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In the current context of rapid climate change, water scarcity and soil poverty are 
becoming increasingly alarming, leading to growing losses of 30–50% of global 
agricultural production. It is imperative to find environmentally-friendly approaches 
for improving plant tolerance to drastic conditions, particularly in arid and semi-arid 
Mediterranean regions. Biostimulants based on symbiotic microbes are emerging as 
effective strategies for improving tolerance and agricultural productivity. This study 
aims to evaluate the effects of single and double inoculation of arbuscular mycorrhizal 
fungi (My) and plant growth-promoting bacteria (Ba) on the growth, physiological 
and biochemical traits of maize crop grown in compost (Co) amended soil under 
two irrigation regimes: well-watered (WW: 100% of crop evapotranspiration [ETc]) 
and drought-stressed (DS: 50% ETc) using drip irrigation system. Reducing irrigation 
to 50% reduced shoot dry weight (SDW), root dry weight (RDW), 1,000-grains 
weight (TGW) and grain yield (Y). However, Ba alone increased SDW by 63%, while 
CoMyBa improved RDW, TGW and Y by 197, 43 and 175%, respectively compared 
with the control under DS conditions. Dual inoculation boosted root colonization 
intensity, normalized difference vegetation index (NDVI), total chlorophyll and leaf 
area of maize seedlings in compost-amended soil, compared to the controls. The 
application of Ba significantly reduced hydrogen peroxide and malondialdehyde 
by 46%, in maize seedlings grown in compost-amended soil, compared to the 
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controls under DS. Our results indicated that My and Ba significantly boost the 
ability of maize to tolerate drought by improving water supply and physiology 
and stimulating the accumulation of organic and inorganic osmolytes, as well as 
improving the properties of soils such as cation exchange capacity particularly 
amended by Co. The dual inoculations were the most effective and represent 
an environmentally-friendly and relatively inexpensive approach to optimizing 
agricultural production and soil restoration programs in Mediterranean regions.

KEYWORDS

climate change, water scarcity, soil poverty, symbiotic microbes, organic amendment, 
Zea mays, evapotranspiration, drip irrigation

1 Introduction

The world is currently facing a two-faceted challenge in the 
context of climate change: the increase in the world’s population and 
the concomitant rise in food demand. Mediterranean regions are most 
exposed to land degradation and desertification due to climatic 
challenges, making them more vulnerable. In addition, they have the 
lowest levels of organic matter and beneficial rhizospheric 
microorganisms, leading to soil sterility and imbalance in agricultural 
ecosystems. Furthermore, these regions are known for the scarcity and 
irregularity of precipitation, which goes hand in hand with increasing 
drought and high levels of evapotranspiration (Ylla et al., 2010; del 
Pozo et al., 2019; Su et al., 2020; Naveed et al., 2021). According to 
several scientific reports, drought is limiting agricultural productivity 
worldwide (Baslam and Goicoechea, 2012; Gupta et al., 2020; Soares 
et al., 2023). Its seriousness lies in the fact that it will affect more than 
20% of arable land while increasing the need for food from 59 to 98% 
by 2050 (Bouwman et al., 2017; FAO, 2019). Moreover, water scarcity 
has serious and negative repercussions on the productivity and yield 
of a variety of crops (Shirinbayan et al., 2019). The worst is when it 
comes to crops of economic interest and which represent the staple 
foods for humans and animals, notably cereals (maize, wheat, barley, 
and quinoa) and horticulture crops: (tomatoes and lettuce) (Al-Naggar 
et al., 2017; Anwaar et al., 2020; Fracasso et al., 2020; Meddich et al., 
2021; Balbaa et al., 2022; Ouhaddou et al., 2023a). The negative impact 
of this constraint lies in the fact that it affects the most critical 
phenological stages of plants, such as flowering, fruiting and grain 
filling (del Pozo et  al., 2019). These losses caused by drought are 
essentially due to the malfunctioning of physiological, biochemical 
and nutritional traits, in particular: (1) the photosynthetic apparatus, 
(2) the antioxidant system, and (3) the absorption of water and 
mineral elements (Grant, 2012). Chlorophyll destruction results in 
low photosynthetic activity in the reaction centers of photosystem II 
(PS II), which reduces biomass and crop yield (Valizadeh et al., 2014; 
Maia Júnior et al., 2020). In addition, dry soil causes oxidative stress 
to plants due to the accumulation of reactive oxygen species (ROS), 
which weakens the plant’s enzymatic defense system (Kar, 2011; 
Qureshi et al., 2018). Responding to the food demands of a growing 
population through the application of chemical fertilizers has led to 
improved yields per unit area in the agricultural sector. Nevertheless, 
the intensive use of inorganic fertilizers in world agriculture to ensure 
global food security has caused numerous health problems and 
irreparable environmental pollution (Bai et al., 2020; Dhankhar and 

Kumar, 2023). In order to mitigate the effects of drought without 
damaging the health of the soil and humans, biological approaches 
based on natural biostimulants are recommended.

Rhizosphere micro-organisms are used for this purpose because 
of their ability to promote plant growth under conditions of drought 
stress (Sorty et al., 2018; Vidal et al., 2022). Arbuscular mycorrhizal 
fungi (AMF) are known for their capacity to supply the plant with its 
needs via the network of hyphae (Wipf et al., 2019; Pepe et al., 2020). 
The establishment of symbiosis with the plant’s roots positively 
modifies the plant’s mineral and water status, especially in dry, 
phosphorus-poor soils (Cera et al., 2021; Tshibangu Kazadi et al., 
2022). They increase plant tolerance to abiotic stresses by 
strengthening the enzymatic antioxidant system and improving 
stomatal conductance, leading to greater biomass (Wu and Zou, 2017). 
Plant growth-promoting bacteria (PGPR) also play an important role 
in improving plant growth and tolerance to abiotic stress (Khoshru 
et al., 2020). Bacteria of the genus Bacillus are the most dominant 
rhizospheric microorganisms in regions suffering from water shortage 
(Etesami et  al., 2023). This beneficial effect is due to PGPR 
characteristics such as the synthesis of growth hormones (auxin), 
chelation of iron by siderophores, solubilization of potassium and 
phosphorus, synthesis of the enzyme 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase, and resistance to drought stress 
(Wahid et al., 2022; Etesami et al., 2023). The tolerance of plants to 
drought stress via the application of AMF and/or PGPR is also 
explained by osmotic adjustment by accumulating organic substances 
called osmolytes such as proline (Yooyongwech and Phaukinsang, 
2013; Chun et al., 2018). Recent research has highlighted the potential 
for synergistic interactions between AMF and PGPR when used in 
double inoculation (Aini et al., 2019). The co-inoculation of AMF and 
PGPR into crops has been shown to increase biomass, boost yields and 
improve tolerance to abiotic stresses (Diagne et al., 2020). In addition, 
the mechanisms behind these synergistic effects of AMF and PGPR 
on crops were elucidated. PGPR can enhance AMF spore germination 
and hyphal growth, leading to more efficient mycorrhizal colonization 
(Gopal et al., 2012; Sagar et al., 2021). This mutual enhancement can 
lead to a more robust root system, able to better absorb nutrients and 
water, ultimately promoting plant growth and resistance (Wahid et al., 
2022). In addition to microorganisms, enriching the soil with organic 
soil improvers such as compost improves its structure and composition 
in terms of mineral elements, especially phosphorus and nitrogen, as 
well as organic matter (Boutasknit et al., 2020). Compost has been 
shown to improve plant growth under drought-stress conditions 
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because of its water retention capacity (Liu et  al., 2012). The 
introduction of compost into agricultural ecosystems is an alternative 
to chemical fertilizers (Pascual et al., 2004). Compost increases plant 
resistance in water-limited conditions by triggering various 
mechanisms such as antioxidant enzymes, the accumulation of 
osmolytes (proline, sugars, glycine betaine, etc.) and improved gas 
exchange (Fiasconaro et al., 2019; Anli et al., 2020; Ahanger et al., 
2021; Akensous et  al., 2023). It has been investigated that the 
combined application of these biostimulants improves plant tolerance 
to abiotic stresses such as drought. The synergistic effect between 
AMF and PGPR bacteria has already been validated by several 
scientific reports in terms of the bioavailability of nutrients assimilated 
by the plant, the encouragement of symbiosis, improved fruit quality 
and crop yields under controlled conditions and in the field (Aini 
et al., 2019; Raklami et al., 2019; Tahiri et al., 2022). Compost presents 
an organic matrix and a source of nutrients that promotes the rapid 
growth of PGPR (Cozzolino et al., 2016). These bacteria, in their role 
of releasing mineral elements from their immobile form (solubilization 
of phosphorus and potassium), facilitate uptake by plants (Grobelak 
et al., 2015). Improved soil structure (aeration, porosity…, etc.) and 
water supply to roots via AMF hyphal extensions, as well as increased 
root architecture through the auxinic action of PGPR, considerably 
enhance plant growth and resilience to abiotic stresses (Zhang 
et al., 2018).

Morocco’s economy relies heavily on agriculture and its food 
security is based on cereals, which occupy 55% of the agricultural area 
(Schilling et  al., 2012). Maize is a crucial cereal for this security 
contributing about 12.5% to gross gomestic groduct (GPD) (Belmahi 
et al., 2023). Maize cultivation in Morocco plays an important role in 
the economic sector due to its consumption by humans and animals 
(Achli et al., 2022). Maize (Zea mays L. Saccharata) is a variety known 
for its high sugar content due to spontaneous mutation (Revilla et al., 
2021). It is rich in bioactive molecules like vitamins (Liu et al., 2017; 
Xiang et al., 2019). It is one of the most sensitive cereal crops to water 
shortage (Revilla et  al., 2021). Maize’s water requirements vary 
between 500 and 700 mm, for which the standard crop coefficients 
during three main stages are: Kcini = 0.3, Kcmid = 1.15, and Kcend = 1.05 
(Allen et al., 1998). Due to its shallow root system, maize is considered 
to be sensitive to drought stress (Moussa et al., 2008; Song et al., 2019). 
It has been reported that the yield of maize was reduced to 37% when 
irrigation was limited to 30% (Singh et al., 2022). Drought stress at 
grain filling can reduce maize yield by 3% per day of water shortage, 
indicating the sensitivity of maize to delayed irrigation (Lauer, 2003). 
Recently, Moroccan researchers validated the performance of these 
microorganisms on an organic matrix in terms of the tolerance of 
different crops under controlled and field conditions (Boutasknit et al., 
2021; Anli et al., 2022; Benaffari et al., 2022; Ouhaddou et al., 2023a; 
Soussani et al., 2023). In contrast, the application of these biostimulants 
in compost-amended soils under irrigation control based on crop 
evapotranspiration (ETc) has not yet been exploited. The application 
of this technology in open field conditions on water-stressed maize is 
not yet well exploited. Consequently, the aim of this study is to 
examine the performance of biostimulants on the morphological, 
physiological and biochemical adaptation as well as tolerance and 
yield of maize crop under two water levels based on ETc. 
We hypothesized that: (i) dual inoculation of AMF and PGPR applied 
to compost-amended soil can improve growth, physiology, 
biochemistry, yield and drought stress tolerance in the field; (ii) 

biostimulants can offer an alternative to the excessive use of chemical 
fertilizers (N-P-K) under water stress conditions; and (iii) 
biostimulants can positively modify soil physicochemical properties 
such as cation exchange capacity, available phosphorus and glomalin 
content compared with N-P-K application under both water regimes.

2 Materials and methods

2.1 Experimental site

The experiment was carried out in 2023 at the agricultural field in 
the commune of Loudaya 35 km from Marrakech, Morocco, at the 
following geographical coordinates 31°34′46.2″N, 8°16′13.1″W 
(Figure 1A). The climate of this region is semi-arid with maximum 
and minimum average annual temperatures of 30.1°C and 15.3°C, 
respectively as well as 98.29 mm of total annual precipitation. Soil 
samples were taken from a depth of 0–30 cm before the cultivation. 
The physicochemical characteristics of the soil revealed a pH of 8.36, 
electrical conductivity (EC) of 0.38 mS/cm, cation exchange capacity 
(CEC) of 4.48 meq/100 g, permittivity of 3.6, organic matter of 1.78%, 
P-Olsen of 98.2 mg/kg, N of 0.76%, bulk density of 1.39 g/cm3 and a 
sandy clay loam texture (loam 24%, clay 32, and 44%). It should 
be  noted that the maize was grown in accordance with good 
agricultural practices and that the experimental field was never 
previously treated with conventional chemical fertilizers.

2.2 Experimental design and treatments

A two-block design (Figure 1B) was used in this study in the form 
of plots designated for 18 treatments with three replications. Each 
block consisted of one water regime and two rows of plots. Each 
experimental plot had a surface area of 1.2 m2 (1.50 m long and 0.80 m 
wide) and a spacing of 0.60 m between plots. Maize (Zea mays 
L. Saccharata) seeds were sown on 03 March, 2023 and a plant spacing 
of 0.17 m with two rows/plot spaced 0.60 m apart. Using reference 
evapotranspiration (ET0) and the maize crop coefficient (Kcini = 0.3, 
Kcmid = 1.15, and Kcend = 1.05) in accordance with Allen et al. (1998), 
we  imposed two irrigation regimes based on maize crop water 
requirement (ETc) according to the following formula:

 ETc ETo Kc= ∗

 • ETc: Crop evapotranspiration (mm/day), which is the quantity of 
water lost by a specific crop through both evaporation 
and transpiration.

 • ET₀: Reference evapotranspiration (mm/day), calculated for a 
standard, well-watered grass surface. It is independent of 
the crop.

 • Kc: Crop coefficient (without unit), which adjusts the ET₀ to 
reflect the crop’s specific characteristics, such as its growth stage 
and plant cover.

A drip irrigation system was used. The first block of maize plants 
was watered well at 100% ETc (WW) using 8 L/h drippers and the 
second corresponded to drought stress (DS) with 50% ETc maintained 
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by the 4 L/h drippers. In parallel, the treatments were applied 
individually or in combination as follows:

 • Ctr−: negative control, untreated plants.
 • Ctr+: positive control, plants treated only by N-P-K, 

165-60-60 kg ha−1, respectively.
 • Ba: plants treated by the bacterial consortium of plant growth 

promoting rhizobacteria.
 • My: plants treated by arbuscular mycorrhizal fungi consortium.
 • Co: plants treated by compost.
 • MyBa: plants treated by arbuscular mycorrhizal fungi consortium 

and the bacterial consortium of plant growth promoting 
 rhizobacteria.

 • BaCo: plants treated by the bacterial consortium of plant growth 
promoting rhizobacteria and compost.

 • CoMy: plants treated by compost and arbuscular mycorrhizal 
fungi consortium.

 • CoMyBa: plants treated by compost, arbuscular mycorrhizal 
fungi consortium and the bacterial consortium of plant growth 
promoting rhizobacteria.

Treatments were distributed randomly within each block. At the 
4–5 leaf stage of the maize plants, DS was applied and the soil water 
content was maintained according to the desired water regime. Weeds 
were controlled manually throughout the growing season.

2.3 Biostimulants characteristics and 
application

Two microbial consortia isolated from the rhizosphere of the 
Tafilalet palm grove (31°41′20.3″N 4°10′44.7″W), a semi-arid region 
located 500 km southeast of Marrakech, Morocco, were used in this 
study. The first is based on bacteria that promote plant growth: Bacillus 

subtilis and Bacillus sp. (Ba). These strains were isolated from collected 
soil, mixed with a sterile 0.09% NaCl solution and incubated for 
30 min. Serial dilutions were made and aliquots of dilutions (10−5 and 
10−6) were put on the surface of the National Botanical Research 
Institute’s phosphate growth medium devoid of yeast extract (NBRIY) 
medium. Plates were incubated for 48 h at 30°C. Colonies were 
purified by replating on fresh TSA medium to obtain single colonies. 
The characterization of the both bacteria is described in Table 1. These 
bacteria have been molecularly identified based on amplification of 
the 16S ribosomal RNA (rRNA) gene of B. sp. and B. subtilis which 
refer to sequence ID: AM981260.1 and MT457467.1 respectively, 
which aligns and matched with the GenBank database using the 
NCBI. After purification, each strain was grown in Tryptic Soy Broth 
(TSB) liquid medium under agitation for 48 h at 30°C to an optical 
density of approximately 1 at 600 nm, corresponding to 109 CFU/
mL. Plant inoculation was carried out by adding 10 mL of the bacterial 
suspension formed from the two above-mentioned strains in equal 
volumes to the root zone (Agbodjato et al., 2015). A booster of the 
same volume was applied after 15 days to ensure infection of the newly 
formed roots. The second is based on arbuscular mycorrhizal fungi 
(AMF) composed of 15 species, 60% of which are from the Glomus sp. 
and 20% from the Acaulospora sp. (Benaffari et  al., 2022) 
(Supplementary Table 1). The identification of these species was based 
on the morphological appearance of the spore in terms of color, shape, 
size, germination shield, bulb, spore suspensor and membrane 
separation (Giovannetti and Gianinazzi-Pearson, 1994; Yano-Melo 
and Maia, 2010). Spores were identified on the basis of criteria 
proposed by Schenck et al. (1982) and descriptions supplied by the 
International Culture Collection of Vesicular Arbuscular Mycorrhizal1 
following the classification of Redecker et al. (2013). 5 g of AMF were 

1 https://invam.ku.edu/species

FIGURE 1

(A) Experimental site map and (B) design.
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used as inoculum (hyphae, vesicles, roots and substrate containing 
spores) for the maize plants (Abdullahi et al., 2018). The product of 
composting local green waste was used as an organic amendment 
(Meddich et al., 2016). The quantity of compost applied was 4 Mg ha−1 
at a rate of 480 g/plot (Tahiri et al., 2022). Compost was applied by 
incorporation into the soil at a depth of 5–10 cm before sowing. The 
physicochemical characteristics of the compost based on dry matter 
are: available phosphorus: 700 ppm, nitrogen: 1.5%, potassium: 0.5%, 
organic carbon: 20%.

2.4 Determination of mycorrhization and 
effect on plant growth

After harvest, the roots of the maize plants were cleaned, treated 
and stained with trypan blue to visualize the mycorrhizal structures 
according to the methodology developed by Phillips and Hayman 
(1970). After microscopic examination (OPTIKA microscopes, Italy), 
the mycorrhization frequency (MF) and mycorrhization intensity 
(MI) were measured as described by Trouvelot et al. (1986).

The agronomic parameters of maize plants, including shoot dry 
weight (SDW), root dry weight (RDW), shoot height (SH), root length 
(RL), stem diameter (SD), cob fresh weight (CFW), cob length (CL), 
cob diameter (CD), grains lines number per cob (GLC), grains 
number per cob (GNC), thousand grains weight (TGW), and yield per 
hectare (Y) were measured.

2.5 Determination of plant physiological 
activities

2.5.1 Stomatal conductance, chlorophyll 
fluorescence, and chlorophyll pigment 
determination

Stomatal conductance (gs) was measured between 09:00 and 
11:00 using a porometer (CI-340, Handheld Photosynthesis 
System, Washington, DC, USA) on well-developed leaves along the 
leaf blade according to the procedure described by Harley 
et al. (1992).

Chlorophyll fluorescence was measured using a portable 
fluorometer: OPTI-SCIENCE, OS30p (Hudson, NY, USA). The 
operation consisted of creating darkness on the leaves for 30 min 
using clips. A flash of light in 1 s was then used to record initial 

fluorescence (F0), maximum fluorescence (Fm) and quantum yield 
(Fm − F0)/Fm = Fv/Fm, where Fv is the variable fluorescence (Baker, 
2008). Photosynthetic pigments were quantified using the method of 
Arnon (1949).

2.5.2 Vegetation indices
Leaf area (LA) was measured following the method developed by 

Radford (1967).

 ( )LA k L W= ∗

Where, LA = leaf area (cm2); K = constant (0.75); L = leaf length 
(cm) and W = maximum leaf width (cm).

The Trimble GreenSeeker (HCS100, Trimble Inc., Sumnyvale, 
CA, USA) is a portable spectrometer (optical sensor) used to measure 
the normalized difference vegetation index (NDVI) values. The 
spectrometer is supposed to be placed 60 cm above the maize plants. 
Its field of view has an ecliptical shape that widens as the sensor is 
held higher. The sensor emits brief pulses of red and infrared light 
and then measures the amount of each type of light reflected by the 
plant. The sensor continues to sample the scanned area as long as the 
trigger is held down. When the trigger is released, the sensor displays 
the measured value as an NDVI reading (ranging from 0.00 to 0.99) 
on its display screen for 10 s (Trimble, 2022).

2.6 Biochemical analysis

2.6.1 Antioxidant activity
Polyphenol oxidase (PPO) activity was measured according to the 

method of Hori et al. (1997). 0.1 mL of enzyme extract was mixed with 
2 mL of catechol (10 mM) in phosphate buffer (pH 7). PPO activity 
was expressed as enzyme unit mg−1 protein. One unit of PPO activity 
was defined as the amount of enzyme causing an increase in 
absorbance of 0.001 min−1 at 420 nm.

The activity of catalase (CAT) was measured as a decrease in 
absorbance at 240 nm for 3 min following the decomposition of H2O2 
(Aebi, 1984). The solution contained 0.1 M potassium phosphate 
buffer (pH 7.0), 0.1 mM EDTA, 20 mM H2O2 and 100 μL of enzyme 
extract in a 2 mL volume. Enzyme activity is expressed in EU/mg MF/
min, then in EU/mg protein/min. One EU (enzyme unit) is considered 
to correspond to the variation of 0.001 OD units.

2.6.2 Proline and total soluble sugars
The total soluble sugar (TSS) content was determined according 

to the method of Dubois et al. (1956). Extraction was carried out by 
grinding 0.1 g in ethanol (80%) (v/v). After centrifugation, 1 mL of 
concentrated sulfuric acid and 0.2 mL of phenol were added to 0.2 mL 
of the recovered supernatant. The mixture was read at 485 nm using 
a spectrophotometer.

The proline content was determined using the method of Carillo 
et al. (2008). 0.1 g of fresh material was ground in 4 mL of 40% ethanol 
(v/v). The extract was placed at 4°C overnight. Next, 1 mL of a mixture 
of 60% acetic acid, 1% ninhydrin and 20% ethanol was added to 
0.5 mL of the ethanolic extract obtained. The reaction mixture was 
placed at 90°C for 20 min. The optical density (OD) was then read 
at 520 nm.

TABLE 1 Characteristics of bacterial strains used.

Characteristics Bacillus sp. Bacillus subtilis

Phosphate solubilization index 2.39 ± 0.63 2.06 ± 0.30

Phosphate solubilization 

(mg/L)

82.11 ± 1.84 68.48 ± 0.77

Potassium solubilization index 2.11 ± 0.25 2.62 ± 0.29

Exopolysaccharide production 

(mg of CR/OD600)

89.33 ± 9.63 317.44 ± 20.45

IAA production (μg/mL) 444.55 ± 4.11 347.18 ± 3.07

Resistance to polyethylene 

glycol 6000

+ −

−, absent; +, presence; CR, Congo Red; IAA, indole-3-acetic acid.
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2.6.3 Malondialdehyde and hydrogen peroxide
The quantification of malondialdehyde (MDA) was determined 

using the method developed by Dhindsa and Matowe (1981). 1 mL of 
acetone (90%) and 1 mL of trichloroacetic acid (TCA) (10%) were 
used to homogenize 0.05 g of fresh material. After centrifugation, 
0.25 mL of the supernatant was added to 0.5 mL of 0.1% phosphoric 
acid and 0.5 mL of 0.6% thiobarbituric acid (TBA). All stoppered tubes 
were incubated at 100°C for 30 min and then placed in an ice bath to 
stop the reaction. Next, 0.75 mL of 1-butanol was added. The 
coloration formed was measured at 532 and 600 nm.

Hydrogen peroxide (H2O2) levels in the leaves were determined 
by grinding 0.1 g in 2 mL of 10% (w/v) TCA. After centrifugation, 
0.5 mL of the supernatant was mixed with 0.5 mL potassium phosphate 
buffer (10 mM, pH 7) and 1 mL potassium iodide (1 M). Readings 
were taken at 390 nm (Velikova et al., 2000).

2.7 Post-harvest plant physicochemical 
analysis and soil glomalin

Samples taken from the root zone (10–40 cm) of maize plants were 
subjected to the following analyses: Nitrogen (N) was assessed using 
the Kjeldahl method, 0.5 g of soil, 5 mL of concentrated sulfuric acid 
and 0.5 g of Kjeldahl catalyst were placed into a matron. Boiled until 
the samples turned white and then cooled under the host. The 
mineralizate was recovered in 100 mL distilled water for distillation. 
A control was made under the same conditions. Distillation was 
carried out using a Kjeldahl distiller (KJA-9840 Model, China). 
Titration was done with sulfuric acid (0.02 N) using a few drops of 
Tachero indicator. Available phosphorus (AP) was measured following 
the methodology of Olsen and Sommers (1982). 1 g of soil was added 
to 20 mL of 0.5 M sodium bicarbonate (NaHCO3), and stirred for 1 h 
then filtered. Then, 1 mL filtrate was mixed with 4 mL distilled water 
and 5 mL AB reagent, placed in a water bath for 10 min, and allowed 
to cool, then spectrophotometer readings at 820 nm were taken. Total 
organic carbon (TOC) and total organic matter (TOM) were assessed 
by the procedure of Aubert (1978), and electrical conductivity 
(conductivity meter, HI-9033, Hanna Instruments, Padova, Italy) and 
pH (pH meter, HI 9025) were also measured. The cation exchange 
capacity (CEC) was calculated using the method of Zuquette (1987).

The total glomalin-related soil protein (T-GRSP) was quantified 
according to the method of Cornejo et al. (2008). A 50 mM sodium 
citrate buffer (pH 8.0) containing 4 mL was used to extract the T-GRSP 
from 1 g of dry soil. The extract was centrifuged at 10,000×g for 1 h 
and autoclaved for 1 h at 121°C. The Bradford assay was used to assess 
the T-GRSP content (Bradford, 1976).

2.8 Statistical analysis

Statistical analyses were performed using CoSTAT version 6.3 
software (developed by, Cohort software, Berkeley, CA, USA). 
Statistical studies based on the Honest Significant Difference (HSD) 
test, were performed by Tukey’s test with a significant value of 5%. At 
the p < 0.05 level, smaller values indicate significant differences 
between treatments (five repetitions). Correlation (Pearson’s 
correlation coefficient), principal component analysis (PCA), parallel 
coordinates plots (PCP) and hierarchical ascending classification 

(HAC), were performed using R Studio software (version 2023.9.1.494) 
in order to group all information concerning the physiological and 
biochemical phenotypic traits of the maize plants as well as 
physicochemical properties of soil treated or not with biostimulants 
under 100 and 50% ETc.

3 Results

3.1 Effect of biostimulants on root 
mycorrhization and plant growth

Mycorrhization intensity (MI) of the roots increased under 
drought stress (DS) conditions than under normal irrigation 
conditions (Table 2; Figures 2A–D). Plants double-inoculated and 
grown in compost-amended soil (CoMyBa) showed a MI of around 
50% whatever the irrigation imposed in comparison with all the 
treatments (Figure  2D). In fact, inoculation of plant (compost-
amended or not) with Ba increased root MI compared with 
non-inoculated Ctr− (Figures 2A–C). In contrast, the application of 
N-P-K (Ctr+) to the soil significantly reduced MI by 16% compared 
with Ctr−. As for mycorrhization frequency (MF), it was always 100% 
whatever the water regime applied, except for Ctr− where MF was 
96% under WW conditions.

In terms of phenotypic traits, the water regime corresponding to 
50% of ETc affected a range of growth parameters. However, soil 
enrichment with biostimulants stimulated maize growth, particularly 
shoot dry weight (SDW), root dry weight (RDW), shoot height (SH), 
root length (RL), stem diameter (SD), fresh cob weight (CFW), cob 
length (CL), cob diameter (CD), number of cobs formed (CN), and 
number of grain lines per cob (GLC) compared to the of 100% ETc 
(Tables 2, 3; Figures 3A–C). Whereas Ctr+ (plants treated only by N-P-K) 
achieved only 76% improvement compared with Ctr− (untreated plants) 
under the same conditions. Under 100% ETc, treatment of maize plants 
inoculated with Ba separately and in combination with My in the 
presence of compost (CoMyBa) significantly improved SDW by 102.02 
and 103.46%, respectively compared to the non-compost amended and 
non-inoculated plants (Ctr−). While Ctr+ achieved 76% improvement 
compared to Ctr− under the same conditions. However, under 50% ETc, 
this parameter was highest in plants treated with Ba, with a 63% 
improvement for all treatments. In fact, Ba inoculation without compost 
improved RDW highly (194%) than double inoculation of maize plants 
with Ba and My in the presence of compost (178%) compared to Ctr− 
under ETc conditions of 100%. Furthermore, under 50% ETc, plants that 
were doubly inoculated and grown in compost-amended soil (CoMyBa) 
recorded higher root biomass than plants that were neither inoculated 
nor amended. Treatment of the plants with N-P-K (Ctr+) significantly 
(p < 0.05) increased SH under DS compared with all treatments, 
including Ctr−. The effect of biostimulants on RL under DS was 
exceptional in plants inoculated with microbes in the presence of 
compost compared to other treatments not treated with compost. The 
SD was significantly (p < 0.05) improved by BaCo and MyBa treatments, 
28 and 20%, respectively under 50% ETc compared with their respective 
controls and the double combination in amended soil.

It should also be noted that the biostimulants had a positive effect 
on maize cob parameters (Table 3). Indeed, an improvement of CFW 
was highly noted under WW when plants were cultivated in soil-
amended Co combined with microbes. In contrast, this parameter 
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improved by MyBa without Co compared with their controls. Compared 
with their unstressed controls, My and/or Ba without and with Co, were 
the most distinctive treatments (p < 0.05) for the improvement in 
CL. However, in the DS conditions, the values of this parameter were 
higher in plants inoculated with Ba without Co than in its presence with 
microbes compared with Ctr−. It should be noted that inoculation with 
MyBa had a beneficial effect on CD compared with Ctr− under DS 
conditions. Under the same conditions and compared with Ctr−, GLC 
was improved in plants grown in soil amended with Co alone or in 
combination with microbial consortia. Double microbial inoculation in 
the presence of Co positively increased GN whatever the water regime 
imposed compared to maize plants grown in soil free of Co and Ctr−.

The yield of plants exposed to DS was negatively affected 
compared with plants interacting with biostimulants applied alone or 
in combination (Table 3). The TGW was highest in plots where plants 
received the dual inoculation and grown in Co amended soil 
(CoMyBa) than treated with N-P-K, My and Ba, i.e., 31, 18.70, 16.88, 
and 16%, respectively under 100% ETc compared to the Ctr−. On the 
other hand, under DS this parameter was positively influenced by 
dual inoculation and grown in compost-amended soil by 43.27% 
compared to the Ctr−. At the end of the maize plant cycle, maximum 
yield per hectare (Mg ha−1) was obtained in plots treated with My 
without Co (13.83 ± 3.07, 106%) compared with those treated by 
MyBa in amended soil (13.27 ± 1.72, 97.83%) and Ctr−. Conversely, 
under water-limiting conditions, values were highest in plots treated 
with the double combination in amended soil (CoMyBa) than in a 
single application of Ba without Co: 10.65 ± 1.97, 175% and 
9.11 ± 1.53, 136%, respectively.

3.2 Physiological analysis

3.2.1 Stomatal conductance and chlorophyll 
fluorescence

Figure 4 shows that the physiological traits of maize plants were 
influenced by their exposure to DS and by the introduction of 
biostimulants applied alone or in interaction. In fact, stomatal 
conductance (gs) showed an increase in plants treated with Ctr+ 
compared to all treatments under 50% ETc or 100% ETc. The 
combined action of My and Ba in soil added by Co significantly 
improved gs by 133.28% than other treatments compared to the Ctr− 
WW conditions. The same combination was effective in improving 
gs as well as Ba without Co when the soil was desiccated (50% ETc) 
compared to the Ctr− (Figure 4A). As for chlorophyll fluorescence 
(Fv/Fm), the My and Ba treatments were distinctive compared with 
the other treatments by 11.34 and 10.83%, respectively under 
100% ETc.

3.2.2 Photosynthetic pigments and carotenoids
It should also be noted that DS and the biostimulants modified 

the composition of photosynthetic pigments (chlorophyll [Chl] a, 
b and total Chl) and secondary metabolites (carotenoids) (Figure 5). 
DS caused a degradation of Chl a and b as well as total Chl. 
However, the single or combined application of biostimulants 
significantly improved (p < 0.05) these physiological parameters. In 
particular, the presence of Co in the soil in association with the two 
microbial consortia (CoMyBa) accumulated significantly (p < 0.05) 
more Chl a, Chl b and total Chl by 77, 95 and 83%, respectively T
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compared with Ctr− under DS. In addition, under WW conditions, 
the leaves of plants treated with the bacterial consortium (Ba) 
without Co accumulated significantly 71% of Chl a, 92% of Chl b, 
78% of total Chl and 60% of carotenoids compared to the unstressed 
and untreated Ctr− (Figures  5A–C). Similarly, biostimulants 
induced significant synthesis of carotenoids under DS, particularly 
in amended plots treated by My and Ba (73%) compared with MyBa 
(53%) without amendment versus Ctr− (Figure 5D).

3.2.3 Leaf area (LA)
A remarkable effect (p < 0.05) on LA was observed in maize plots 

treated with Ba alone (589.15 ± 15.34, 27%) or with Ctr+ 
(559.42 ± 45.84, 21.5%) or with CoMyBa (541.87 ± 20.19, 17%) under 
WW conditions. Under DS, the leaves of plants treated with the triple 
combination (CoMyBa) had a larger leaf area (474.07 ± 30.94, 16.8%) 
than those treated with microbes without Co and compared with 
Ctr− (Figure 6A).

3.2.4 Normalized difference vegetation index 
(NDVI)

As NDVI is used in agriculture to assess the vigor and greenness 
of the vegetation, we tried to compare their variations with other 
physiological parameters for different treatments. The results in 
Figure  6B show that NDVI values fall where maize plants are 
irrigated at 50% ETc. On the other hand, under the same water 
regime, the incorporation of biostimulants into the soil improved 
NDVI values from 0.54 to 0.69. CoMyBa and Ctr+ were treatments 
that improved this index in maize plants by 27 and 23%, respectively, 
compared with all treatments without Co and Ctr−. On the contrary, 
under normal irrigation conditions, the highest NDVI values were 
observed in treated plants My, CoMyBa and Ba compared to 
Ctr− (Figure 6B).

3.3 Biochemical behavior

3.3.1 Enzymatic activity
Reducing irrigation from 100% ETc to 50% ETc increased leaf 

enzyme activity. DS caused a significant increase in polyphenol oxidase 
(PPO) and catalase (CAT). High PPO enzyme activity was observed in 
Ba-treated plants than those treated by microorganisms in amended 
soil followed by Ctr− treated plants that were neither inoculated, 
fertilized nor amended under DS (Table 4). On the other hand, under 
the same conditions, CAT activity was highest in plants receiving 
CoMy, followed by untreated plants (Ctr−) and those inoculated with 
Ba (Table 4). Consequently, maize plants inoculated with My and Ba 
in amended soil had lower enzymatic activity of PPO and CAT.

3.3.2 Osmotic adjustment regulation
From a metabolic point of view, DS and biostimulants have 

increased the content of osmotic substances. The greatest 
accumulation of proline (p < 0.05) was noted in plants treated with 
N-P-K (Ctr+) by 92.90% as well as those treated with biostimulants 
alone (Ba: 64.32% and My: 57.30%) or combined (BaCo: 54.27% and 
CoMy: 42.95%) under severe irrigation conditions (DS) compared 
with untreated plants (Table 4). Similarly, an effect of biostimulants on 
total soluble sugar (TSS) levels was noted mainly in plants grown in 
plots to which Co was added and inoculated with Ba (68.33%) 
followed by plants inoculated by MyBa (45.85%) compared with 
plants treated by double combination in amended soil and with 
Ctr− (Table 4).

3.3.3 Stress markers
Stress markers such as hydrogen peroxide (H2O2) and 

malondialdehyde (MDA) were assessed to determine the damage 

FIGURE 2

Microscopic observation (×100) of mycorrhizal structures in (A) untreated plants, (B) plants treated by arbuscular mycorrhizal fungi, (C) plants treated 
by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria and (D) plants treated by compost and arbuscular mycorrhizal fungi and 
plant growth promoting rhizobacteria.
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TABLE 3 Effect of two irrigation levels and biostimulants on yield traits of maize plants.

Treatments Cob length (cm) Cob  
diameter (mm)

Cob fresh weight (g) Grain line/cob Grains number/cob Thousand grains 
weight (g)

Yield (Mg  ha−1)

WW DS WW DS WW DS WW DS WW DS WW DS WW DS

Ctr−
15.6 ± 1.1 

b-d
14.6 ± 0.1 d 38.2 ± 1.6 a 37.8 ± 1.3 a 132.5 ± 18.1 cd 116.3 ± 9.0 d 11.8 ± 0.4 a 11.6 ± 0.7 a 352.4 ± 26.8 ab 295.3 ± 56.1 b 292.7 ± 5.1 ab 229.5 ± 15.8 b 6.6 ± 0.1 ab 3.8 ± 1.1 b

Ctr+
16.7 ± 0.8 

a-d

16.7 ± 0.5 
a-d

42.9 ± 1.4 a 41.5 ± 1.6 a 173.7 ± 2.5 a-d 180.1 ± 9.3 a-c 12.6 ± 0.1 a 12.6 ± 0.8 a 407.4 ± 23.7 ab 371.8 ± 10.2 ab 347.5 ± 5.6 ab 291.5 ± 28.1 ab 10.5 ± 1.1 ab 8.4 ± 1.5 ab

Ba 18.3 ± 0.3 a 17.5 ± 0.6 a-c 40.0 ± 0.4 a 39.3 ± 1.4 a
170.5 ± 10.6 

a-d
151.2 ± 9.4 a-d 13.0 ± 0.2 a 12.2 ± 0.5 a 402.4 ± 34.5 ab 367.0 ± 16.8 ab 339.5 ± 2.5 ab 313.3 ± 28.8 ab 11.2 ± 1.9 ab 9.1 ± 1.5 ab

My 18.3 ± 0.1 a
16.0 ± 0.2 

a-d
43.7 ± 0.5 a 38.5 ± 2.8 a 195.0 ± 9.0 ab

134.2 ± 24.5 
b-d

13.0 ± 0.5 a 12.3 ± 0.4 a 439.4 ± 38.1 ab 390.5 ± 31.2 ab 342.2 ± 28.0 ab 310.6 ± 57.3 ab 13.8 ± 3.0 a 7.6 ± 0.8 ab

Co 17.8 ± 0.1 a-c 15.2 ± 0.5 cd 40.4 ± 0.9 a 40.8 ± 1.8 a 178.2 ± 6.8 a-d 146.4 ± 7.2 a-d 12.5 ± 0.2 a 13.0 ± 0.5 a 383.7 ± 13.4 ab 353.8 ± 30.6 ab 300.6 ± 15.3 ab 306.7 ± 15.6 ab 9.0 ± 1.2 ab 6.8 ± 1.4 ab

MyBa
17.0 ± 0.1 

a-d

16.7 ± 0.2 
a-d

41.1 ± 0.8 a 41.6 ± 0.35 a 168.5 ± 1.5 a-d 175.2 ± 3.5 a-d 12.6 ± 0.1 a 12.4 ± 0.3 a 442.0 ± 5.6 ab 386.6 ± 22.0 ab 281.0 ± 21.9 ab 256.1 ± 34.4 b 11.5 ± 0.5 ab 7.4 ± 0.3 ab

BaCo
16.8 ± 0.2 

a-d

16.4 ± 0.5 
a-d

41.7 ± 0.2 a 39.1 ± 1.32 a 164.8 ± 3.0 a-d 136.9 ± 8.4 b-d 13.0 ± 0.2 a 12.6 ± 0.1 a 412.5 ± 31.0 ab 343.3 ± 32.9 ab 308.5 ± 38.0 ab 306.4 ± 21.7 ab 9.6 ± 1.0 ab 7.8 ± 2.5 ab

CoMy
16.6 ± 0.5 

a-d

15.5 ± 0.6 
b-d

41.1 ± 0.9 a 38.1 ± 1.4 a
176.2 ± 25.2 

a-d
131.1 ± 10.3 cd 12.3 ± 0.6 a 12.8 ± 0.1 a 366.1 ± 53.5 ab 358.1 ± 28.3 ab 317.7 ± 9.4 ab 269.3 ± 15.3 ab 7.8 ± 0.7 ab 6.2 ± 0.5 ab

CoMyBa 18.1 ± 0.0 ab
16.9 ± 0.1 

a-d
44.1 ± 0.7 a 41.0 ± 1.9 a 199.2 ± 11.0 a 170.0 ± 2.8 a-d 13.3 ± 0.2 a 12.6 ± 0.4 a 467.2 ± 16.5 a 452.4 ± 37.8 ab 385.4 ± 6.2 a 328.8 ± 12.5 ab 13.2 ± 1.7 a 10.6 ± 1.9 ab

WW, well-watered; DS, drought-stressed; Ctr−, untreated plants; Ctr+, plants treated by NPK; Ba, plant growth promoting rhizobacteria; My, arbuscular mycorrhizal fungi; Co, compost; MyBa, arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria; 
BaCo, plant growth promoting rhizobacteria and compost; CoMy, compost and arbuscular mycorrhizal fungi; CoMyBa, compost and arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria.
Values are means ± SE for five biological replicates. The values of each column labeled with different letters indicate significant differences assessed by Tukey’s test (p < 0.05). Data were taken at the reproductive/milk stage and after harvesting.
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induced by DS. Plants irrigated with 50% ETc accumulated high levels 
of H2O2, especially in plants treated with Co, Ctr− compared to the 
plants under 100 ETc. However, under the same water conditions, a 
significant reduction in H2O2 was observed in plants fertilized with 
N-P-K, BaCo and My, i.e., −51, −29, and −27%, respectively compared 
with plants treated by MyBa in amended soil and Ctr− (Table 4). 
Similar to H2O2, DS significantly increased MDA levels (p < 0.05). 
However, plants treated with BaCo, CoMy, Ba, Co, MyBa, and 
CoMyBa were able to attenuate MDA concentration by −46.91, 
−46.64, −45, −34, −28, and −15%, respectively compared to 
Ctr− (Table 4).

3.4 Soil properties and Glomalin content 
after harvest

Table  5 shows the results of the effects of the biostimulants 
applied on glomalin, available phosphorus (AP), nitrogen (N), total 
organic matter (TOM) and total organic carbon (TOC) under WW 
and DS conditions. Plots supplemented with Co alone or in 
association with microorganisms contained more TOM and TOC, 
in particular, CoMy (13.7%), BaCo (13.7%), Co (11.81%), and 
CoMyBa (7.87%) under WW than under Ctr−. On the other hand, 
under DS, the plots designated CoMy and CoMyBa had soils rich 
in TOM and TOC, 26 and 22% respectively, compared with the 
untreated plots. In addition, the biostimulants had a positive impact 
on the bioavailability of AP and N whatever the water regime 
imposed. For example, AP values reached their maximum in plots 
amended with Co (20%) and its combination with My (18%) under 
normal irrigation conditions. However, when irrigation was 
reduced to 50%, the percentage of AP fell to 65, 29, and 21% in the 
soils of plots treated with N-P-K (Ctr+), BaCo and CoMyBa, 
respectively, compared with Ctr−. An improvement in N was noted 
when biostimulants were introduced into the soil. Of all the 
treatments, CoMy, Ctr+, Co, and My appear to be the best in terms 

of N content, i.e., 100, 94, 38, and 38% compared with Ctr−. On the 
other hand, under DS conditions, the highest values were recorded 
in the plots inoculated with My compared with the Ctr− plots. Post-
harvest soil pH varied between 7.1 and 8.4. Soil drying produced a 
slight increase in pH, especially in the plots amended and inoculated 
with the two microbial consortiums (CoMyBa) compared with all 
the treatments. Electrical conductivity (EC) was also modified by 
the effect of the biostimulants and the water regimes applied. Values 
for this parameter ranged from 0.4 to 1.15 mS/cm. Low EC values 
were recorded in plots inoculated with MyBa and My under DS and 
WW, respectively, compared with the other treatments. Glomalin 
levels changed from one treatment to another. Moreover, under 
normal irrigation conditions, glomalin was improved in plots 
treated with CoMy, Co and My i.e., 25.7, 25.4 and 20%, respectively 
compared with the untreated plots. However, under DS glomalin 
was increased only when the soil was fertilized with N-P-K 
compared with Ctr−. However, the incorporation of biostimulants, 
either separately or in combination, improved this physicochemical 
property, while a significant increase (p < 0.05) was observed when 
the soil was treated with CoMyBa under both favorable and 
unfavorable water regimes, with an improvement of 41 and 50%, 
respectively, compared with the soil from untreated plots. 
Compared with non-amended plots, the double microbial 
application in compost-treated plots improved cation exchange 
capacity (CEC) regardless of the water regime applied.

3.5 Pearson correlation and principal 
component analysis

The results in Figure 7 show that the parameters measured on the 
leaves and ears of maize, together with the physicochemical 
characteristics of the soil, are positively and negatively correlated, with 
Person coefficients ranging from 1 to −1. Indeed, a strong positive 
correlation (>0.5) was revealed between physiological parameters (gs, 

FIGURE 3

Illustration of the effect of drought stress (50% ETc) and biostimulants on morphological traits of maize plants. (A) Ctr−, untreated plants; (B) Ba, plants 
treated by plant growth promoting rhizobacteria; (C) CoMyBa, plants treated by compost and arbuscular mycorrhizal fungi and plant growth 
promoting rhizobacteria.
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Fv/Fm, LA, NDVI, Chl a, Chl b, Total Chl, and Car) and phenotypic 
traits linked to biomass and maize grain yield (Y, TGW, GLC, GNC, 
CFW, CD, CL, RDW and SDW). MI also correlates positively with 
physiological parameters. Soil CEC also aligns positively with TGW 
with a coefficient of 0.59. Conversely, a negative correlation was 
observed between H2O2 and the phenotypic and physiological traits 
of maize plants.

Principal component analysis (PCA) revealed a total variability 
of 51.9%, with PC1 = 40.3% and PC2 = 11.6% for all the parameters 
evaluated in maize plants and soil treated or not with biostimulants 
under normal or stressed conditions (Figure  8). Under these 
conditions, biostimulants applied as a single or combined action had 
a positive effect on physiological, biochemical, growth and yield 
parameters. PCA of individuals detected along the PC1 axis, a 
positive association between the Ba, My, MyBa, and CoMyBa 
treatments under normal irrigation conditions and the CoMyBas 
treatment under water stress conditions. This aligns with PCA 
variables on the same axis through a strong contribution (>3) 
observed concerning the effect on growth parameters (Y, TGW, GLC, 
GNC, CFW, CD, CL, RDW, and SDW), physiology (gs, Fv/Fm, LA, 

NDVI, Chl a, Chl b, Total Chl, and Car) as well as 
mycorrhization intensity.

3.6 Hierarchical ascending classification 
and parallel coordinates plots

Hierarchical ascending classification (HAC) was performed on 
the average of the various parameters studied per treatment in order 
to group them into homogeneous classes. Analysis of this dendrogram 
shows that the 18 treatments were divided into five (5) groups. 1: Ba 
and CoMyBa; 2: Ctrp, My, CoMyBas, BaCo, Co and CoMy; 3: Ctrns, 
Cos, CoMys, Bas and Mys; 4: Ctrn; 5: MyBa, MyBas, Ctrps and BaCos 
(Figure 9A).

Analysis of parallel coordinate plot (PCP) in relation with HAC 
showed the origin of dissimilarity between treatments applied under 
normal or stressed irrigation conditions based on the parameters 
studied. Groups 1 (green) and 2 (violet) represent treatments that 
increased growth and physiological parameters under normal 
irrigation conditions, compared with group  4 (Ctrn). It should 

FIGURE 4

Effect of two irrigation levels and biostimulants on (A) stomatal conductance and (B) chlorophyll fluorescence of maize plants. WW, well-watered; DS, 
drought-stressed; Ctr−, untreated plants; Ctr+, plants treated by NPK; Ba, plant growth promoting rhizobacteria; My, arbuscular mycorrhizal fungi; Co, 
compost; MyBa, arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria; BaCo, plant growth promoting rhizobacteria and compost; CoMy, 
compost and arbuscular mycorrhizal fungi; CoMyBa, compost and arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Means (±SE; 5 
biological replicates) followed by the same letters are not significantly different at p  <  0.05 (Tukey’s HSD). Data were taken at the reproductive/milk stage.
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be  noted that the CoMyBas treatment was able to improve these 
parameters under drought stress conditions. Group 5, on the other 
hand, was responsible for an improvement in yield-related parameters 
as well as osmolyte accumulation (Prol and TSS) under water stress 
conditions compared with group 3, which included Ctrns (Figure 9B).

4 Discussion

The resilient management of agrosystems in arid and semi-arid 
zones prone to drought could be linked to the exploitation of local 
resources, such as the implementation of protocols based on the dual 
application of beneficial microbial inocula to compost-amended soil. 
The present study describes the phenotypic, physiological and 
biochemical responses of maize plants inoculated with beneficial 
microorganisms and grown in the presence and absence of compost 
under conditions of 50 and 100% ETc. Our findings revealed that the 
inoculation and amendment of the cultivated plots with biostimulants 
significantly improved phenotypic traits under normal and stressed 
conditions. This effect was remarkable in maize plants treated with 
bacterial consortium applied alone or in combination with mycorrhizal 
consortium in compost-amended plots. These results are in line with 
several studies (Baslam et al., 2011; Ben-Laouane et al., 2021; Inbaraj, 
2021; Meddich, 2022). The current advantage may result from the 
dissolution of phosphate and potassium, the complexation of iron and 
the consequent increased bioavailability of mineral elements, which 
improves plant growth under adverse conditions (Armada et al., 2015; 
Mahdi et al., 2021; Slimani et al., 2022). Improved growth and biomass 
accumulation in compost-amended inoculated maize plants could 

be explained by the ability of plant growth-promoting rhizobacteria 
(PGPR) to act through their direct and indirect mechanisms on plants, 
in particular the property of phosphate solubilization (Masciarelli et al., 
2014; Chakraborty et al., 2018). The obtained results reveal that the 
presence of PGPR in the soil stimulates root and aerial elongation of 
maize plants regardless of the moisture in the soil. This could be due to 
the ability of PGPR to activate the biosynthetic pathways of growth 
regulators, in particular, auxin where tryptophan (precursor) is 
converted to indole-3-pyruvic acid by a tryptophan aminotransferase 
(Noor et al., 2023). Auxin stimulates root elongation and root surface 
area, leading to increased chances of maximum uptake of mineral 
elements and water under drought conditions (El-sharabasy and Ragab, 
2009; Hayat et al., 2010; Vacheron et al., 2013). As long as our bacterial 
consortium is interacting with several other microorganisms in the 
experimental site, there may be a control of pathogens that can damage 
the maize crop via the release of antimicrobial and/or antifungal 
substances (Meena et  al., 2020). Another hypothesis is that 
1-aminocyclopropane-1-carboxylic acid (ACC), the direct precursor of 
ethylene in plants, is hydrolyzed, reducing ethylene levels, including 
tolerance to drought stress (Habben et al., 2014). In addition, these 
beneficial contributions may be conditioned by inoculation with the 
two bacteria (Bacillus sp. and Bacillus subtilis) in consortium bacteria. 
It has been shown that consortium application of the microorganisms 
further improved phenotypic, physiological biochemical and 
nutritional traits (Saleem et  al., 2021). In addition to the PGPR, 
compost with its composition helps plants maintain their physiological 
and water status under drought conditions (Mbarki et  al., 2018). 
Compost enriches the soil with mineral elements (P, N, K, etc.), 
bioactive substances and humic organic matter (Steiner et al., 2007; Yu 

FIGURE 5

Effect of two irrigation levels and biostimulants on chlorophyll a (A), chlorophyll b (B), total chlorophyll (C) and carotenoids (D) of maize plants. WW, 
well-watered; DS, drought-stressed; Ctr−, untreated plants; Ctr+, plants treated by NPK; Ba, plant growth promoting rhizobacteria; My, arbuscular 
mycorrhizal fungi; Co, compost; MyBa, arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria; BaCo, plant growth promoting 
rhizobacteria and compost; CoMy, compost and arbuscular mycorrhizal fungi; CoMyBa, compost and arbuscular mycorrhizal fungi and plant growth 
promoting rhizobacteria. Means (±SE; 5 biological replicates) followed by the same letters are not significantly different at p  <  0.05 (Tukey’s HSD). Data 
were taken after harvesting.
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et al., 2019). This provides a suitable matrix for root expansion and 
invasion of large soil volumes, resulting in high absorption of water and 
mineral elements, which improves plant growth and development (Xu 
et al., 2018). Thanks to its structure, compost increases water retention 
in drought-affected soils (Mohd Dolit et al., 2022). Indirectly, organic 
amendments stimulate plant growth by encouraging the proliferation 
of plant-beneficial microorganisms in the soil (Viti et al., 2010; Liu 
X. et al., 2022). Compost mitigates the oxidative damage caused by 
drought stress by strengthening the antioxidant system, increasing 
photosynthetic activity and improving stomatal conductance (Anli 
et  al., 2020). It increases plant tolerance to drought stress through 
several mechanisms including (1) improved water retention in the soil, 
(2) increased nutrient retention capacity, (3) improved soil structure, 
(4) stimulation of the growth of microorganisms beneficial to plant 
growth, (5) availability of bioactive compounds such as humic 
substances capable of triggering antioxidant enzyme signaling 
pathways, and (6) significant supply of nutrients essential to the proper 
functioning of the photosynthetic apparatus (Duong et  al., 2012; 
Sharma et al., 2017; Liu et al., 2018; Adamipour et al., 2020; Meddich, 
2022; Mohd Dolit et al., 2022; Omara et al., 2022). It has been suggested 
that drought negatively reduces maize yield (Shirinbayan et al., 2019). 

This is because drought stress generally reduces nutrient uptake by 
roots and transfer to shoots, as well as transpiration rates are limited 
(Bárzana and Carvajal, 2020). During the maize crop cycle of our 
experiment, the yields obtained with normal (100% ETc) and 
incomplete (50% ETc) irrigation are equivalent to 480 and 240 mm of 
water consumed, respectively. Various geographical and climatic 
factors, such as temperature, atmospheric humidity, precipitation, 
sunshine and altitude, influence the amount of water a plant needs for 
optimal development (Masia et al., 2021). In our case, maize yield-
related parameters such as fresh ear weight, diameter, elongation, 
thousand kernel weight and ton yield per hectare were negatively 
affected by drought stress. Moreover, in this study, the yields ranged 
from 3.86 Mg h−1 for untreated plots (i.e., unfertilized, uninoculated 
and unamended) to 10.56 Mg h−1 for plots with compost, PGPR and 
AMF added to the soil under drought stress conditions. AMF have 
been reported to enhance plant growth under conditions of abiotic 
stress (Mitra et al., 2021; Akensous et al., 2022; Ouhaddou et al., 2023b; 
Silva et  al., 2023). Our investigations show that drought stress 
encouraged root colonization by mycorrhizal structures, notably 
hyphae and vesicles. This colonization was more aggressive in particular 
when the soil was amended with compost and inoculated with the 

FIGURE 6

Effect of two irrigation levels and biostimulants on (A) leaf area and (B) normalized difference vegetation index of maize plants. WW, well-watered; DS, 
drought-stressed; Ctr−, untreated plants; Ctr+, plants treated by NPK; Ba, plant growth promoting rhizobacteria; My, arbuscular mycorrhizal fungi; Co, 
compost; MyBa, arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria; BaCo, plant growth promoting rhizobacteria and compost; CoMy, 
compost and arbuscular mycorrhizal fungi; CoMyBa, compost and arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Means (±SE; 5 
biological replicates) followed by the same letters are not significantly different at p  <  0.05 (Tukey’s HSD). Data were taken at the reproductive/milk stage.
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bacterial consortium under limited water conditions. Such an increase 
is in line with the increase in agronomic, physiological and biochemical 
parameters in particular under 50% ETc. Compost can enhance 
mycorrhizal structures by improving the rhizosphere environment, 
supporting the persistence of mycorrhizal symbiosis, and ultimately 
benefiting plant health and resilience to drought stress. Enhancing root 
mycorrhization could be due to the presence of humic substances in 
compost (Pinos et al., 2019). In addition, such a tripartite combination 
performed better in improving chlorophyll a and b content, leaf area 
and normalized difference vegetation index (NDVI). These findings are 
in agreement with the results of Boutasknit et al. (2021) on the effect of 
single or combined application of biostimulants on carob plants. 
Similarly, catalase (CAT) enzymatic activity reached its maximum in 
maize plants mycorrhized in compost-amended soil. It has been shown 
that AMF to sesame plant roots induced high antioxidant enzyme 
activity and increased osmolyte accumulation, thereby increasing 
tolerance to drought and improving growth (Begum et  al., 2020; 
Gholinezhad et al., 2020). In our study, yield and thousand kernel 
weight were positively affected when maize plants were inoculated with 
AMF and/or PGPR. This could be due to good assimilation of mineral 
elements and water via AMF in favor of their extended hyphae under 
drought stress conditions (Zou et al., 2014; Zhang et al., 2018). From a 
genetic point of view, overexpression of genes encoding aquaporins was 
revealed on the surface of Glomus hyphae suggesting a better water 
supply to the plant (Li et  al., 2013). Several factors can control 
mycorrhizal symbiosis: soil texture, plant genotype, environmental 
conditions and biotic factors (Berger and Gutjahr, 2021).

The reduced efficiency of the photosynthetic apparatus under 
drought stress is closely linked to the imbalance between light capture 
and utilization, the destruction of the chloroplast structure, low 
activity of the enzyme responsible for CO2 fixation (Rubisco), and 
increased chlorophyllase activity (Sallam et al., 2019). In interaction 
with drought stress, biostimulants can improve physiological traits 
such as chlorophyll fluorescence, stomatal conductance, water 
potential, leaf area, and photosynthetic pigment synthesis (Qiao et al., 
2011; Abbaspour et  al., 2012; Liu et  al., 2015; Malik et  al., 2020; 
Soussani et al., 2023). Improvement of stomatal conductance under 
drought stress by biostimulants applied alone or in combination can 
result in adequate CO2 uptake, and consequently protein and sugar 
synthesis (Nie et al., 2015). In this study, it was demonstrated that 
double-inoculated maize plants grown in compost-amended soil 
showed a significant increase in chlorophyll a and b content as well 
as total chlorophyll under stress due to the 50% reduction of crop 
water requirement. This could be explained by high photosynthetic 
enzyme activity (Baslam et al., 2020). The improvement in chlorophyll 
fluorescence is reflected in the proper functioning of photosynthetic 
pigments in the reaction center, especially at photosystem II (Ye et al., 
2019). Numerous studies have confirmed the positive effect of 
biostimulants on the leaf area of various plants such as maize, wheat, 
lettuce, tomato and barley (Ali et al., 2011; Aini et al., 2019; Hafez 
et al., 2020; Kakabouki et al., 2020; Othmani et al., 2020). Treatment 
of plants with biostimulants under conditions of water stress can 
protect photosynthetic structures by neutralizing reactive oxygen 
species through increased antioxidant enzyme activity (Mo et al., 
2016). Similarly, our study showed that inoculation of maize plants 
with PGPR separately or combined with AMF, particularly in 
compost-amended soil increased the leaf area of maize plants under 
50% evapotranspiration. Researchers have explained this increase by T
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cell expansion under the effect of certain phytohormones, notably 
cytokinins (Franklin, 2009; Zhao et  al., 2021). It has been 
demonstrated that larger leaf areas intercept more sunlight, providing 
more energy for photosynthesis (Patil et al., 2018). Greater leaf area 
and light energy allow for more photosynthetic activity, leading to 
increased production of carbohydrates and plant growth (Wang et al., 
2015; Patil et al., 2018). One of the strategies used by plants to escape 
drought stress is osmotic adjustment, generated by a significant 
accumulation of osmolytic substances, notably proline, glycine 
betaine, organic acids and total soluble sugars (Quilambo, 2004; Chen 
and Jiang, 2010; Choudhary et al., 2022). These substances help the 
plant maintain its water balance by creating a potential difference on 
either side of the cell membrane, which calls up water from the soil 
to the roots (Iqbal and Nazar, 2015; Ghosh et  al., 2021). During 
periods of water stress, osmolytes such as sugars can act as signals to 
regulate stomatal closure, thereby reducing water loss through 
transpiration, while still maintaining an adequate supply of carbon 
dioxide for photosynthesis (Wang et  al., 2022). Proline plays an 
important role in determining protein and membrane structure, as 
well as the scavenging of reactive oxygen species (Ashraf and Foolad, 
2007). In our work, drought stress induced proline accumulation 
especially under biostimulant application as in plants grown in plots 
inoculated with AMF or PGPR. This accumulation is often due to 
overexpression of the gene encoding 1-pyrroline-5-carboxylate 
synthetase (P5CS) under abiotic stress conditions (Chun et al., 2018). 
Under drought stress, the high concentration of proline in 
AMF-inoculated plants leads to increased leaf water content, 
enhanced photosynthetic activity and significant modulation of 
sugars (Foyer et al., 2017). In this context, our study also revealed a 
significant accumulation of total leaf-soluble sugars in plants 
inoculated with bacteria and amended with compost. Indeed, studies 
have confirmed the role of sugars in the protection and osmotic 
regulation of plants in dry soils (Nayer and Reza, 2008). Nemati et al. 
(2018) found that drought-tolerant seedlings increase the synthesis 
of sugars, in particular, sucrose at the metabolic and gene expression 
level to increase energy savings and regulate cellular metabolism. 
Plant protection against drought is not only limited to the 
accumulation of osmolytes but also by an enzymatic antioxidant 
system armed with several enzymes, as our work showed. The 
synthesis of secondary metabolites is also one of the strategies used 
by plants to escape drought (Yadav et  al., 2021). The carotenoid 
pathway is an example of a metabolite that becomes highly active 
when the plant is in a drought situation. As our work showed, 
biostimulants are able to increase foliar carotenoids in maize plants 
under drought stress. Plots of maize plants treated with the tripartite 
combination (CoMyBa) were the most distinctive for improved 
carotenoid content compared with plants whose plots were not 
treated. Similarly, Begum et al. (2020) showed that inoculation of 
maize plants with Glomus versiforme improved carotenoid 
composition by 89.80% under drought stress conditions compared 
with non-mycorrhized plants. At the genetic level, Zhang et  al. 
(2021), confirmed that carotenoid synthesis in carrots was linked to 
gene 9-cis-epoxycarotenoid dioxygenase expression under severe 
water limitation. By acting on the physiological processes of plants, 
biostimulants induce positive changes in the soil, creating an 
environment suitable for crop growth and development. Drought 
stress in arid and semi-arid regions, as reported by several researchers, 
negatively affects a range of soil characteristics including available T
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phosphorus (AP), nitrogen (N), total organic matter and carbon 
(TOM and TOC), and cation exchange capacity (CEC). Tolerance to 
drought stress may begin at the soil level before reaching the above-
ground parts, via the positive effect of biostimulants on soil physico-
chemical properties. For this reason, our study also focused on soil 
measurements. Our results showed that soil enrichment with 
compost and/or AMF and/or PGPR increased total organic matter, 
AP, CEC and glomalin. Organic amendments increased the 
bioavailability of mineral elements, notably AP, N, potassium (K) and 
magnesium (Mg), which are beneficial to the growth and tolerance 
of various crops to abiotic stresses (Benaffari et  al., 2022). The 
presence of compost and/or microorganisms in the soil had a huge 
impact on the formation and stabilization of soil agglomerates, 
improved soil CEC and increased nutrient retention, thereby 
increasing the uptake of nitrogen, phosphorus and potassium by 

cereals under drought stress (Seneviratne et al., 2011; Sharma et al., 
2017; Liu X. Q. et al., 2022; Ikan et al., 2023). The high CEC values in 
our study site in particular, plots receiving all three biostimulants at 
the same time, translates into good soil fertility, and good retention 
of mineral elements. This also means that the clay-humus complex 
retains cations such as calcium (Ca2+), sodium (Na+) and potassium 
(K+) and releases them into the soil solution according to its pH 
(Seneviratne et al., 2011). It has been postulated by several scientific 
reports that amending soils with different types of biochar improves 
their CEC, and therefore their fertilities, which improves plant 
growth (Agegnehu et al., 2016). Artiola et al. (2012) suggested that 
the increased water retention capacity of soil under drought stress 
could be due to the higher CEC and porous structure of biochar. The 
high levels of AP observed in the soil after harvesting maize plants, 
especially in plots treated with compost in association or not with 

FIGURE 7

Pearson correlation analysis, describing the relationship between phenotypic, physiological and biochemical traits as well as soil physicochemical 
properties. SH, shoot height; RL, roots length; SDW, shoot dry weight; RDW, root dry weight; SD, stem diameter; CFW, cob fresh weight; CL, cob 
length; CD, cob diameter; GLC, grains lines number per cob; GNC, grains number per cob; TGW, thousand grains weight; Y, yield; Fv/Fm, chlorophyll 
fluorescence; gs, stomatal conductance; NDVI, normalized difference vegetation index; LA, leaf area; Chl a, chlorophyll a; Chl b, chlorophyll b; Total 
Chl, total chlorophyll; Car, carotenoids; MI, mycorrhizal intensity; MF, mycorrhizal frequency; H2O2, hydrogen peroxide; MDA, Malondialdehyde; PPO, 
polyphenoloxidase activity; CAT, catalase; TSS, total soluble sugars; Prol, proline; EC, electrical conductivity; TOM, total organic matter; TOC, total 
organic carbon; AP, available phosphorus; N, nitrogen; Glo, glomalin; CEC, cation exchange capacity.
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microbes, may be at the origin of the compost itself in a direct way or 
through the action of PGPRs in an indirect way. The stability of soil 
aggregates plays an important role in soil quality, protecting soil 
organic matter from microbial decomposition and preventing the 
degradation of soil structure. The stability of the soil’s aggregates is 
crucial to its quality because it shields the organic matter from 
microbial degradation and prevents the structure of the soil from 
deteriorating. The improvement of soil quality is correlated with 
some microbe secretions, such as glomalin released by AMF (Wright 
et al., 1998). This substance’s hydrophobic characteristic enables it to 
stabilize soil particle formation (Singh, 2012). It has been shown that 
there is a strong correlation between the content of glomalin and the 
stability of soil aggregates (Wright and Anderson, 2000). Our findings 
show that the glomalin improved in the presence of compost and 
AMF under 100% ETc. In this context, Zhang et al. (2014), revealed 
that the stability of soil aggregates was enhanced by the addition of 
organic amendment thanks to soil particle binding agents, in 
particular glomalin (Zhang et al., 2014). It has been reported that 
glomalin plays a vital part in the soil that allows plants to tolerate 
abiotic stress (Chi et al., 2018). This may be due to the formation of 
a hydrophobic layer on the surface of the aggregates, preventing the 
loss of water and nutrients from plants exposed to abiotic stress (Wu 
et  al., 2008). Consequently, it is important to point out that the 
biostimulants applied in this study under drought stress, respond 
positively in two facets, in the soil and in the maize plants.

Factors influencing the adoption and success of biostimulants 
applications include local agricultural practices, which vary widely 
and impact the integration of new technologies like biostimulants 
(Shahrajabian et al., 2023). Land management practices, such as soil 

preparation and fertility management, also play a crucial role in 
determining the effectiveness of biostimulants (Castiglione et al., 
2021). Socio-economic conditions, including economic viability, 
farmer attitudes, and market dynamics, significantly influence 
adoption rates (Wazeer et al., 2024). Understanding and addressing 
these diverse factors are essential for effectively implementing 
biostimulants strategies tailored to local agricultural contexts.

5 Conclusion

In light of the results obtained, it is crucial to point out that the 
introduction of biostimulants into agrosystems in arid and semi-arid 
regions, using the technology of combining compost, Arbuscular 
mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria 
(PGPR), proves to be an ecological approach aimed at protecting 
maize plants against drought damage. The effect of biostimulants on 
maize plants under two levels of water based on crop 
evapotranspiration (ETc), 100 and 50%, was evaluated by assessing 
phenotypic, physiological, biochemical and nutritional traits. 
Inoculation with microbes and/or organic amendment boosted the 
growth, thousand-seed weight and yield of maize plants under 
drought stress conditions by positively affecting stomatal 
conductance, photosynthetic pigment content, leaf area and the 
normalized difference vegetation index (NDVI). In other words, 
tolerance to drought stress via the application of biostimulants is at 
the origin of the attenuation of stress markers accompanied by an 
accumulation of osmolytes and the reinforcement of antioxidant 
enzyme activity. Hierarchical ascending classification and parallel 

FIGURE 8

Principal component analysis (PCA: individuals and variables) of all the parameters measured for maize under two irrigation levels and biostimulants. 
Ctrn, untreated plants; Ctrp, plants treated by NPK; Ba, plant growth promoting rhizobacteria; My, arbuscular mycorrhizal fungi; Co, compost; MyBa, 
arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria; BaCo, plant growth promoting rhizobacteria and compost; CoMy, compost 
and arbuscular mycorrhizal fungi; CoMyBa, compost and arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. SH, shoot height; RL, 
roots length; SDW, shoot dry weight; RDW, root dry weight; SD, stem diameter; CFW, cob fresh weight; CL, cob length; CD, cob diameter; GLC, grains 
lines number per cob; GNC, grains number per cob; TGW, thousand grains weight; Y, yield; Fv/Fm, chlorophyll fluorescence; gs, stomatal 
conductance; NDVI, normalized difference vegetation index; LA, leaf area; Chl a, chlorophyll a; Chl b, chlorophyll b; Total Chl, total chlorophyll; Car, 
carotenoids; MI, mycorrhizal intensity; MF, mycorrhizal frequency; H2O2, hydrogen peroxide; MDA, Malondialdehyde; PPO, polyphenoloxidase activity; 
CAT, catalase; TSS, total soluble sugars; Prol, proline; EC, electrical conductivity; TOM, total organic matter; TOC, total organic carbon; AP, available 
phosphorus; N, nitrogen; Glo, glomalin; CEC, cation exchange capacity; s, stress.
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coordinate plot analyses results showed that PGPR alone and 
PGPR + Compost + AMF are the best-performing treatments in terms 
of tolerance to drought stress, compared with all other treatments. In 
addition, biostimulants positively modified soil quality, which in turn 
improved maize plant growth under drought stress. Despite these 
positive statements, certain limitations need to be taken into account. 
The results are specific to these geographical conditions, and their 
generalization to other regions or climates requires further study. In 
addition, the study was carried out over a relatively short period, 
which limits the assessment of long-term effects on soil health and the 
sustainability of practices. The efficacy of biostimulants on crops 
other than maize also remains to be  explored. Furthermore, the 
complex interactions between PGPRs, AMFs and compost may vary 
according to environmental conditions, requiring further research on 
a large scale to optimize these synergies. Finally, certain aspects, such 
as the impact on soil biodiversity or long-term nutrient cycles, have 
not been studied and merit further investigation. We, therefore, 
advise farmers to turn to this kind of sustainable biological technology 

to preserve agricultural ecosystems against the degradation caused by 
drought waves.
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