = 0.896, 95% 
CI [0.850–0.945], p < 0.001, FDR < 0.1). The other 94 plasma metabolites 
were all identified as suggestive associations with OP (PIVW < 0.05, 
FDR > 0.1). Detailed findings from the two-sample MR analysis of 
plasma metabolites and OP are presented in Supplementary Table S5. 
Furthermore, sensitivity analyses confirmed the absence of 
heterogeneity and horizontal pleiotropy in these findings, as detailed in 
Supplementary Tables S6, S7. Detailed information on the various 
visual analyses used in the two-sample MR study exploring the causal 
effects of plasma metabolites on OP is provided in the 
Supplementary material. This includes forest plots, scatter plots, funnel 
plots, and leave-one-out plots, respectively depicted in 

Supplementary Figures S5–S8. To assess the potential causal relationship 
between plasma metabolites and OP identified by forward MR, a 
reverse MR analysis was conducted. This analysis found no evidence of 
a causal relationship in the reverse direction. Detailed results from this 
reverse MR analysis are available in Supplementary Table S8.

4.4 Causal effects of gut microbiota on 
plasma metabolites

Following the two-step process described earlier, we identified sets 
of positive exposure IDs for both GM to OP and plasma metabolites 

FIGURE 3

Circular heat map depicting suggestive genetic correlations between gut microbes and osteoporosis. Each segment of the circle represents a specific 
microbe, and the color intensity indicates the strength of the genetic correlation with osteoporosis. Detailed annotations and the scale of correlation 
values are provided alongside the heat map.
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to OP. Subsequently, these sets were analyzed using two-sample MR 
to identify IDs that may act as mediators of the effect, with significant 
results (PIVW < 0.05). The corresponding results are detailed in 
Supplementary Tables S9, S10.

4.5 Mediation analysis results

To investigate the potential mechanisms behind the onset and 
progression of OP, we  conducted mediation analyses to delineate 
plasma metabolite-mediated causal pathways between GM and 
OP. Using the findings from our earlier analyses, we identified specific 
plasma metabolites that might serve as mediators. We then examined 
the direct effects of GM on OP, adjusting for these mediating plasma 
metabolites using MVMR, detailed in Supplementary Table S11. The 
analysis revealed that six GM taxa retained a significant direct effect 
on OP, even after considering the mediating effects of plasma 
metabolites. Additionally, our results uncovered 10 mediating 
relationships involving seven distinct plasma metabolites in the causal 
pathway from GM to OP. To evaluate the mediation effect, we applied 
the coefficient product method for our calculations. These calculations 
revealed that each of two unknown plasma metabolites mediated the 
effects of each of two distinct gut microbiota taxa. Additionally, one 
mediator was identified for each of the two gut microbiota taxa. 
Furthermore, two mediators were found to exert suppression effects 
on the relationships studied. Detailed results are presented in Table 2.

5 Discussion

In this extensive MR analysis, we identified ten gut microbiota 
taxa weakly associated with osteoporosis: five positively and five 
negatively. Additionally, 96 plasma metabolites were linked to 
osteoporosis: 48 had weak positive associations, 46 had weak negative 
associations, one had a strong positive association, and one had a 
strong negative association. Further mediation analyses revealed six 
causal pathways from GM to OP involving ten mediating relationships 
across seven distinct plasma metabolites, including two with 
inhibitory effects. These findings confirm the significant linkage 

between GM and OP and highlight the crucial mediating role of 
plasma metabolites, which may inform future therapeutic strategies. 
MR causality analysis involves several assumptions, including no 
pleiotropy and robust instruments, that minimize confounding 
factors. While our analyses for GM to OP, metabolites to OP, and GM 
to metabolites each adhere to these assumptions individually, their 
combined interpretation needs careful consideration. When 
combining the individual MRs to infer an overarching pathway from 
GM through metabolites to OP, we assume that the instruments for 
GM influence OP only through metabolites. While this approach 
enhances our understanding, it remains subject to potential 
unmeasured pleiotropy. Future studies should further validate these 
combined pathways.

Bone, a dynamic organ integral to the human systemic 
architecture, maintains its metabolic homeostasis in close association 
with GM (Quach and Britton, 2017; Duffuler et  al., 2024). The 
underlying molecular mechanisms implicated in OP encompass (Ding 
et al., 2020): (1) intestinal barrier and nutrient absorption (involving 
short-chain fatty acids). (2) Immune regulation (Th-17 and T-reg cells 
balance). (3) Regulation of the gut-brain axis (involving 
5-Hydroxytryptamine). Emerging evidence increasingly positions gut 
microbes as pivotal regulators of bone physiology (Ibáñez et al., 2019), 
suggesting substantial interplay between microbiological activity and 
bone health (Lyu et al., 2023). GM and its metabolites significantly 
influence bone metabolism, making them potential targets for 
osteoporosis prevention and treatment (Han et al., 2024; Zhang et al., 
2024). The application of metabolomics has gained substantial traction 
in the study of OP in humans over recent years. This analytical 
approach has enabled researchers to identify specific metabolites that 
are predictive of various aspects related to OP (Lau et al., 2023). These 
include forecasting the onset of the disease (Miyamoto et al., 2021), 
identifying low BMD in postmenopausal women (Miyamoto et al., 
2018), distinguishing between osteopenia and OP (Aleidi et al., 2021), 
enhancing the accuracy of fracture risk predictions (Zhang et  al., 
2021), and revealing the specific changes in the GM characteristic of 
each type of OP (Qiao et al., 2024). While numerous MR studies have 
been conducted to investigate the relationship between blood 
metabolites and BMD (Moayyeri et al., 2017; Liu et al., 2018; Zhang 
et al., 2021; Chen and He, 2023), there remains a limited number of 

TABLE 1 Sensitivity analysis of the gut microbiota taxa associated with osteoporosis.

Exposure(s) GWAS ID Heterogeneity test (IVW) MR-Egger intercept test MR-PRESSO 
global test

Cochran ‘s Q p-value Intercept p-value p-value

Family Actinomycetaceae ebi-a-GCST90016925 1.806 0.614 −0.010 0.729 0.687

Family Bifidobacteriaceae ebi-a-GCST90016929 14.398 0.156 −0.041 0.063 0.221

Genus Bifidobacterium ebi-a-GCST90016970 19.737 0.049 −0.020 0.309 0.078

Genus Bilophila ebi-a-GCST90016971 3.324 0.993 −0.010 0.738 0.991

Genus Eisenbergiella ebi-a-GCST90016991 4.613 0.916 −0.013 0.773 0.931

Genus family XIII AD3011 group ebi-a-GCST90017008 9.441 0.665 0.006 0.844 0.693

Genus Ruminococcaceae UCG014 ebi-a-GCST90017061 8.899 0.542 0.002 0.888 0.620

Order Actinomycetales ebi-a-GCST90017090 1.816 0.611 −0.010 0.727 0.705

Order Bifidobacteriales ebi-a-GCST90017093 14.398 0.156 −0.041 0.063 0.190

Phylum Cyanobacteria ebi-a-GCST90017112 6.075 0.531 0.004 0.906 0.570

GWAS, Genome-Wide Association Studies; IVW, Inverse variance weighted.
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FIGURE 4

Results of Mendelian randomization analysis of the plasma metabolites associated with osteoporosis. IVW, inverse-variance weighted.
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studies specifically targeting the phenotype of OP. This burgeoning 
field promises to unravel complex biochemical interactions and 
pathways influencing bone health, providing a deeper understanding 
and potentially new avenues for diagnosis and treatment.

The microbial fermentation of dietary fibers results in the 
production of short-chain fatty acids (SCFAs), which serve as critical 
modulators of osteoblast metabolism and overall bone mass (Lucas 
et al., 2018). Notably, SCFAs such as acetic, propionic, and butyric 
acids contribute to the preservation of bone mass (El-Saadony et al., 
2022). The protective mechanism of SCFAs entails the regulation of 
osteoclast differentiation and the inhibition of bone resorption, both 
in vitro and in vivo, while concurrently preserving bone formation. A 
previous study has demonstrated that increased levels of lactobacillus 
and bifidobacteria enhance the absorption of essential minerals—
including calcium, magnesium, and phosphorus—thereby potentially 
raising BMD (Rodrigues et al., 2012). Conversely, another previous 
study has identified a negative correlation between the presence of 
bifidobacteria and BMD (Xu et al., 2020). Our own study indicates that 
the genus Bifidobacterium, along with the associated family 
Bifidobacteriaceae and the order Bifidobacteriales, are positively 
correlated with an increased risk of osteoporosis, suggesting a 
promotive role in the disease’s pathogenesis. The variability in research 
outcomes can be  attributed to factors such as age, environmental 
conditions, and additional biologically relevant variables. Prior 
research showed that there was an age-related reduction of the genus 
Bifidobacterium, which is a bacterium that down-regulates 
pro-inflammatory responses in the gut (Odamaki et al., 2016). This 
observation sheds light on how disruptions in GM and inflammatory 
responses can influence disease processes in older populations. 
Furthermore, the expanding body of research on interspecies 

symbiosis indicates that issues might ensue when diverse genetically 
distinct organisms interact with a host, particularly under varying 
environmental conditions (Schluter and Foster, 2012). This 
phenomenon was observed in the case of Bifidobacterium populations, 
which were reported to be  effectively stimulated by a decrease in 
Enterobacteriaceae levels (Odamaki et  al., 2016). This observation 
underscores the possibility of establishing both positive and negative 
interactions among different gut bacterial species, enhancing our 
understanding of microbial dynamics within the gut ecosystem. One 
study showed a higher abundance of genus Eisenbergiella in patients 
with OP (Wei et  al., 2021). This is consistent with our findings. 
However, there are studies with opposite results, which may be related 
to the production of the metabolite butyrate (SCFA) (Amir et al., 
2014). Butyrate is known to influence the functionality of intestinal 
macrophages by inhibiting histone deacetylase (HDAC), which leads 
to the downregulation of pro-inflammatory factors including nitric 
oxide (NO), interleukin-6 (IL-6), and interleukin-12 (IL-12) (Chang 
et al., 2014). A recent study demonstrated that butyrate ameliorates 
OP by directly inhibiting osteoclast formation and bone resorption 
(Dong et al., 2024). The findings from our MR analysis indicate a 
positive correlation between the phylum Cyanobacteria and an 
increased risk of OP, potentially due to pro-inflammatory effects. 
Notably, the abundance of phylum Cyanobacteria is significantly 
elevated in patients with ankylosing spondylitis (AS), a condition also 
characterized by heightened concentrations of pro-inflammatory 
cytokines (Liu et al., 2022). This suggests that Cyanobacteria may play 
a contributory role in inflammatory processes that are pivotal in both 
AS and OP. We found that the plasma metabolite Linoleate (18:2n6) 
mediates the inhibitory effects of the phylum Cyanobacteria on the 
causal relationship between this phylum and OP. Although linoleate 

TABLE 2 Results of the mediation effect of the plasma metabolites between the gut microbiota and osteoporosis.

Gut microbiota 
taxa(GWAS ID)

Plasma metabolites (GWAS ID) Beta 95%CI SE p-value Mediation 
proportion

Family Actinomycetaceae

(ebi-a-GCST90016925)

X-18345 levels

(GCST90200556)

−0.03 −0.072, −0.002 0.018 0.010 11.9%

family Actinomycetaceae

(ebi-a-GCST90016925)

X-25343 levels

(GCST90200666)

−0.033 −0.08, −0.002 0.02 0.007 13.1%

genus Bilophila

(ebi-a-GCST90016971)

S-methylcysteine sulfoxide levels

(GCST90199907)

−0.022 −0.051, −0.001 0.013 0.001 12.64%

genus Eisenbergiella

(ebi-a-GCST90016991)

S-methylcysteine sulfoxide levels

(GCST90199907)

0.023 0.005, 0.047 0.011 0.006 15.54%

genus Family XIII AD3011 group

(ebi-a-GCST90017008)

3-(3-amino-3-carboxypropyl)uridine levels

(GCST90199766)

−0.039 −0.09, −0.002 0.023 0.036 22.29%

Genus family XIII AD3011 group

(ebi-a-GCST90017008)

5,6-dihydrouridine levels

(GCST90199767)

−0.022 −0.05, −0.003 0.012 0.016 12.57%

Genus family XIII AD3011 group

(ebi-a-GCST90017008)

(S)-3-hydroxybutyrylcarnitine levels

(GCST90200088)

0.02 0.001, 0.047 0.012 0.015 Suppression 

effect

Order Actinomycetales

(ebi-a-GCST90017090)

X-18345 levels

(GCST90200556)

−0.03 −0.072, −0.002 0.018 0.010 11.9%

Order Actinomycetales

(ebi-a-GCST90017090)

X-25343 levels

(GCST90200666)

−0.033 −0.08, −0.002 0.02 0.007 13.1%

Phylum Cyanobacteria

(ebi-a-GCST90017112)

Linoleate (18:2n6) levels

(GCST90200354)

−0.027 −0.065, 0 0.017 0.005 Suppression 

effect

GWAS, Genome-Wide Association Studies; CI, confidence interval.
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(18:2n6) is found to be negatively associated with OP, the underlying 
mechanisms driving this association remain unidentified.

Our research indicates that the family Actinomycetaceae and the 
order Actinomycetales exhibit a negative association with the risk of 
OP. This relationship was mediated through the influence of two 
unidentified plasma metabolites, labeled X-18345 and X-25343. These 
metabolites contribute to the pathway with mediation proportions of 
11.9 and 13.1%, respectively. Further research is necessary to identify 
these unknown metabolites and understand their specific roles and 
mechanisms of action. Previous observational studies have suggested 
an association between Actinobacteria and bone health (Odamaki 
et al., 2016), Actinobacteria are negatively correlated with BMD (Xu 
et al., 2020), and Actinobacteria are thought to play a role in regulating 
intestinal permeability, modulating the immune system, and 
influencing the gut-brain axis (Binda et al., 2018). Recent research has 
uncovered the important influence of GM on the nervous system, 
particularly through the modulation of hormones and 
neurotransmitters such as 5-HT (Spohn and Mawe, 2017; Park et al., 
2018). Yadav et al. found that reducing 5-HT levels with synthetic 
molecular inhibitors could effectively prevent bone loss typically 
induced by ovariectomy (OVX) (Yadav et al., 2010). Several studies, 
reinforcing our findings, indicate that the genus Ruminococcaceae 
UCG014 plays a beneficial role in the management and improvement 
of OP (Liu et  al., 2020; Ling et  al., 2021; Wei et  al., 2024). This 
beneficial effect aligns with recent research on strontium (Sr), a 
bioactive element recognized for its potential to enhance bone quality 
(Schrooten et al., 2003; Wornham et al., 2014). One particular study 
has suggested that Ruminococcaceae UCG014 may enhance the 
bioavailability or efficacy of Sr. in mitigating bone loss (Xi et al., 2023). 
The potential mechanism could involve Ruminococcaceae UCG014 
affecting the gut environment or directly interacting with Sr. 
metabolism, thereby enhancing its absorption or modulating its 
action at the site of bone. Our study uncovered a negative association 
between the genus Bilophila and OP, with S-methylcysteine sulfoxide 
(SMCSO) playing a mediating role in this relationship. Although 
research specifically regarding the impact of Bilophila on OP is scarce, 
insights can be drawn from studies focusing on its broader health 
effects. One such study has found a negative correlation between 
Bilophila and pro-inflammatory cytokine IL-6 levels (Du et al., 2021). 
The ability of Bilophila to potentially lower IL-6 levels suggests that it 
may exert anti-inflammatory effects. Given the crucial role of 
inflammation in bone resorption and loss, Bilophila’s impact may 
indeed extend to the immunomodulation of physiological responses 
associated with OP. It has also been shown that bacteria isolated from 
human feces can reduce the dietary compound SMCSO, which is 
biotransformed and may provide additional health benefits to the host 
(Kellingray et  al., 2021). However, the role of osteoporosis needs 
further study. We found a negative association between the genus 
Family XIII AD3011 group and osteoporosis, mediated by the plasma 
metabolites 3-(3-amino-3-carboxypropyl) uridine and 
5,6-dihydrouridine. These nucleoside modifications are uncommon 
and their exact roles are not well understood in the context of human 
health. However, their association with RNA processing and 
potentially signaling pathways may suggest that they play a part in 
cellular processes that impact bone metabolism directly or indirectly 
(Krog et  al., 2011). In contrast, plasma metabolites (S)-3-
hydroxybutyrylcarnitine were found to exert an inhibitory effect. This 
compound is commonly involved in lipid metabolism and energy 

production (Han et al., 2023), but its specific mechanism of action in 
increasing the risk of OP is unknown.

To our knowledge, this is the first study to utilize GWAS 
summary statistics to elucidate potential causal relationships between 
GM, plasma metabolites, and OP. Our study rigorously employed 
multiple common sensitivity analyses and effectively addressed 
potential confounders and reverse causation issues to enhance the 
reliability and validity of our findings. Our preliminary results 
indicate a possible causal relationship between GM and OP, mediated 
by specific factors. Our preliminary results suggest that there may 
be a causal relationship between GM and OP, mediated by specific 
factors. These insights support a theoretical framework for OP 
management and prevention and provide ideas for innovative 
treatment strategies. Furthermore, co-regulation of plasma metabolite 
levels may lead to breakthroughs in OP prevention and treatment. 
While our study focused on bacterial taxa, it is essential to consider 
viruses and fungi’s potential roles in host metabolism and bone 
health (Wang et al., 2023). Viruses and fungi can influence metabolic 
pathways and immune responses, which may intersect with the 
mechanisms by which gut bacteria affect OP. Future research should 
explore these dimensions to provide a more comprehensive 
understanding of the gut microbiota’s role.

Our study has several limitations worth noting. Firstly, the 
absence of detailed demographic data, such as age and gender, limits 
our ability to perform subgroup analyses. Although our findings 
provide a generalized view of the associations, future studies should 
incorporate comprehensive demographic information to uncover 
potentially significant subgroup-specific interactions. Secondly, the 
majority of our study participants were of European descent, with a 
minor inclusion of individuals from other ethnic backgrounds. This 
lack of ethnic diversity may impact the generalizability of our results. 
Future research should strive to include more diverse populations to 
validate and extend our findings across different ethnic groups. 
Moreover, while MR is a robust tool for inferring causal relationships, 
it is not without limitations. The validity of MR findings hinges on 
several assumptions that, if violated, could bias the results. Therefore, 
our analytical results should be  viewed as indicative rather than 
conclusive and warrant further experimental and clinical 
investigation to corroborate the proposed causal links. Lastly, the 
reliance on existing datasets and statistical methods, in the absence 
of biological experiments, is a limitation that needs to be addressed 
in future work. Validation through laboratory experiments or clinical 
trials is essential to confirm the causal relationships suggested by our 
MR analyses.

6 Conclusion

In conclusion, through MR of pooled GWAS data, we identified 
associations between ten GM taxa and OP risk, and 96 plasma 
metabolites potentially causally related to the disease. Mediation 
analysis revealed six causal pathways linking GM to OP through ten 
mediating relationships involving seven plasma metabolites. These 
findings highlight the multifactorial nature of OP and underscore the 
potential of GM and plasma metabolites as novel biomarkers or 
therapeutic targets. Further validation through experimental and 
clinical research is needed to confirm these associations and explore 
their therapeutic implications.
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