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Archaea continues to be one of the least investigated domains of life, and in 
recent years, the advent of metagenomics has led to the discovery of many 
new lineages at the phylum level. For the majority, only automatic genomic 
annotations can provide information regarding their metabolic potential and 
role in the environment. Here, genomic data from 2,978 archaeal genomes was 
used to perform automatic annotations using bioinformatics tools, alongside 
synteny analysis. These automatic classifications were done to assess how good 
these different tools perform in relation to archaeal data. Our study revealed 
that even with lowered cutoffs, several functional models do not capture the 
recently discovered archaeal diversity. Moreover, our investigation revealed 
that a significant portion of archaeal genomes, approximately 42%, remain 
uncharacterized. In comparison, within 3,235 bacterial genomes, a diverse range 
of unclassified proteins is obtained, with well-studied organisms like Escherichia 
coli having a substantially lower proportion of uncharacterized regions, ranging 
from <5 to 25%, and less studied lineages being comparable to archaea with 
the range of 35–40% of unclassified regions. Leveraging this analysis, we were 
able to identify metabolic protein markers, thereby providing insights into the 
metabolism of the archaea in our dataset. Our findings underscore a substantial 
gap between automatic classification tools and the comprehensive mapping 
of archaeal metabolism. Despite advances in computational approaches, a 
significant portion of archaeal genomes remains unexplored, highlighting the 
need for extensive experimental validation in this domain, as well as more 
refined annotation methods. This study contributes to a better understanding 
of archaeal metabolism and underscores the importance of further research in 
elucidating the functional potential of archaeal genomes.
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1 Introduction

Archaea, as a domain of life, has been a source of continual surprises (Cavicchioli, 
2010; Jarrell et al., 2011), with ongoing discoveries helping us to understand the processes 
conserved in all domains of life and revealing novel types and unique features of 
metabolism (DiMarco et al., 1990; Weiss and Thauer, 1993; Verhees et al., 2003; Siebers and 
Schönheit, 2005; Thauer et al., 2008), unique structural features (Nickell et al., 2003; Moissl 
et al., 2005; Walsby, 2005; Matsumi et al., 2011; Zillig et al., 1981), and new genomes (Mara 
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et  al., 2023; Zhang I. H. et  al., 2024), and novel lineages at the 
highest rank. Examples of those would be the new supergroups of 
archaea such as DPANN (Dombrowski et  al., 2019; Zhang 
R. Y. et  al., 2024) and Asgard (Spang et  al., 2015; Zaremba-
Niedzwiedzka et al., 2017; Imachi et al., 2020; Rodrigues-Oliveira 
et al., 2023). Moreover, the archaeal domain continuously reveals 
new sides to already known aspects of microbial metabolism, with 
novel metabolic capabilities for old enzymes, such as the case of 
McrA, previously a marker for methanogenesis and anaerobic 
methane oxidation (Friedrich, 2005), whose role in metabolism of 
higher carbon compounds was shown (Goenrich et  al., 2004; 
Scheller et al., 2013; Laso-Pérez et al., 2016; Musat et al., 2024) in 
agreement with early in vitro experiments with higher carbons 
(Gunsalus et al., 1978), or the discovery of the metabolic potential 
of Ca. Korarchaeota for dissimilatory sulfite reduction (McKay 
et  al., 2019). Notably, Archaea have played a pivotal role in the 
evolution of eukaryotes, indicating their significance in the history 
of life on Earth (Spang et al., 2015; Mac Leod et al., 2019; Imachi 
et  al., 2020; López-García and Moreira, 2020; Eme et  al., 2023; 
Spang, 2023, to name a few). The presence of eukaryotic signature 
proteins within Asgard genomes also led to an increased interest in 
the archaeal cell biology in the last few years, with a myriad of 
papers published on the topic (van Wolferen et al., 2022; Charles-
Orszag et al., 2024; Makarova et al., 2024).

Archaea are everywhere, including the gut and skin of humans 
and other animals (Thomas C. M. et al., 2022; Moissl-Eichinger et al., 
2017), with possibly a beneficial role. Yet, primarily due to 
methodological limitations (Taffner et al., 2019; Song et al., 2019), and 
possibly the biases in funding towards pathogens or biotechnologically 
relevant organisms (Lasken and McLean, 2014), the role of archaea 
with their host and other microorganisms remains largely unknown. 
Furthermore, archaea are present in plants, where, besides ammonia-
oxidizing archaea (AOA) in the rhizosphere and leaves (Taffner et al., 
2019; Song et al., 2019), methanogens (Taffner et al., 2019; Taffner 
et al., 2018) and halophilic (salt-loving) archaea can also be found 
(Taffner et al., 2018; Yadav et al., 2015; Al-Mailem et al., 2010). Thus, 
besides the impact of AOA and their role in increasing plant yield, 
using metagenomic sequencing techniques, indirect roles in plant 
growth-promoting traits, such as auxin production and production of 
secondary metabolites to aid against pathogens, abiotic, and biotic 
stress, were proposed (Taffner et al., 2018). These examples clearly 
show the archaeal versatile roles across different ecosystems. Whether 
thriving in extreme environments (Sulfolobales, Halobacteria) or 
existing in more common settings (Nitrososphaerota; Chaban et al., 
2006), archaea remain enigmatic due to their unique adaptations and 
historical research biases towards the study of (pathogenic) bacteria. 
For instance, so far, no one really knows all enzymes involved in 
archaeal ammonia oxidation (Schleper and Nicol, 2010).

Since the origin of life on our planet, archaeal microorganisms 
continue to be  fundamental to biogeochemical cycles, profoundly 
influencing ecosystems and environmental processes (Falkowski et al., 
2008; Zhang C. et al., 2023; Qi et al., 2024; Lyons et al., 2024; Baker 
et al., 2020). Archaea contribute significantly to cycles involving sulfur 
(S; Offre et al., 2013; Neukirchen et al., 2023), nitrogen (N; Huang 
et al., 2021; Offre et al., 2013; Leigh, 2000), carbon (C; Boetius et al., 
2000; Offre et al., 2013; Fuchs, 2011; Zhang X. et al., 2023; Justice et al., 
2012; Kaster et  al., 2011; Thauer et  al., 1977; Thauer et  al., 2008), 
oxygen (O; Bandeiras et al., 2005; Teske, 2018; Luo et al., 2024), iron 

(Fe, Dong et al., 2021; Auernik and Kelly, 2008; Malik and Hedrich, 
2022), and arsenic (As; Zhang C. et al., 2023; van Lis et al., 2013) 
across various habitats. Their metabolic versatility and resilience in 
extreme environments make archaea indispensable for maintaining 
the equilibrium of these elemental cycles, impacting nutrient 
availability, greenhouse gas emissions, and overall ecosystem health 
(Falkowski et al., 2008; Zhang X. et al., 2023; Qi et al., 2024; Lyons 
et al., 2024).

Methanogens, halophiles, thermophilic Euryarchaeota and 
Thermoproteota have become valuable model systems in molecular 
biology and biotechnology (Allers and Ngo, 2003; Kletzin, 2007; 
Soppa, 2006; Leigh et al., 2011; Costa and Whitman, 2023; De Lise 
et al., 2023; Pfeifer et al., 2021; Aparici-Carratalá et al., 2023), and 
currently these four groups of archaea boast well-established 
genetic systems. This advancement renders them ideal for use as 
model organisms and facilitates the expanded exploration of the 
functions of archaeal genes. However, the biotechnological 
potential of recently discovered archaeal lineages remains to 
be explored.

At the heart of archaeal diversity lies their genomic repertoire, 
comprising a finite set of protein building blocks, organized into 
pathways that facilitate biochemical reactions. One prominent 
example is methanogenesis, a pathway wherein certain archaea 
produce methane through anaerobic metabolism, essential for carbon 
cycling in environments like wetlands, alkaline hydrothermal vents, 
and animal digestive tracts (Angle et al., 2017; Jones et al., 1983; ver 
Eecke et al., 2012; Thomas P. D. et al., 2022), and that is proposed to 
have had an important role at the origin of Life (Martin and Russel, 
2007). Additionally, many archaea engage in chemolithotrophy, 
deriving energy by oxidizing inorganic compounds such as hydrogen, 
sulfur, or iron (Thauer et al., 1977; Edwards et al., 2000; Pereira et al., 
2011; Colman et al., 2020).

With the advent of metagenomics, many novel lineages have been 
discovered, for which mainly only metagenomic information is 
available for metabolic reconstructions using functional annotation 
pipelines. However, most of these are biased toward bacterial 
knowledge, with archaeal proteins many times falling out of the 
established cutoffs due to their natural diversity. Thus, it is important 
to assess how much of this diversity can be  retrieved semi-
automatically using functional annotation pipelines. Moreover, this 
approach can, in a systematic way, pinpoint gaps in knowledge, 
driving for the experimental characterization of archaeal proteins, as 
well as a redefinition of model design. Several studies regarding 
microbial dark matter, particularly Archaea, have been put forward, 
where the ratios vary between 30 and 80% (e.g., Makarova et al., 2019; 
Rinke et al., 2013; Jiao et al., 2020). More recently, deep learning was 
applied to genomes to get insights from microbial dark matter, 
showing how relevant the characterization of microbial dark matter is 
(Hoarfrost et al., 2022).

The question put out in this paper is: do existing automated 
prediction tools perform as well at assigning gene functions to 
archaea as to bacteria? Thus, to deepen our understanding of archaeal 
biology and metabolism, we performed a comprehensive mapping of 
genomic data from 2,978 archaeal genomic assemblies, belonging to 
27 phyla (including unclassified Archaea) and compared the results 
to the ones obtained from a similar number of bacterial assemblies 
(175 phyla). This initiative aims to assess the gaps in predicted 
knowledge about archaea, and compare it to bacteria. Through 
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systematic exploration and analysis, we  can pinpoint gaps in 
predictive knowledge and guide experimental studies with the aim of 
further understanding the diverse metabolic capabilities and 
ecological significance of archaea.

2 Materials and methods

2.1 Genomic dataset

A subset of our in-house dataset (over 190,000 genomes, 2,629 
of which are archaeal; downloaded from NCBI in November 2019 
with two Acidianus ambivalens and one Ca. Lokiarchaeum ossiferum 
assemblies added later; Supplementary Table 1; Rodrigues-Oliveira 
et al., 2023) was created by filtering these assemblies by completeness 
and contamination (calculated using the “Rinke method,” Rinke 
et al., 2013), excluding all with contamination >20%. In addition, 
assemblies containing more than 10% contamination were excluded 
unless there were only two or less representatives per genus. 
Assemblies with low contamination were filtered for completeness: 
if the genus had more than two representatives, those with <40% 
completeness were excluded. In case of DPANN archaea, genomes 
were excluded only if their completeness was <20% and they had 
more than one representative per genus. To capture the recent 
sequenced diversity of archaea, additional genomes were 
downloaded from JGI (1,731 genomes). For this study, the total of 
2,978 archaeal assemblies, belonging to 27 phyla (incl. “unclassified 
Archaea”) were obtained. In addition, a set of 3,235 bacterial 
genomes, belonging to 175 phyla (2 representatives per genus) used 
for comparison (Supplementary Table 1).

2.2 Functional annotation

The 2,978 archaeal and the 3,235 bacterial genomic assemblies 
were functionally annotated using KEGG HMM profiles (version 
2024-02-28, Kanehisa and Goto, 2000; using HMMER version 3.4, 
hmmer.org). The resulting hits were filtered first by cutoffs provided 
by KEGG for each model, and second, by lowering the KEGG cutoffs 
by 20% for most models, except for cytochrome bc1 complex models, 
where the previously established in-house cutoffs were used 
(Supplementary Table 2). The cutoffs were lowered to account for the 
fact that the standard KEGG cutoffs do not always work for the 
archaeal sequences. If no KEGG cutoff was provided for a model, a 
cutoff of 50 was used to ensure the hits for these KOs of acceptable 
quality were still included in the analysis. The KEGG name, module 
and pathway information was mapped to the resulting annotations.

The dataset was additionally annotated using Interproscan (version 
5.66–98.0; Jones et al., 2014), which includes the following databases: 
CDD (NCBI Conserved Domain Database; Lu et al., 2020), PFAM 
(Mistry et al., 2007), Gene3D (Lees et al., 2012), PANTHER (Thomas 
C. M. et al., 2022), SUPERFAMILY (Gough and Chothia, 2002; Wilson 
et al., 2009), ProSitePatterns and ProSiteProfiles (Expasy Prosite; Sigrist 
et al., 2013), NCBIfam (also known and further referred to as TIGRFAM, 
Li et al., 2021), FunFam (Sillitoe et al., 2013), Hamap (Pedruzzi et al., 
2015), PIRSF (Wu et al., 2004), Coils (Lupas et al., 1991), MobiDB-lite 
(Necci et al., 2021), SMART (Letunic et al., 2021), PRINTS (Attwood 
et al., 2012). PANTHER annotations were further filtered to eliminate 

uncharacterized proteins, domains of unknown functions (DUF) and 
annotations solely as “membrane protein” or “conserved protein.”

Furthermore, the archaeal genomes were annotated using the 
information obtained from DiSCo (Neukirchen and Sousa, 2021). 
Diamond Blast searches were also performed to assign arCOG 
(Makarova et al., 2015; Liu et al., 2021) classification to all genomes, by 
selecting best hits using as cutoffs >= 25% identity and E-value of <= 0−10.

2.3 Sequence classification into 
“characterized” and “uncharacterized”

The resulting annotated hits were split into “characterized” and 
“uncharacterized” sets using the following strategy (as described in 
Supplementary Figure 1): If the sequence has a KEGG annotation with 
a KEGG pathway annotation “Function unknown,” then it is classified as 
“uncharacterized”; if the KEGG pathway annotation is different, then the 
sequence is classified as “characterized.” If the sequence has no KEGG 
annotation, then the PANTHER annotation is checked. If a PANTHER 
annotation is present and it is not in the curated list of uncharacterized 
PANTHERs (Supplementary Table  3), the sequence is classified as 
“characterized”; if it is in the list, the sequence is “uncharacterized.” If no 
PANTHER annotation is present, then the NCBIfam (TIGRFAM) 
annotation is checked. If a TIGRFAM annotation is present in the 
curated list of “uncharacterized TIGRFAMs” (Supplementary Table 3), 
then the sequence is classified as “uncharacterized”; otherwise, it is 
assigned as “characterized.” If no TIGRFAM annotation is available, the 
Hamap annotation is checked: if it is present, the sequence is classified as 
“characterized,” otherwise, it is classified as “uncharacterized.”

Sequences without any annotations were automatically classified 
as “uncharacterized.” The order of the steps is partially arbitrary, and, 
starting with KEGG annotations, the classification steps can be run in 
a different order if preferred. The reason for selecting KEGG as initial 
step is three-fold: KEGG is a widely used database in which metabolic 
maps were constructed manually, and KEGG orthology is usually 
based on characterized enzymes or proteins. Lastly, KEGG provides 
modules and higher classifications of metabolism which are of interest 
for this analysis. This pipeline is available at https://github.com/
valkaravaeva/protein_classification_tool.

2.4 Analysis of “uncharacterized” 
sequences

The mean, median, maximum, and minimum numbers of 
uncharacterized sequences were calculated per taxon (in percent of 
uncharacterized vs. total CDS per genome) at a phylum level. The 
PFAM annotations of archaea were analyzed, in terms of most 
common occuring domains per taxon (supergroup or phylum). The 
values per lineage were plotted as a boxplot using “ggplot2” 
package in R.

2.5 Comparison between “uncharacterized” 
archaeal sequences and ArCOGs

ArCOG annotation was used as a comparison to the pipeline in 
terms of uncharacterized proteins. Sequences without arCOG 
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annotation or with the functional model belonging to “S_Function_
unknown,” “4_Poorly_Characterised” and “R_General_Function_
Prediction_only” category, or having no category were classified as 
“uncharacterized.” The mean, median, max, and min percentages per 
phylum of “uncharacterized” sequences based on arCOGs were 
computed and plotted, as described in section 2.4. The intersection 
between uncharacterized proteins between both methods as well as 
the method specific were analyzed. The values per lineage were plotted 
as a boxplot using “ggplot2” package in R.

2.6 Analysis of “characterized” sequences

The set of “characterized” sequences was analyzed in terms of 
KEGG module completeness (computed in percent; accounting for 
alternative KOs and for complexes—see pipeline documentation and 
files at https://github.com/valkaravaeva/protein_classification_tool 
and additional files at FigShare: 10.6084/m9.figshare.25782123). 
Briefly, per assembly, each module, including the different alternatives 
for each step was considered complete if there were identified proteins 
for at least one route (100%). If one or more proteins were missing, the 
ratio of identified proteins versus the number of pathway proteins 
needed was calculated and multiplied by 100. In the case of complexes, 
a similar approach was taken, in this case, using the number of 
identified subunits as numerator. This information was used to analyze 
the metabolic potential of each genome and a posteriori, aggregated 
by phylum. Further analyses were focused on cofactor biosynthesis 
and energy metabolism. For this, KOs of selected gene markers were 
used to represent types of energy metabolism. In addition, in specific 
cases, existing KEGG modules were manually modified, or created, by 
either joining several modules for the same pathway or complex, or, 
as in case of riboflavin biosynthesis, since no KEGG module for the 
archaeal version is available, by using the BioCyc database entry for 
M. jannaschii (and corresponding KO annotations; Karp et al., 2019). 
Completeness of these manual modules was assessed in the same way 
as for original KEGG modules. Completeness of selected modules was 
plotted as a stacked barchart using “ggplot2” package in R. Taxonomic 
distribution of selected marker genes was plotted as a heatmap using 
R package “Pretty heatmaps” (https://cran.r-project.org/web/
packages/pheatmap/pheatmap.pdf) and beautified in Inkscape.

3 Results

To determine how much of archaeal proteomes fall into the 
category of uncharacterized, a pipeline with several different steps was 
employed (see Supplementary Figure 1 and Materials and Methods). 
In total, 2,451,799 (40.7%, lowered KEGG cutoffs) out of 6,029,057 of 
proteins fall into the uncharacterized category, from where newly 
discovered lineages, such as Ca. Heimdallarchaeota and Ca. 
Woesearchaeota, have a mean of ~50% of proteins classified as 
uncharacterized (Figure 1; Supplementary Table 4). Within Archaea, 
16 out of 27 groups (59%; including unclassified Archaea) have more 
than 40% of its proteins classified as uncharacterized, and only in two 
groups this ratio falls shortly below 30%. The average of 
uncharacterized proteins across all analyzed archaeal genomes is 42%. 
When examining the percentage of uncharacterized proteins per 
phylum, in bacteria, only 45 out of 175 phyla (25%) have more than 

40% uncharacterized proteins (Figure  2, Candidate phyla in 
Supplementary Figure 2). When comparing model organisms from 
both domains, and even excluding E. coli (12%), there are 31 bacterial 
phyla where at least one organism has less than 25% uncharacterized 
proteins. In contrast, among archaea, only the Candidatus 
Bathyarchaeota and Euryarchaeota have at least one assembly with less 
than 25% uncharacterized proteins. Moreover, while lowering KEGG 
model cutoffs induced a change in the number of archaeal unclassified 
proteins, it did not affect the number of uncharacterized bacterial 
proteins, indicating that the models are optimized for this domain 
(Supplementary Table 4).

The two assemblies of the archaeal group with lowest median 
percentage of uncharacterized proteins, Ca. Nezhaarchaeota, have a 
low number of proteins (fewer than 1,700) and have completeness 
scores of 88 and 93%, and contamination of 0.6 and 4.3%, respectively. 
Their reduced genome, potentially associated with a symbiotic 
lifestyle, could explain the median percentage of uncharacterized 
proteins being below 30%. In any case, this value is still roughly three 
times the one found for model bacteria. This pinpoints the problems 
in reconstructing the metabolism of newly sequenced 
archaeal lineages.

Within the 2,451,799 unclassified proteins, 33.8% have PFAM 
annotation, while 66.2% (1,622,446) lack any annotation. Remarkably, 
with the exception of Ca. Nezhaarchaeota, Ca. Hadarchaeota, and Ca. 
Verstraetearchaeota, where 46.6, 55.4, and 59.0% of uncharacterized 
proteins lack PFAM annotations, respectively, all other archaeal phyla 
exhibit over 60% of uncharacterized proteins devoid of PFAM 
annotations, leaving even their domains unidentified. The 
uncharacterized proteins with PFAM domains have their annotations 
spread over 16,689 different PFAM entries, from where 3,725 
correspond to domains or proteins with unknown functions. The 
remaining 12,964 PFAM domains are found in 829,353 proteins 
(33.8%), with 6,602 present in less than 10 proteins.

Notably, the prevalent PFAM among those with annotations is the 
PIN domain, characterized by three conserved acidic residues but 
limited conservation otherwise, which in eukaryotes is associated with 
ribonucleases (Arcus et  al., 2011), and in prokaryotes, it is a 
component of the toxin-antitoxin system (TA; Arcus et al., 2011). In 
fact, ~44% of those PIN domains are in the proximity of genes 
annotated as nosB or Vap, being potentially part of a toxin-antitoxin 
system (TA, Arcus et  al., 2011; Bunker et  al., 2008) or close to 
CRISPR-Cas systems. The remaining PIN domains are in the vicinity 
of enzymes, ribosomal proteins or other uncharacterized genes. The 
large superfamily of PIN domain proteins was divided into families 
(Matelska et al., 2017) and a role as endo/exonucleases and/or part of 
the defense arsenal proposed (Matelska et al., 2017). The second most 
frequent domain is “LexA-binding inner membrane-associated 
putative hydrolase,” which is found in phospholipases and in proteins 
belonging to the SOS network, which rescues cells from DNA damage 
(Zhang and Lin, 2012). The third most frequent domain is the 
“halobacterial output domain 1,” which is specific for haloarchaea and 
haloviruses, and possibly involved in regulatory processes (Galperin 
et al., 2018). The fourth most frequent domain overall is the helix-
turn-helix domain, usually found in transcriptional regulatory 
proteins and involved in DNA binding that, in some cases, can also 
be  found in multidomain proteins for nucleotide recruitment, or 
involved in protein–protein interactions (Menon and Lawrence, 
2013). In fact, among the 20 most frequent PFAMs, additional 
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FIGURE 1

Percentage of archaeal unclassified proteins according to the pipeline classification per phylum. For complete taxonomic information see 
Supplementary Table 1. For exact percentages, see Supplementary Table 4.
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DNA-binding annotations emerge, including two winged helix-turn-
helix domains, and the transcriptional regulator TrmB 
(Supplementary Table  5). TrmB, a sugar-specific transcriptional 
regulator of the trehalose/maltose ABC transporter from the 

hyperthermophilic archaeon Thermococcus litoralis, was previously 
characterized (Lee et  al., 2003). Also, the H. salinarum reactive 
oxidative species regulator (RosR arCOG00006), which was 
experimentally characterized (Sharma et  al., 2012) and whose 

FIGURE 2

Percentage of unclassified bacterial proteins according to pipeline classification (see Materials and Methods) per phylum. For complete taxonomic 
information see Supplementary Table 1. For exact percentages, see Supplementary Table 4.

https://doi.org/10.3389/fmicb.2024.1433224
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Karavaeva and Sousa 10.3389/fmicb.2024.1433224

Frontiers in Microbiology 07 frontiersin.org

crystallographic structure is available (Kutnowski et  al., 2019) is 
annotated as hypothetical protein and has no annotation within 
KEGG. These examples point to the misidentification of archaeal 
regulatory networks, in some cases, due to lack of models, in others, 
due to lack of characterization, as in the case of the ArsR/SmtB family 
(Lemmens et  al., 2019). Moreover, the 6,602 PFAMs identified in 
fewer than 10 uncharacterized proteins, underscore the vast potential 
for innovation and diversity within this domain 
(Supplementary Table  5). Additionally, when examining proteins 
typically associated with metabolism, over 450 PFAMs (excluding 
radical SAM enzymes), corresponding to approximately 14,000 
proteins, have annotations indicating the presence of hemes, FAD, 
NADH, molybdopterins, iron–sulfur clusters, oxidoreductases, or 
quinone-binding. This suggests that a portion of the archaeal 
metabolism remains not fully understood. A typical example would 
be the case of molybdopterin enzymes, which are ubiquitously present 
in prokaryotes, though the function of some is not known (Wells et al., 
2020; Roy and Adams, 2002; Bevers et al., 2005).

The synteny analysis of unclassified proteins has shown that in 
2,866 assemblies (96.2% of the dataset), there is at least one stretch of 
five or more genes without any available annotation (no PFAM). This 
number is even larger when considering the existence of pseudogenes 
in between uncharacterized ones. As a result, significant portions of 
the archaeal genomes remain without biological predictions, due to 
various factors such as the absence of models, assembly artifacts such 
as technical fusions, fissions or erroneous sequences (Padalko et al., 
2024), inadequate CDS predictive methods for archaea (Dimonaco 
et al., 2022; Meng et al., 2022), or simply lack of biological knowledge. 
Notably, the uncharacterized genes within these regions are not 
necessarily involved in the same biological process, as genomic 
rearrangements frequently occur within genomes (Bobay and 
Ochman, 2017; Tillier and Collins, 2000; Darmon and Leach, 2014). 
When focusing on uncharacterized proteins for which PFAMs are 
available, particularly those which could, a priori, give some indication 
regarding energy metabolism, we observe that, for some cases, the 
uncharacterized protein’s PFAM agrees with the surrounding genes, 
e.g., PF00507 and PF00420 NADH–ubiquinone/plastoquinone_
oxidoreductase, _chain_3 and 4 L from complex I  surrounded by 
other Complex I subunits (Supplementary Table 6). This indicates that 
their nonidentification by other methods might be due to the model 
not accounting for the full range of sequence diversity. In this case, the 
full predicted complex could, with thorough analysis, be recovered. In 
other cases, putative complexes have no attributed annotation except 
PFAM, making their identification more difficult. Those are the cases, 
for instance, for Complex IV subunits in proximity of each other in 
known aerobic organisms, such as Halobacteria, where both subunit 
I and subunit II (the catalytic ones) are found within a distance of four 
or less genes devoid of further annotations. While subunit II tends to 
be a transmembrane short protein, devoid of cofactors (for exceptions 
see Pereira et al., 2011; Murali et al., 2022), subunit I is composed of a 
conserved set of 12 transmembrane helices, containing the ligands for 
the low-spin heme and for the binuclear center, composed of a high-
spin heme and a copper ion. This subunit, outside of the HCO family, 
has homology only with nitric oxide reductases (Pereira et al., 2011). 
Thus, the subunit I fold is specific to these enzymes, and, possibly due 
to sequencing artifacts, falls below the usual model cutoffs. In this way, 
the complex IV, previously described to be  present in Ca. 
Heimdallarchaeota assemblies (Spang et al., 2019; Bulzu et al., 2019), 

could not be  identified. Even though Halobacteria thrive in oxic 
environments (Grant and Ross, 1986; Oren, 1994; Oren and Litchfield, 
1999; Cui and Dyall-Smith, 2021), and several Asgard assemblies have 
been obtained from oxic conditions (Bulzu et al., 2019), additional 
experimental characterizations are necessary to ascertain whether 
these “HCOs” can reduce O2, utilize alternative terminal electron 
acceptors, or even function effectively.

We compared the results of our pipeline (available at https://
github.com/valkaravaeva/protein_classification_tool) with the 
functional classification given by arCOGs (Makarova et al., 2015; Liu 
et  al., 2021), a tool developed specifically for the identification of 
archaeal clusters of orthologous groups. Depending on the lineages, 
either arCOG (18; Figure 3) or our pipeline (4) has less uncharacterized 
proteins (Figure 1), with 5 phyla achieving similar results (differences 
below 1%). However, overall, arCOG outperforms our pipeline by 
identifying approximately 350,000 fewer uncharacterized proteins in 
total (see Figure 4). This advantage is also evident in lineages with 
lower overall numbers, such as Ca. Woesearchaeota and Ca. 
Heimdallarchaeota, which have mean proportions of 47 and 48% 
“unclassified” proteins, respectively, compared to 51% for both 
lineages using our pipeline. Additionally, four out of 27 archaeal phyla 
show a ratio of unclassified proteins just below 30% using arCOGs, 
whereas 9 out of 27 have more than 40% uncharacterized sequences.

The large majority of the proteins only classified by arCOGs 
belong to informational (transcription, translation, replication), 
defense, mobilome and cellular processes (74%), in agreement with 
the effort of the authors of arCOGs in improving those modules 
(Makarova et  al., 2015; Liu et  al., 2021) combined with the 
underdevelopment of KEGG in those modules. On the other hand, 
within the over 350,000 proteins only annotated by our pipeline, and 
focusing on the ones with KEGG annotations (corresponding to 45% 
of the proteins only annotated by the pipeline), 62% belong to the 
metabolism category, with signaling and cellular processes (20%) and 
informational processes (17%) as following categories. Among the 
proteins from metabolism are, for instance, 2000 involved in methane 
metabolism, including several acetyl-CoA synthase and 
formylmethanofuran dehydrogenase subunits, over 8,300 proteins 
involved in energy metabolism such as sulfide:quinone 
oxidoreductases (Brito et  al., 2009), thiosulfate:quinone 
oxidoreductases (Müller et  al., 2004), and V/A-type H+/
Na+-transporting ATPase subunits, from where the 
Methanobrevibacter ruminantium complex was experimentally 
validated (McMillan et al., 2011). Therefore, to avoid running both 
approaches and to standardize the data, the choice of annotation 
strategy should depend on the specific goals of the study.

However, arCOGs are built from a graph method in which, due 
to, e.g., gene losses, paralogues can be grouped together. Moreover, 
there is no relationship between KOs and arCOGs, which renders the 
mappings of pathways using arCOGs for a database as large as the one 
used in this paper, an “Herculean” task. Thus, we  continued the 
analysis using KEGG annotations.

The functional classification of archaeal proteins allows to 
reconstruct their metabolic potential and pinpoint possible gaps 
within pathways to be further experimentally characterized. Using 
KEGG modules combined with a strategy to count for their 
completeness (see Materials and Methods), the full reconstruction of 
the metabolism of 2,978 genomes is presented in 
Supplementary Table 7. Out of the 479 modules, 115 had no hit for 
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FIGURE 3

Percentage of unclassified archaeal proteins according to arCOG classification per phylum. For complete taxonomic information see 
Supplementary Table 1. For exact percentages, see Supplementary Table 4.

https://doi.org/10.3389/fmicb.2024.1433224
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Karavaeva and Sousa 10.3389/fmicb.2024.1433224

Frontiers in Microbiology 09 frontiersin.org

archaeal proteins and only 20 were found to be complete or at least 
75% complete in more than 50% of the assemblies in our dataset. 
These mainly correspond to the building blocks of life, such as 
nucleotides, amino acids and cofactors biosynthesis, ATP synthesis, 
lipid biosynthesis as well as carbon metabolism. The rationale behind 
setting a 75% completeness threshold includes instances where, 
despite adjustments, specific module components remain elusive. This 
also accounts for possible assembly incompleteness. Within bacteria, 
only 44 modules were not present in any of the genomes, and 60 
modules found in more than 50% of the bacterial assemblies. The 
modules specific for bacteria are, for instance, gamma-aminobutyric 
acid (GABA) biosynthesis, a pathway present in several bacteria 
(Iorizzo et  al., 2023) that has homologues within archaea which 
perform different functions (Tomita et al., 2014; Falb et al., 2008), or 
anoxygenic photosynthesis, a process that is absent in archaea 
(Hohmann-Marriott and Blankenship, 2011). Other modules address 
specific bacterial systems, such as antibiotic resistance or the synthesis 
of secondary metabolites unique to certain lineages.

In addition, several KEGG modules were modified to fill in gaps 
regarding archaeal metabolism not included in the original modules. 
For instance, in the cobalamin biosynthesis module, the decision to 
include CbiX, a homologue of CbiK that in some organisms performs 
the same reaction (Raux et  al., 2003), was made to enhance the 
module’s completeness, since this protein was initially absent. 
However, this adjustment, combined with lowered cutoffs, did not 
result in the increase of completeness of this module as expected, since 
there was no identification of other expected proteins within the 
module, such as the adenosylcobinamide kinase/adenosylcobinamide-
phosphate guanylyltransferase CobP/CobU (K02231) because archaea 
do not have CobP/CobU but rather use CobY (K19712; Rodionov 
et al., 2003), which is not a part of the KEGG cobalamin biosynthesis 
modules. Even considering that some archaea might not have 
cobalamin biosynthesis, this scenario highlights the difficulty of 
defining a cutoff that accurately reflects the presence of all essential 
components, especially in complex biosynthetic pathways. Moreover, 
not all of complexes are part of KEGG modules. This is the case of the 
Ech and Ehb membrane hydrogenases (Marreiros et  al., 2013; 
Marreiros et  al., 2016) present in many methanogens, or the 
thiol:fumarate reductases (Heim et  al., 1998), a complex whose 
subunits are homologous to the catalytic subunits of Complex II 
(Lancaster, 2002; Karavaeva and Sousa, 2023). Another problem is the 
existence of several modules for the same complexes, as, e.g., in the 

cases of succinate dehydrogenases/fumarate reductases, heme-copper 
oxygen reductases, and the bc1 complex. This leads to the existence of 
many archaeal complexes that have chimeric classifications according 
to KEGG modules, i.e., one subunit being part of one module and the 
other(s) belonging to another module of the same complex. This leads 
to modular incompleteness and hinders the usage of KEGG modules 
as a proxy of archaeal metabolism. For the cases mentioned above, 
we considered the module present if the subunits were identified, 
regardless of the KO module classification, meaning KEGG modules 
were merged, and different possible KOs would represent the same 
subunit. Completing this information with TIGRFam/NCBIFam and 
BioCyc information for selected modules (as described in Materials 
and Methods) led to an increase in module and pathway completeness. 
Still, in most of the cases, modules fall below the 75% completeness 
cutoffs (Supplementary Table  7). These results suggest that our 
understanding of the metabolic diversity and the distribution of 
biosynthetic pathways among archaea is still not included into 
databases, and the known existing gap between Bacteria and Archaea 
knowledge is even more pronounced at the level of 
automatic annotations.

Looking in detail to the different pathways for coenzymes and 
cofactors biosynthesis, we  can observe that regarding heme 
biosynthesis in archaea (Supplementary Figure  3), the siroheme-
dependent route is the most widely distributed, with the 
coproporphyrin-dependent pathway found to be complete in some 
Halobacteria, as already described (Dailey et al., 2017), as well as in 
one genome of Ca. Hydrothermarchaeota. Interestingly, within Ca. 
Heimdallarchaeota and some unclassified Euryarchaeota, the 
protoporphyrin-dependent heme biosynthesis was found. Ca. 
Heimdallarchaeota organisms have a mitochondrial-like electron-
transport chain, being able to respire oxygen (Zaremba-Niedzwiedzka 
et al., 2017). This is not found in the majority of the other Asgard 
lineages and might be  the result of HGT events. Since Ca. 
Heimdallarchaeota is also one of the few archaeal groups with 
protoporphyrin-dependent heme biosynthesis, this pathway might 
also have been acquired by HGT. Previously, several studies have 
reported on large events of interdomain HGT for archaea (Koonin and 
Wolf, 2008; Nelson-Sathi et al., 2012; Nelson-Sathi et al., 2015), and 
Ca. Heimdallarchaeota might be one of these cases. Of note, within 
our dataset, many other archaea were found to contain partial 
protoporphyrin-dependent heme biosynthesis pathways. However, 
this module also contains the universal tetrapyrrole biosynthesis part, 
common to the biosynthesis of all tetrapyrroles cofactors (heme, 
cobalamin, siroheme, F430) that are all present in Archaea.

Regarding cobalamin biosynthesis, a full pathway is found in Ca. 
Thermoplasmatota, Archaeoglobi, Ca. Methanoliparia, Methanomada, 
Methanonatronarchaeia, Halobacteria, Methanomicrobia, Ca. 
Marsarchaeota, Nitrososphaerota, Thermoproteota, and unclassified 
Archaea. However, in most of these lineages, there are genomes that 
contain only a partial pathway, due to either not passing the cutoffs 
(especially in the case of CbiJ) or having no KO annotation for a fused 
protein (e.g., fusions of CbiK/CbiX chelatase and HmbS/HemC in 
certain Archaeoglobi genomes have only the KO annotation for the last 
protein). Fusion and fission events are a process common in Archaea, 
as shown in recent large-scale analysis (Padalko et al., 2024).

Complete pathways for the biosynthesis of menaquinone were 
found in Ca. Thermoplasmatota, Archaeoglobi, DPANN, 
Thermoproteota, Methanomicrobia, and unclassified Archaea 

FIGURE 4

Number of proteins classified as “characterized” only by pipeline 
(green), only by arCOGs (pink), and by both methods (intersection).
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(Supplementary Figure 4). However, only in Archaeoglobi and Ca. 
Hydrothermarchaeota, they were present in the majority of the taxon 
assemblies. The presence of menaquinone in Archaea has been 
previously reported for Thermoproteus tenax (Thurl et al., 1985). As 
expected, no archaeal organisms have the complete pathway for 
ubiquinone biosynthesis. However, many have partial pathways, 
indicating the presence of several enzymes, homologous to those 
involved in ubiquinone biosynthesis. Within Archaea, besides 
menaquinones, several organisms use Caldariella (Schäfer et al., 2002) 
or sulfoquinone (Elling et  al., 2016) as main quinone. Since the 
biosynthesis of these alternative quinones remains, to our knowledge, 
not fully resolved, it is not clear if the ubiquinone biosynthesis 
homologues found in those lineages might play a role in other quinone 
biosyntheses, and those are good candidates for further 
experimental validations.

Contrary to menaquinone biosynthesis, riboflavin (incl. FMN/
FAD; Figure 5 and Supplementary Figure 4) biosynthesis is found to 
be partially present in many archaeal lineages, being complete within 
several lineages, such as Archaeoglobi, Halobacteria, Methanomada, 
Theionarchaea, Nitrososphaerota, and Thermococci. FMN/FAD 
biosynthesis enzymes are present in all lineages, including DPANN. Even 
with our improved module for FAD biosynthesis, we noticed that the 
enzyme(s) responsible for converting GTP to 2,5-Diamino-6-(1-D-
ribosylamino)pyrimidin-4(3H)-one-5′-phosphate are absent in most 
archaea, indicating a gap in knowledge that possibly only 
experimentalists can fill. The biosynthesis of F430 is, as expected, present 
in several methanogenic groups (Figure 6) being less spread than the 
biosynthesis of F420 that besides methanogens, is also found in 
Archaeoglobi, Ca. Heimdallarchaeota, Ca. Lokiarchaeota, Halobacteria 
and Theionarchaea. The dihydrofolate reductase, used as a marker for 
folate biosynthesis, is mainly found in most assemblies from 
Halobacteria and the related group Nanohaloarchaea.

Various types of energy metabolism were investigated using gene 
markers for arsenic, nitrogen, oxygen and sulfur metabolism (Figure 7). 
Our findings indicate that organisms capable of detoxifying 
arsenate include Methanomada, as well as unclassified Euryarchaeota 
and Nitrososphaerota. Regarding oxygen metabolism, both bd oxidases 
and heme-copper oxidases (Pereira et al., 2001) were detected in 
Ca.  Heimdallarchaeota, Ca. Thermoplasmatota, Halobacteria, 
Methanomicrobia, Ca. Geoarchaeota, Nitrososphaerota, Thermoproteota, 
unclassified Euryarchaeota, and unclassified Archaea. Some lineages 
have genes that encode only bd oxidase (DPANN, Archaeoglobi, 
Thermococci, Ca. Korarchaeota, Ca. Geothermarchaeota), while others 
have only HCO genes (Ca. Marsarchaeota). However, many of the hits 
did not pass the cutoffs, even lowered cutoffs, such as the case for 
HCOs in Ca. Heimdallarchaeota, where, despite earlier evidence of 
presence of these enzymes in this specific lineage (Spang et al., 2019; 
Bulzu et al., 2019), only one out of five genomes recovered a partial 
HCO complex.

Six marker proteins/complexes were selected to cover the diversity 
of nitrogen metabolism, although not including the ammonia 
monooxygenase AmoA, which shares a KO with the methane 
monooxygenase PmoA (K10944), and hence they are difficult to 
differentiate (Holmes et  al., 1995). The hits for K10944 were 
nonetheless found in the dataset, in Nitrososphaerota (ammonia-
oxidizers; Pester et al., 2011), as expected. The distribution of the Nif 
nitrogenase, used as protein marker for nitrogen fixation, recovered a 
similar distribution to that described in Baker et al. (2020), being 

found in Ca. Thermoplasmatota, Methanomicrobia, and 
Theionarchaea. However, in our case, additional 11 lineages had hits 
for nitrogenases, such as Archaeoglobi, Ca. Methanoliparia, 
Methanomada. Possible explanations for this difference could be the 
inclusion of vanadium-dependent nitrogenase Vnf in our results, or 
our search for all Nif subunits, as compared to Baker et al. (2020) 
using only NifH as a marker. Other cases, such as nitrite reductases 
NirK/NirS, did not overlap. For example, none of the lineages analyzed 
in Baker et al. (2020) were reported to contain NirS, and only 
Aigararchaeota and Nitrososphaerota were said to contain 
NirK. However, while our dataset did not include Aigarachaeota, other 
lineages had a hit for NirK in our dataset (e.g., Ca. Heimdallarchaeota, 
Ca. Thermoplasmatota, Thermoproteota), and NirS was found in 
Halobacteria (a lineage not included in Baker et al., 2020 analysis). It 
is possible, however, that additional NirK hits are in fact false positives 
due to the NirK homology to multicopper oxidases (Bento et al., 2005; 
Solomon et al., 1996).

To cover dissimilatory sulfur oxidation and reduction in archaea, 
seven protein markers were selected, ranging from sulfur oxygenase 
reductase (SOR; Urich et  al., 2004; Urich et  al., 2006) and 
thiosulphate:quinone oxidoreductase (TQO; Müller et al., 2004), first 
characterized in Acidianus ambivalens and representing 
chemolithoautotrophic sulfur-oxidizing metabolism in 
Thermoproteales (Sulfolobales, Acidobales), to the DsrAB and Qmo 
proteins to mark the Dsr-dependent dissimilatory sulfate/sulfite 
reduction in Archaea. The results recapture the known diversity 
within this dataset (Neukirchen and Sousa, 2021; Anantharaman 
et al., 2018; Friedrich et al., 2001; Ghosh and Dam, 2009). However, 
some of the newly discovered archaeal lineages with metabolic 
potential for Dsr-dependent sulfur metabolism, such as Ca. 
Methanodesulfokores washburnensis (McKay et  al., 2019) or 
Dsr-containing Aigarchaeota (Hua et al., 2018) are absent from our 
dataset, explaining why this metabolism was not found in those 
groups. On the contrary, sulfide:quinone oxidoreductases were found 
to be  present across 16 different archaeal groups, such as Ca. 
Heimdallarchaeota, Halobacteria, Ca. Korarchaeota, and 
Thermoproteota. So far, archaeal Sqrs have only been characterized 
from A. ambivalens (Brito et al., 2009) and C. maquilingensis (Lencina 
et al., 2013), and due to their sequence homology with Ndh-II (Brito 
et al., 2009), it cannot be excluded that some of these results are false 
positives, and the distribution of Sqr in Archaea is, in fact, smaller.

Using gene markers for terminal oxidoreductases or central 
complexes to pinpoint metabolic traits, while effective in uncovering 
the potential for certain types of energy metabolism in Archaea, falls 
short of presenting a comprehensive view of the possible variability 
within energy metabolic strategies. This approach may overlook the 
emergence of novel complexes formed through the rearrangement of 
modular protein components into unique architectures, not accounted 
for in these types of analyses.

4 Discussion

The aim of this paper was straightforward: to conduct a large-scale 
investigation into what is known and what is yet to be discovered 
within the archaeal domain, and to assess how much of archaeal 
metabolism can be reconstructed automatically using computational 
approaches. However, this turned out to be a much more complex 
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analysis than initially thought, due to the biases of knowledge 
regarding the other two domains of life, the different pathways of 
Archaea, and the fact that, with the exponential increase in sequencing 
projects and discovery of new lineages, their sequence divergency (real 
or due to sequencing artifacts) cannot be scaled up/incorporated in 
real time to existing databases. It is well-known that most of the 

current biological knowledge is based on Bacteria and Eukaryotes, 
with little attention given to incorporating Archaea and their 
differences into metabolic modules and pathways. Archaeal 
metabolism and information processing can be different from the 
ones present in Bacteria and Eukaryotes, and archaeal unique 
biochemical pathways enables them to thrive in extreme environments 

FIGURE 5

Presence of cofactor biosynthesis in archaea (per phylum for most lineages, per class for Euryarchaeota, with Methanobacteria, Methanococci, and 
Methanopyri grouped into the Methanomada supergroup), based on modified KEGG modules. (A) Presence of NAD biosynthesis (via both Tryptophan 
and Aspartate). (B) Presence of FMN  +  FAD biosynthesis. (C) Presence of cobalamin biosynthesis (excluding the lower ligand synthesis). Dark purple 
indicates that the full module is present, light purple marks the presence of the incomplete module, white shows the absence of the module in a 
lineage.
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and utilize diverse substrates, often relying on coenzymes and 
cofactors that necessitate entirely different enzymatic reactions 
compared to bacterial metabolic pathways. One prominent example 
is the incorporation of selenocysteine (Stadtman, 1974), often referred 
to as the 21st amino acid (Böck et al., 1991), that is found in proteins 
from the three domains of life (Rother and Quitzke, 2018) 

Selenocysteine is synthesized via a complex mechanism involving a 
specific tRNA and a dedicated set of enzymes (Chambers et al., 1986), 
and the archaeal synthesis is more related with the eukaryotic than 
with the bacterial one (Rother and Quitzke, 2018). This amino acid 
plays a crucial role in the function of several selenoenzyme families, 
including glutathione peroxidases and thioredoxin reductases, which 

FIGURE 6

Presence of cofactor biosynthesis in archaea (per phylum for most lineages, per class for Euryarchaeota, with Methanobacteria, Methanococci, and 
Methanopyri grouped into the Methanomada supergroup), based on modified KEGG modules. (A) Presence of F430 biosynthesis. (B) Presence of F420 
biosynthesis (includes only CofG  +  CofH as markers). (C) Presence of tetrahydrofolate biosynthesis (includes only dihydrofolate reductase as a marker). 
Dark purple indicates that the full module is present, light purple marks the presence of the incomplete module, white shows the absence of the 
module in a lineage.
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are vital for oxidative stress management and redox reactions in 
archaeal cells (Rother and Quitzke, 2018). Another noteworthy 
cofactor found in a small number of methylamine-metabolizing 

archaea as well as a few bacteria (Tharp et al., 2018; Hao et al., 2002; 
Srinivasan et al., 2002; Borrel et al., 2014) is pyrrolysine, traditionally 
known as the 22nd amino acid. Pyrrolysine is encoded by the UAG 

FIGURE 7

Presence of the marker proteins for different types of energy metabolism (KO and DiSCo annotations). Arsenate detoxification is marked in grey, oxygen 
metabolism in red, nitrogen metabolism in yellow, and sulfur metabolism in blue. ArsC: arsenate reductase, bd: bd oxidase, HCO: heme-copper oxidase, 
Nif/Vnf: nitrogenase, Nap: nitrate reductase, NirK/NirS: nitrite reductase, Nor: nitric oxide reductase, NosZ: nitrous oxide reductase, Nar: nitrate reductase, 
PSR: polysulfide reductase, SoeAB: sulfite:quinone dehydrogenase (subunits A and B), SOR: sulfur oxigenase/reductase, SQR: sulfide:quinone 
oxidoreductase, Sre: sulfur reductase, TtrAB: tetrathionate reductase (subunits A and B), TQO: thiosulfate:quinol oxidoreductase, DsrAB: dissimilatory 
sulfite reductase (subunits A and B), Qmo: quinone-modifiyng oxidoreductase. A full solid colored square indicates that, if a marker gene is a multisubunit 
complex, all of the subunits are present in a certain percent of the genomes. In cases where a square is split into two colors, the top part of the square 
indicates the percentage of genomes containing a full complex, while the bottom part shows the percent of genomes that have incomplete complexes.
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codon in some methanogenic Archaea (Hao et al., 2002; Srinivasan 
et  al., 2002), and is integral to the activity of methyltransferase 
enzymes (Soares et al., 2005), which are involved in the final steps of 
methane production from methylated compounds (Rother and 
Quitzke, 2018). The existence of pyrrolysine highlights the diversity of 
genetic codes and implications for protein synthesis in archaea, 
further underlining their unique metabolic capabilities. Moreover, 
coenzymes such as coenzyme M (2-mercaptoethanesulfonic acid) and 
coenzyme F430 are central to the metabolic pathways of methanogens 
and other anaerobic archaea (Kaster et al., 2011), albeit also being 
found in some bacterial organisms. Coenzyme F430, a nickel-
containing porphyrin, plays an essential role in the enzymatic reaction 
catalyzed by methyl-coenzyme M reductase, where it participates in 
the final step of methane production, showcasing a highly specialized 
enzymatic system (Thauer et al., 2008). These unique biochemical 
components reveal how archaea have evolved distinct metabolic 
strategies that not only allow them to occupy a wide range of ecological 
niches but also highlight the evolutionary divergence between archaea 
and other life forms.

These differences, as well as the usage of non-archaeal sequences 
in the modules can lead to misassignments or false negatives in terms 
of functional predictions. For example, HCOs from Ca. 
Heimdallarchaeota fall short of the cutoffs for homology-based 
annotation. It is possible that this lineage’s proteins diverge 
significantly from those in reference databases. However, this issue is 
not unique to Ca. Heimdallarchaeota; it also applies to halobacterial 
HCO proteins, indicating that not all divergence can be explained by 
this alone. Here we have shown 37.6% of the archaeal protein space 
remains uncharacterized, and that over 96% of archaeal metagenomes 
contain long stretches of genes, for which not even the protein 
domains (PFAM) are known. Also, within the uncharacterized 
proteins with PFAM annotations available, many contain cofactors 
and metal centers thought to have been playing a pivotal role since the 
origin of Life (Sanchez-Rocha et al., 2024; Weiss et al., 2016). For these 
uncharacterized cofactor-containing enzymes, the function is not yet 
known, and they may be  a part of archaeal specific unexplored 
pathways, whose characterization would increase the diversity of 
microbial biology.

Enhancing current genomic classification databases and 
functional predictive models may involve refining them through 
additional analyses, like synteny analysis or integrating other omics 
data. This approach requires more sophisticated knowledge and 
operations rather than simple clicks to access and interpret this 
information. Some progress has been made regarding sulfur 
metabolism, where several dedicated tools, such as HMSS2 (Tanabe 
and Dahl, 2023) or DiSCo (Neukirchen and Sousa, 2021), were 
carefully built to identify specific types of metabolism, already 
integrating the current microbial diversity known. Progress has also 
been made in developing annotation-free strategies for identification 
of microbial dioxygen utilization from reads data, and in the last years, 
methods for TF identification from gene-expression data from 
quantitative phenotyping analysis (Darnell et al., 2017), approaches 
for a systematic inference of TF activity (Ma and Brent, 2021) and 
computational models for topological comparison of regulatory 
networks across the two domains of Life (Robinson and Schmid, 
2018) have been developed. Another expanding area is phenomics, 
with several tools being developed in the last years, such as MicroPIE 
(Mao et al., 2016) to enable a fast extraction of phenotypic information 

from text records. Recently, the Functional Annotations of Prokaryotic 
Taxa (FAPROTAX) database (Louca et al., 2016) was tested for fast-
functional screening of microbial metabolism, based on 16S RNA data 
(Sansupa et al., 2021) with promising results.

However, for an in-depth analysis of large datasets, better and 
faster tools need to be  developed. Here is where statistical 
information theory (IT) plays an important role. Methods such as 
Mutual Information (MI; Vinga, 2014), Distance Correlation and its 
variants (Szé Kely and Rizzo, 2013; Monti et al., 2023) that already 
are useful to analyze, e.g., gene expression matrices, should 
be further developed to allow, e.g., comparisons of gene expression 
levels and inferences across independent samples. Moreover, in a 
recent study, MI was employed for pathway analysis, and, when 
applied to single-cell data, yielded robust and meaningful scores 
(Jeuken and Käll, 2024). For sequence data, IT can provide a broad 
range of inferences, from TF binding sites to gene mapping and 
phenotypic predictions, as comprehensively reviewed by 
Vinga (2014).

Artificial intelligence (AI), particularly machine learning 
algorithms, can also, in principle, provide valuable insights into 
archaeal metabolism by analyzing large genomic datasets and by 
filling in some of the gaps (Hoarfrost et  al., 2022). Machine 
learning can aid in genome annotation (Chen et  al., 2024; 
Khodabandelou et al., 2020), predict enzyme functions (Salas-
Nuñez et  al., 2024 and references within), and reconstruct 
metabolic pathways (Libbrecht and Noble, 2015). However, 
challenges and limitations persist in the field and the accuracy of 
metabolic reconstructions relies heavily on the quality of genomic 
and biochemical data available for archaeal species. Missing data 
and heterogenous datasets can lead to severe overfitting and other 
problems, as heavily discussed in the literature (Rodrigues, 2019; 
Xu and Jackson, 2019; Altman and Krzywinski, 2018). Customized 
models that consider the unique features of archaeal genomes and 
metabolic pathways can improve the accuracy and specificity of 
reconstructions. Integrating genomic, transcriptomic, proteomic, 
and metabolomic data can provide a comprehensive view of 
archaeal metabolism. AI and machine learning approaches that 
combine and analyze multi-omics data will facilitate more 
accurate reconstructions and deeper insights into the metabolic 
capabilities of Archaea, especially if coupled to statistical 
information theory. Perhaps this is the way to go in the future. But 
we must remember that computers only see zeros and ones (much 
better than we do), so we cannot forget that biology is more than 
math, and that without proper constraints and curated training 
data from experimental characterizations, distinguishing real 
results from artifacts is an almost impossible task. Moreover, as 
we have shown in this paper, without human manual curation, 
and extensive literature searches to get experimental archaeal 
characterized proteins to fill gaps in pathways, the distance 
between the vast amount of genomic information available and 
their analysis will only increase. In a perfect world, all data would 
be of high quality, with consistent information across different 
platforms. Additionally, linguistic and other barriers would 
be  reduced to unite experimentalists, microbiologists, 
computational scientists, and mathematicians in the shared goal 
of closing this gap. Joining bottom-up with state of the art 
top-down predictive (ML) and inference (IT) approaches—
merging the “in silico” and “in vivo/vitro” could increase the speed 
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at which we  explore the archaeal world and disentangle its 
mysteries. This strategy would increase our understanding of 
archaeal metabolism, and life in general, offering new insights 
and opportunities for further research.
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