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Antimicrobial resistance mediated by extended-spectrum beta-lactamase (ESBL)- 
and plasmid-mediated cephalosporinase (AmpC)-producing Enterobacterales, 
as well as carbapenemase-producing Enterobacterales have globally increased 
among companion animals, posing a potential health risk to humans in contact 
with them. This prospective longitudinal study investigates the transfer of ESBL/
AmpC- and carbapenemase-producing Enterobacterales between companion 
animals and their cohabitant humans in Portugal (PT) and the United Kingdom 
(UK) during animal infection. Fecal samples and nasal swabs collected from dogs 
and cats with urinary tract infection (UTI) or skin and soft tissue infection (SSTI), and 
their cohabitant humans were screened for resistant strains. Relatedness between 
animal and human strains was established by whole-genome sequencing (WGS). 
ESBL/AmpC-producing Enterobacterales were detected in companion animals 
(PT  =  55.8%; UK  =  36.4%) and humans (PT  =  35.9%; UK  =  12.5%). Carbapenemase-
producing Enterobacterales carriage was observed in one dog from Portugal 
(2.6%) and another dog from the UK (4.5%). Transmission of index clinical ESBL-
producing Escherichia coli and Klebsiella pneumoniae strains to cohabitant 
humans was observed in three Portuguese households (6.9%, n  =  43), with 
repeated isolation of the index strains on fecal samples from the animals and 
their cohabiting humans. In addition, longitudinal sharing of E. coli strains carried 
by companion animals and their owners was observed in other two Portuguese 
households and two households from the UK. Furthermore, a multidrug-
resistant ACT-24-producing Enterobacter hormaechei subsp. hoffmannii strains 
were also shared within another Portuguese household. These results highlight 
the importance of the household as an epidemiological unit in the efforts to 
mitigate the spread of antimicrobial resistance, further emphasizing the need 
for antimicrobial surveillance in this context, capable of producing data that can 
inform and evaluate public health actions.
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1 Introduction

The gastrointestinal tract is an important reservoir for 
antimicrobial-resistant Enterobacterales that may cause both intestinal 
and extraintestinal infections (Geurtsen et  al., 2022). One critical 
mechanism driving antimicrobial resistance (AMR) in 
Enterobacterales involves the enzymatic inactivation of a wide range 
of beta-lactam antimicrobials, including third- and fourth-generation 
cephalosporins (3GCs and 4GCs) through the action of extended-
spectrum β-lactamases (ESBLs) and plasmid-mediated 
cephalosporinases (AmpCs), and also carbapenem inactivation by 
carbapenemase-producing Enterobacterales (CPE) (Eiamphungporn 
et al., 2018). These medically important antimicrobials are critical in 
the management of serious infections caused by multidrug-resistant 
bacteria, and resistance to them poses a significant public health 
concern (World Health Organization, 2024).

Antimicrobial use can increase the burden of AMR, leading to 
long-term disturbance of commensal bacterial populations and 
prolonged carriage of antibiotic-resistant strains in the host environment 
even in the absence of selective pressure (Jernberg et al., 2010; Schmidt 
et al., 2018). In the endeavor to attenuate the emergence of resistance 
within the veterinary settings, the European Medicines Agency (EMA) 
has categorized 3GCs and 4CGs as ‘Restrict’ (Category B) in veterinary 
medicine and carbapenems as ‘Avoid’ (Category A) (EMA, 2019), the 
latter being recently classified as authorized only for use in humans by 
the World Health Organization (WHO), over concerns regarding the 
impact of the development of resistance in animals on humans (World 
Health Organization, 2024). However, the prevalence of ESBL- and 
AmpC-producing Enterobacterales (ESBL/AmpC-E) as well as CPE 
strains has been increasing worldwide in companion animals (Grönthal 
et al., 2018; Hong et al., 2020; Dazio et al., 2021).

ESBL/AmpC-E and CPE strains carried by companion animals 
are of particular One Health concern as they may act as a reservoir for 
self-infection and further transmit resistance genes and/or pathogens 
into other hosts including humans, other animals, and the 
environment (Damborg et al., 2016; Pomba et al., 2020; Donà et al., 
2023). The close contact between humans and companion animals 
provides ample opportunities for the exchange of microbiota, 
potentially facilitating the spread of AMR (Pomba et al., 2020). Recent 
studies have shown that these bacteria can be transmitted between 
pets and their owners, indicating a bidirectional flow of resistant 
strains (Grönthal et al., 2018; Toombs-Ruane et al., 2020; Van Den 
Bunt et al., 2020). However, little is known about the dynamics of 
transmission in humans and companion animals belonging to the 
same household, particularly from sick companion animals to their 
healthy owners.

We hypothesize that companion animals under antibiotic 
treatment will share resistant bacteria with their cohabitant humans. 
As such, this study aims to explore the contribution of companion 
animals under antibiotic treatment in the AMR dissemination to the 
community setting. Hence, to assess the within-household 
transmission of resistant bacteria, a prospective and longitudinal study 
was conducted to describe the molecular epidemiology and evaluate 
the sharing of ESBL/AmpC-E and CPE strains between companion 
animals under antimicrobial treatment for skin and soft tissue 
infections (SSTI) or urinary tract infections (UTIs) and their 
cohabitant humans in the community. The sharing of ESBL/AmpC- 
and carbapenemase-producing strains was analyzed with two 

approaches, after the detection of their carriage among companion 
animals and their cohabitant humans: (i) the transmission of the 
animals’ clinical pathogenic strain to their cohabitant household 
humans and (ii) the transfer of resistant strains between infected 
companion animals under antibiotic therapy and their cohabitant 
humans, resulting in carriage and/or colonization. This was a 2-year, 
multicenter study conducted in Lisbon, Portugal, and the South-East 
United Kingdom (UK).

2 Materials and methods

2.1 Ethics approval

Ethical clearance for the collection of samples from humans and 
companion animals was obtained from the Faculty of Veterinary 
Medicine, University of Lisbon (FMV-ULisboa) Ethics Committee for 
Research and Education and the Royal Veterinary College (RVC) 
Ethics and Welfare Committee (ethics reference number: CEBEA 
027/2018 and URN 2017 1750–3, respectively). Written consent for 
sample collection and the use of participants’ anonymized 
questionnaire-derived data was obtained from owners prior to 
enrollment in the study. Research was conducted in accordance with 
the Declaration of Helsinki and national and institutional standards.

2.2 Study design and setting

This study was part of an international prospective longitudinal 
observational study conducted at the Small Animal Veterinary 
Teaching Hospital of the Faculty of Veterinary Medicine, University 
of Lisbon, Portugal, and the RVC Small Animal Veterinary Referral 
Service, Royal Veterinary College, Hatfield, UK.

Between 2018 and 2021, dogs (n = 60) and cats (n = 5) that were 
presented to the veterinary hospitals for care for infection consultations 
were enrolled on a voluntary basis, together with their cohabitant 
humans (n = 102), if they fulfilled the criteria for diagnosis of the 
following infections: UTI according to the International Society of 
Companion Animal Infectious Diseases (ISCAID) guidelines (Weese 
et al., 2019), SSTI according to results of diagnostic tests (e.g., cytology 
and/or culture), and typical clinical signs of superficial pyoderma, deep 
pyoderma, and wound infections. Other inclusion criteria for 
enrollment of companion animals and humans were as follows: (i) no 
systemic antimicrobial therapy in the last 3 months; (ii) no topical 
antimicrobial therapy 2 days before sampling; and (iii) have lived 
together for at least 3 months (cohabitant). To ensure that participation 
was anonymous, households, humans, and animals were coded.

Epidemiological questionnaires assessing participants’ general 
health status, current or previous medical treatments, and exposure to 
healthcare facilities, were filled out by the human participants. In 
addition, owners were asked about their animal’s lifestyle, diet, contact 
with other animals, and closeness of the contact with their human 
counterparties, such as kissing/licking the owner’s face. For all 
variables on the questionnaire, the option ‘Prefer not to answer’ was 
available. The number of answers collected for any specific factor 
depended on whether the owner decided to disclose the information. 
Questionnaire variables and responses, by country, are listed in 
Table 1.

https://doi.org/10.3389/fmicb.2024.1432240
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Menezes et al. 10.3389/fmicb.2024.1432240

Frontiers in Microbiology 03 frontiersin.org

2.3 Sample collection

Samples were collected, immediately after enrollment (T0), 1 week 
after antimicrobial treatment started (T1), 1 month after antimicrobial 
treatment started (T2), and 2 months after antimicrobial treatment 
started (T3) (Table 2). At each timepoint, the inclusion criteria were 
reviewed, and participants were excluded if any change was reported. 
Epidemiological variables were also monitored to ensure that changes 
in these factors, such as household environment, that could be possible 
contamination sources, were accounted for throughout the study. 
Acquisition of follow-up samples depended on the owner’s willingness 
to continue to participate in the study with their respective companion 
animal. For these reasons, at T1, sample collection was performed 
only for 18 households in Portugal and only in one household in the 
UK, while for T2, 19 households from Portugal and 16 households 
from the UK were studied. Some participants did not deliver samples 
a week after the enrollment and returned to give samples a month later 
at T2 (Table 2).

At each time point, animals were evaluated by the attending 
veterinarian, and infection samples were collected and analyzed by the 
hospital’s Microbiology diagnostic laboratory according to standard 
procedures. In Portugal, the clinical strains were subsequently 
molecularly characterized for research purposes.

Instructions for at-home fecal sample collection were given to the 
owners. Human feces were to be collected directly into sterile plastic 
containers or by using ‘FeCol’ feces collection papers (Alpha 
Laboratories Ltd., United Kingdom) and then transferred into a sterile 
plastic container. Infant fecal samples were collected from diapers by 
their parents. Companion animal’s partial fecal samples (that did not 
touch the ground) were collected using sterile gloves and placed into 
a sterile container. Nasal swabs were collected by an attending 
veterinarian; in brief, a single sterile cotton swab was inserted 
approximately 1  cm into one nostril and then rotated along the 
mucous membrane for 5 s. The samples were stored for a maximum 
of 48 h at 4°C until processing.

2.4 Sample processing

One gram of homogenized fecal sample was added to 10 mL of 
sterile 0.85% NaCl (Merck, Germany) solution and mixed 
thoroughly by vortexing. Ten microliters of fecal suspension were 
plated onto MacConkey agar plates (Biokar Diagnostics, France) 
with and without 1.5 μg/mL of cefotaxime (Sigma-Aldrich, US) or 1 
μg/mL meropenem (Sigma-Aldrich, US) supplementation; 
MacConkey agar plates containing temocillin 30μg disk (Mast 
Group, UK) were used as phenotypic indicator of OXA-48-like 
production (Da Silva et al., 2022). To improve the detection of low 
numbers of resistant bacteria, 1 g of feces was also diluted in 10 mL 
of sterile buffered peptone water (Biokar Diagnostics, France) and 
incubated at 36 ± 1°C for 24 h, followed by inoculation of 10 μL onto 
selective plates as described above. Nasal swabs were inoculated in 
3 mL of NaCl 0.85% (Merck, Germany), and then 100 mL of this 
were streaked on selective media described above. After overnight 
incubation at 36 ± 1°C, up to five resistant suspected colonies of each 
different morphology were isolated and stored in 20% glycerol 
(Sigma-Aldrich, US) brain heart infusion broth (Biokar Diagnostics, 
France) at −20°C until processing.

2.5 Molecular characterization of isolates

Bacterial DNA was extracted by heat lysis and centrifugation for 
all obtained isolates (Féria et al., 2002) and species identification was 
performed by 16S rRNA gene sequencing, as described elsewhere 
(Salisbury et  al., 1997). An extended PCR scheme described by 
Doumith et al. (2012) was used to assign the Escherichia coli isolates 
to one of the four major phylogroups (A, B1, B2, and D).

Genetic relationships between all E. coli isolates were initially 
determined by repetitive element sequence-based PCR (REP-PCR) 
typing (Versalovic et al., 1991). Persistence was defined as the isolation 
of strains with matching molecular profiles (REP-PCR and resistance 
determinants) from repeated samples of the same subject.

All isolates were tested for the presence of specific ESBLs (blaCTX-

M-type, blaTEM, and blaSHV) (Eckert et  al., 2006; Pomba et  al., 2006), 
AmpC variants (blaCIT-type, blaFOX-type, blaMOX-type, blaDHA-type, blaACT-type, 
and blaMIR-type) (Marques et al., 2019), and carbapenemases (blaAIM, 
blaDIM, blaGIM, blaSIM, blaIMP, blaVIM, blaSPM, blaNDM, blaKPC, blaBIC, and 
blaOXA-48-like) (Poirel et  al., 2011) encoding genes by PCR and 
sequencing, due to their clinical relevance, prevalence in antimicrobial 
resistance, and major public health impact (Bevan et  al., 2017; 
Salgado-Caxito et al., 2021; Da Silva et al., 2022; Zamudio et al., 2022; 
UK Health Security Agency, 2024).

2.6 Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) of a panel of antibiotics 
were determined by broth microdilution using the MicroScan® Neg MIC 
Panel Type 44 (Beckman Coulter, US) following guidelines by the 
European Committee on Antimicrobial Susceptibility Testing (EUCAST) 
clinical breakpoints 2024 (The European Committee on Antimicrobial 
Susceptibility Testing, 2024) and the Clinical and Laboratory Standards 
Institute (CLSI) (CLSI, 2024). Multidrug resistance was defined as 
non-susceptibility to at least one agent in three or more antimicrobial 
class categories (Sweeney et al., 2018). For E. coli strains, antimicrobial 
susceptibility testing was only performed for one representative isolate 
from each REP-PCR profile detected per participant per timepoint.

2.7 Whole-genome sequencing

ESBL/AmpC-producing Enterobacterales strains (n = 38) shared by 
companion animals and cohabitant humans based on REP-PCR profiling 
were further characterized by WGS. For this part of the study, genomic 
DNA was extracted using the NZY Tissue gDNA Isolation kit (NZYTech, 
Portugal). Library preparation was performed with the TruSeq DNA 
PCR-Free preparation kit and sequenced using the Illumina NovaSeq 6000 
system with 2 × 150 bp paired-end reads (Illumina, San Diego, California, 
US) at a commercial company (Macrogen, Seoul, Republic of Korea).

The raw sequence reads were assessed for quality using FastQC 
v0.11.9 (Andrews, 2010) and filtered for low-quality reads using 
PRINSEQ v0.20.4 (Schmieder and Edwards, 2011) (mean base quality 
score of ≥20 and minimum read length of 90 nt), making an average 
of 9.1×106 high-quality reads per library. De novo assemblies were 
generated with SPAdes v3.14.1 (Bankevich et al., 2012) followed by 
two runs of polishing with Pilon v1.24 (Walker et  al., 2014) and 
annotated using Prokka v1.14.6 (Seemann, 2014). Assemblies’ quality 
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TABLE 1 Questionnaire responses on demographic, social, and clinical data of dogs (n  =  60), cats (n  =  5), and their cohabiting humans (n  =  102) by 
country, 2018–2021.

Variables Participants Portugal United Kingdom

Positive 
responses

Beta-lactam 
resistance 
carriage

Positives 
responses

Beta-lactam 
resistance 
carriage

Demographic

Female

Humans 46 (n = 78) 15 6 (n = 11) 0

Dogs 20 (n = 38) 14 3 (n = 7) 1

Cats 2 (n = 5) 0 N/A N/A

Male

Humans 32 (n = 78) 13 5 (n = 11) 2

Dogs 18 (n = 38) 7 3 (n = 6) 2

Cats 3 (n = 5) 3 N/A N/A

Median age (years)

Humans 43.4 (n = 75) N/A 47 (n = 13) N/A

Dogs 8.3 (n = 38) N/A 6.5 (n = 7) N/A

Cats 8.8 (n = 5) N/A N/A N/A

Clinical

Antibiotic treatment 3 to 12 months before sampling

Humans 31 (n = 75) 15 4 (n = 13) 3

Dogs 31 (n = 38) 17 14 (n = 22) 5

Cats 4 (n = 5) 3 N/A N/A

Antibiotic treatment 3 to 6 months before sampling

Humans 17 (n = 77) 9 3 (n = 12) 2

Dogs 15 (n = 38) 8 2 (n = 18) 2

Cats 0 (n = 5) N/A N/A N/A

Hospitalization in the 12 months before sampling

Humans 6 (n = 77) 2 1 (n = 13) 0

Dogs 14 (n = 38) 10 3 (n = 8) 2

Cats 3 (n = 5) 2 N/A N/A

The companion animal had probiotic treatment in the last 

year

Dogs 5 (n = 38) 4 2 (n = 8) 1

Cats 1 (n = 5) 1 N/A N/A

The companion animal had glucocorticoid treatment in the 

last year

Dogs 16 (n = 38) 6 N/A N/A

Cats 0 (n = 5) N/A N/A N/A

The human has a chronic disease Humans 29 (n = 74) 14 2 (n = 12) 0

Social

The companion animal has an indoor lifestyle
Dogs 34 (n = 38) 20 11 (n = 13) 4

Cats 5 (n = 5) 3 N/A N/A

The companion animal socializes with other animals outside 

the household

Dogs 17 (n = 38) 8 7 (n = 13) 3

Cats 0 (n = 5) N/A N/A N/A

The companion animal participates in pet animal shows
Dogs 0 (n = 38) N/A 0 (n = 13) N/A

Cats 0 (n = 5) N/A N/A N/A

The companion animal is a working animal
Dogs 0 (n = 38) N/A 0 (n = 13) N/A

Cats 0 (n = 5) N/A N/A N/A

The companion animal stayed in a pet hotel in the last year
Dogs 6 (n = 38) 2 1 (n = 13) 0

Cats 0 (n = 5) N/A N/A N/A

The companion animal sleeps in the human bed
Dogs 14 (n = 38) 8 3 (n = 13) 0

Cats 4 (n = 5) 3 N/A N/A

The human cleans up companion animal waste Humans 49 (n = 78) 27 13 (n = 13) 6

The human feeds companion animal Humans 59 (n = 78) 35 13 (n = 13) 6

The human pets/cuddles with companion animals Humans 71 (n = 78) 42 13 (n = 13) 6

The human allows kissing/ licking by companion animals Humans 36 (n = 76) 20 13 (n = 13) 6

(Continued)
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was assessed using QUAST v5.0.2 (Gurevich et al., 2013). Genome 
assemblies presented an average of L50 = 9.6 (range from 6 to 14) and 
N50 = 1.9×105 (range from 9.1×104 to 3.9×105) and an average depth 
of 258x; full WGS statistics are listed in Supplementary Table S1.

2.7.1 Genome sequencing analysis
Antimicrobial resistance genes were assessed using AMRFinder 

(Feldgarden et  al., 2021) and ResFinder (Bortolaia et  al., 2020); 
plasmid replicons were obtained using PlasmidFinder (Carattoli et al., 
2014), and sequence types were assigned using the MLST 2.0 (Larsen 
et  al., 2012). E. coli virulence factors were obtained using 
VirulenceFinder 2.0 (Joensen et al., 2014), whereas Klebsiella spp. 
virulence factors were obtained using the Pathogenwatch web 
application (Centre for Genomic Pathogen Surveillance, 2018). E. coli 
strains were classified as extraintestinal pathogenic E. coli (ExPEC), 
uropathogenic E. coli (UPEC), or avian pathogenic E. coli (APEC) 
based on established molecular definitions (Menezes et al., 2023).

2.7.2 Clonal relationships
Three datasets were defined for the possible shared 3GC-resistant 

strains, one including E. coli strains (n = 29), a second comprising 
K. pneumoniae strains (n  = 7), and a final one with Enterobacter 
hormaechei strains (n = 2). Parsnp v1.2 (Treangen et al., 2014) was 
used to generate single nucleotide polymorphism (SNP) alignment. 
The complete genome sequence of E. coli K-12 MG1655 (GenBank 
accession: GCA_000005845.2) was used as the reference genome for 
the E. coli dataset, K. pneumoniae subsp. pneumoniae MGH 78578 
(GenBank accession: GCA_000016305.1) as reference for 
K. pneumoniae dataset, and E. hormaechei NCTC 9394 (GenBank 
accession: GCA_000210775.1) as reference for E. hormaechei dataset. 
Gubbins (Croucher et al., 2015) and RaxML-NG (Kozlov et al., 2019) 

were used to provide a maximum likelihood tree with 100 bootstrap 
repeats based on the recombination core genome alignment. 
Snp-dists v.0.8.2 (Seemann et  al., 2021) was used to extract the 
number of SNPs between strains. Microreact platform (Argimón 
et al., 2016) was used to visualize the phylogenetic tree linked to 
antimicrobial resistance data. Comparison of ORFs from companion 
animal’s-owner paired strains was performed by using the EasyFig 
and the BLASTn algorithm (Sullivan et al., 2011).

2.8 Statistical analysis

Statistical analysis was performed using the SAS statistical 
software package for Windows, version 9.3 (SAS Institute Inc., Cary, 
United States). For comparative analysis of baseline characteristics, 
Fisher’s exact test was used for categorical variables, and a p-value<0.05 
was considered significant.

To identify risk factors for ESBL/AmpC-E carriage, contingency 
tables were generated using the collected demographic and clinical 
data to perform univariable logistic regression analysis. Since no 
variables with a p-value<0.1 were identified, it was not possible to 
build multivariable models.

3 Results

3.1 Study population

3.1.1 Dogs and cats
A total of 43 households from Portugal and 22 from the UK were 

enrolled in this study (Table 2; Supplementary Figure S1), and each 
household had one companion animal.

TABLE 1 (Continued)

Variables Participants Portugal United Kingdom

Positive 
responses

Beta-lactam 
resistance 
carriage

Positives 
responses

Beta-lactam 
resistance 
carriage

Other

The companion animal eats raw meat/raw fish
Dogs 3 (n = 38) 2 2 (n = 13) 1

Cats 0 (n = 5) N/A N/A N/A

The human is a healthcare professional Humans 8 (n = 78) 3 1 (n = 13) 0

The human traveled abroad in the past 12 months Humans 35 (n = 76) 22 8 (n = 13) 2

Data are reported as the number of individuals; n indicates the total responses. For carriage results, data are reported as a number of positive participants who presented the characteristic. 
N/A, not applicable.

TABLE 2 Data collection timepoints for the longitudinal study by country, 2018–2021.

Data collection 
timepoints

Portugal (n  =  43 households) United Kingdom (n  =  22 households)

Animals (n  = 43) Humans (n  = 78) Animals (n  =  22) Humans (n  =  24)

T0: recruitment 33 59 22 24

T1: antibiotic treatmenta,b 18 41 1 1

T2: 1 month after T0c 19 37 16 17

T3: 2 months after T0 14 27 11 12

aT1 was performed 1 week after antimicrobial treatment started.
bFor 10 households from Portugal (10 animals and 18 humans), recruitment started at this timepoint.
cFor 10 households from Portugal (10 animals and 15 humans) and 15 households from the UK (15 animals and 17 humans), sample collection was not possible at T1 but only at T2.
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In Portuguese households, 43 companion animals were included, 
consisting of 38 dogs and 5 cats. Among these animals, 21 had UTIs 
and 22 had SSTIs. In the UK households, 22 companion animals were 
included, all of which were dogs. Four of these dogs had UTIs, and 18 
had SSTIs.

Table 1 presents detailed demographic, social, and clinical data 
for the study participants. The ages of the companion animals ranged 
from 1.8 to 15 years, with a median age of 8 years (n = 50). Most of 
the companion animals in both countries lived indoors. In Portugal, 
cats and dogs tend to sleep more often in their owners’ beds compared 
to dogs in the UK. Moreover, in Portugal, 81.6% (n = 31/38) of the 
dogs and 80% of the cats received antimicrobials within the 12 
months before sampling, and for the UK dogs, this percentage was 
63.6% (n = 14/22) (Table 1).

3.1.2 Pet owners
In Portugal, a total of 78 humans cohabitating with companion 

animals with SSTI or UTI provided nasal and fecal samples. In the 
UK households, 24 humans were enrolled. The households had 
different compositions, with 1 to 5 humans per household. Human 
ages ranged from 3 months to 82 years, with a median age of 43.3 
years (n = 88).

A high number of humans reported close contact behaviors with 
their companion animals, such as petting/cuddling and being kissed/
licked by them. Regarding antibiotic treatments, among the humans 
who filled in the questionnaire, 41.3% (n = 31/75) from Portugal and 
30.8% (n = 4/13) from the UK took antibiotics within the 12 months 
before sampling (Table 1).

3.2 Prevalence of ESBL/AmpC- and 
carbapenemase-producing 
Enterobacterales carriage

Considering all four sampling timepoints, CPE strains were 
recovered from only two dogs (3.3, 95%CI, 0–8, n = 2/60), specifically 
one from Portugal (2.6, 95%CI, 0–7.9, n = 1/38) and the other from 
the UK (4.6, 95%CI, 0–13.9, n = 1/22).

ESBL/AmpC-E strains were isolated from 30.4% (95%CI, 21.3–
39.5, n = 31/102) humans and 49.2% (95%CI, 36.7–61.7, n = 32/65) 
companion animals (dogs and cats) in at least one timepoint sample. 
There was no significant difference between the prevalence of ESBL/
AmpC-E carriage in humans and companion animals (p = 0.158). In 
addition, no significant difference was found between carriage in 
animals with SSTI or UTI (p = 0.060); hence, these infection groups 
were combined for further analysis.

3.2.1 Comparative analysis by country
When comparing the two countries, no significant difference was 

found in the prevalence of ESBL/AmpC-E strains in companion 
animals from Portugal (55.8, 95%CI, 40.3–71.3, n = 24/43) and the 
United kingdom (36.4, 95%CI, 14.5–58.2, n = 8/22) (p = 0.138).

For humans, a significant difference was detected with a higher 
prevalence of ESBL/AmpC-E strains in Portugal (35.9, 95%CI, 
25–46.8, n = 28/78) than in the United kingdom (12.5, 95%CI, 0–26.8, 
n = 3/24; p = 0.029). Due to this variation in results according to the 
country, the risk factor analysis for both companion animals and 
humans was carried out separately for each country.

Table 1 shows the complete set of variables considered in the risk 
factor analysis. None of them were significantly associated with ESBL/
AmpC-E or CPE carriage in humans or companion animals 
(p-values>0.1).

3.2.2 Isolate distribution
In total, 254 ESBL/AmpC-E and/or CPE carriage isolates were 

recovered from 63 participants (31 humans and 32 companion 
animals). These comprised two Enterobacter hormaechei subsp. 
hoffmannii isolates, 23 K. pneumoniae, and 229 E. coli isolates. 
REP-PCR profiling showed that only 115 E. coli strains were 
non-duplicate (Supplementary Figures S2-S4: dendrograms 
generated from REP-PCR fingerprinting of PT and UK strains). 
Among these non-duplicate E. coli isolates, phylogroup A and B1 
were most frequently found in Portugal, followed by B2, while 
in the UK, phylogroup D was the most common 
(Supplementary Table S2).

3.2.3 Antimicrobial susceptibility
Enterobacterales non-duplicate strains (n  = 140) were further 

characterized through antimicrobial susceptibility testing, and MICs 
for each strain are displayed in Supplementary Table S2. All the strains 
were resistant to cefotaxime, a 3GC agent, presenting MIC values for 
this antibiotic ranging from 4 to >32 mg/L. Among these, two strains 
from a Portuguese dog were recovered from MacConkey agar plates 
supplemented with temocillin (30 μg) antibiotic disks and were 
susceptible to meropenem (MIC values ≤1 mg/L). Other four strains 
from a UK dog were recovered from meropenem-supplemented 
MacConkey agar plates, presenting a resistant profile to this antibiotic 
(MIC values >8 mg/L).

In Portugal, high resistance rates among companion animal strains 
were also observed for ampicillin (94.8%), the combination of 
ampicillin/sulbactam (84.5%), fourth-generation cephalosporin, 
cefepime (75.9%), and ciprofloxacin (63.8%). Human strains showed 
similar resistance patterns, with all of them being resistant to ampicillin 
and 88.7% to cefepime. Notably, a large percentage of carriage strains 
from companion animals were multidrug-resistant (96.2%), while 66% 
of the human strains presented this profile (Table 3).

In the United Kingdom, resistance rates for companion animal 
strains were high for ampicillin/sulbactam (95.8) and aztreonam 
(91.7%). However, the resistance to ciprofloxacin was lower in 
companion animal strains (16.7%) compared to Portugal. Human 
strains showed 100% resistance to ampicillin. None of the human 
strains presented a multidrug-resistant profile, and only 54.2% of the 
companion animal strains did (Table 3).

3.2.4 Genes conferring resistance to 
third-generation cephalosporins and 
carbapenems

The distribution of beta-lactam resistance genes varied between 
strains from the two countries. The blaCTX-M-15 gene was the most 
frequent in strains from Portugal (humans: 49.1%, n = 26/53; animals: 
39.7%, n = 23/58), followed by blaCTX-M-1 and blaCTX-M-32 in the humans 
(13.2%, n = 7/53) and blaCMY-2 in animals (15.5%, n = 9/58) (Figure 1). 
In the UK, the blaCMY-2 gene was the most common (humans: 80%, 
n = 4/5; animals: 58.3%, n = 14/24) (Figure 1).

Furthermore, carbapenemase-encoding genes were found in 
E. coli strains recovered from meropenem and 
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temocillin-supplemented MacConkey agar plates. In Portugal, a 
dog carried the blaOXA-181 gene in two meropenem-susceptible E. coli 
strains; in the UK, four meropenem-resistant strains harboring the 
blaNDM-5 gene were isolated from one dog, as has been previously 
reported (Brilhante et al., 2020; Menezes et al., 2023).

3.3 Longitudinal isolation of 
beta-lactam-resistant Enterobacterales 
carriage strains

In Portugal, of the 43 households enrolled, 32 had at least one 
participant who carried an ESBL/AmpC-E and/or CPE strain. As the 
collection of follow-up samples was dependent on the owner’s 
willingness to continue to participate in the study, only 22 of the 32 
positive households delivered samples at two or more timepoints 
(Figure 2). Repeated isolation of ESBL/AmpC-E strains was observed 
for eight humans and eight companion animals from 11 households 
(Figure 2). Persistence of the same ESBL/AmpC-producing E. coli 
strains was detected by REP-PCR profiling in three humans 
(PT101H1, PT101H2, and PV004H1) and four companion animals 
(PT101D1, PT127D1, PV003D1, and PV004C1) (Figure  2; 
Supplementary Figure S3).

In the UK, nine of the 22 households had at least one participant 
colonized by an ESBL/AmpC-E and/or CPE strain. All positive 
households had follow-up samples (Figure 2). Two dogs had the same 
E. coli strain identified in subsequent samples (UK103D1 and 
UK111D1) (Supplementary Figure S4); another dog (UK109D1) had 
K. pneumoniae strains with the same susceptibility profile and resistant 
genes observed in different timepoints (Figure 2).

The acquisition of ESBL/AmpC-E strains by companion animals 
that were initially negative (PT: n = 32; UK: n = 15) occurred in five 
(15.6%) companion animals from Portugal (1 week after treatment for 
three dogs; 1 month after treatment for another dog; and 2 months 
after treatment for another dog) and in two dogs from the UK (13.3%), 
1 month after treatment (Figure 2).

3.4 Bacterial strains causing infection in 
companion animals

A variety of bacterial strains were diagnosed as causes of infections 
in the 65 companion animals enrolled. Most of the SSTIs in both 
countries were caused by staphylococci, while UTIs were mostly due 
to E. coli (Supplementary Table S3). In Portugal, a total of 22 
Enterobacterales clinical strains were isolated, of which 10 of them 

TABLE 3 Antimicrobial resistance of ESBL/AmpC- and Carbapenemase-producing Enterobacterales strains isolated from feces and nasal swabs of 
companion animals and their cohabitant humans in Portugal and the United Kingdom.

Antimicrobial Portugal United Kingdom

Companion
animals’ strains 

(n  = 58)

Humans
strains (n  = 53)

Companion
animals’ strains 

(n  = 24)

Humans
strains (n  = 5)

%R (No) %R (No) %R (No) %R (No)

Amikacin 1.7 (1) 0 (0) 0 (0) 0 (0)

Amoxicillin/clavulanate 36.2 (21) 7.5 (4) 79.2 (19) 80 (4)

Ampicillin/sulbactam 84.5 (49) 71.7 (38) 95.8 (23) 100 (5)

Ampicillin 94.8 (55) 100 (53) 87.5 (21) 100 (5)

Aztreonam 81 (47) 60.4 (32) 91.7 (22) 80 (4)

Ceftazidime 77.6 (45) 73.6 (39) 95.8 (23) 100 (5)

Cefepime 75.9 (44) 88.7 (47) 50 (12) 20 (1)

Cefotaxime 100 (58) 100 (53) 100 (24) 100 (5)

Cefoxitin 20.7 (12) 7.5 (4) 70.8 (17) 80 (4)

Cephalothin 100 (58) 100 (53) 100 (24) 100 (5)

Ciprofloxacin 63.8 (37) 43.4 (23) 16.7 (4) 0.2 (1)

Chloramphenicol 37.9 (22) 15.1 (8) 29.2 (7) 0 (0)

Ertapenem 5.2 (3) 1.9 (1) 16.7 (4) 0 (0)

Gentamicin 18.9 (11) 7.6 (4) 29.2 (7) 0 (0)

Imipenem 0 (0) 0 (0) 16.7 (4) 0 (0)

Meropenem 0 (0) 0 (0) 16.7 (4) 0 (0)

Piperacillin/tazobactam 17.2 (10) 7.6 (4) 25 (6) 0 (0)

Trimethoprim/sulfamethoxazole 53.5 (31) 67.9 (36) 37.5 (9) 0 (0)

Multidrug-resistant 86.2 (50) 66 (35) 54.2 (13) 0 (0)

Minimum inhibitory concentrations (MICs) were interpreted using the criteria of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2024 (The European 
Committee on Antimicrobial Susceptibility Testing, 2024), except for amoxicillin/clavulanate, ampicillin/sulbactam, and trimethoprim/sulfamethoxazole, for which criteria from the Clinical 
and Laboratory Standards Institute (CLSI) were used (CLSI, 2024). Data are reported as a number (No) of resistant (R) strains; n, total number of non-duplicate strains tested.
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FIGURE 1

Distribution of beta-lactam genes in Enterobacterales strains carried by companion animals and their cohabitant humans in Portugal and the 
United Kingdom. (A) Percentage of beta-lactam genes by country and (B) host. The bars are color-coded according to the gene, as indicated in the 
legend inset.

(47.6%) were resistant to 3GCs. Molecular analyses showed the 
presence of ESBL/AmpC encoding genes in all of them (Table 4). 
Regarding UK clinical strains, seven strains were identified as 
Enterobacterales, and only two displayed resistance to 3GCs. These 
resistant strains were not subjected to further investigation.

Among clinical ESBL/AmpC-producing Enterobacterales 
strains from Portugal, a K. pneumoniae (PV003V1UD1K5) and two 
E. coli (PT110/0-D1I3E1 and PV004V0C1I0E1) strains from 
different animals presented the same genetic profile and resistance 
pattern as carriage strains from the respective companion animal 
and their cohabiting humans. To further explore the genetic 
relatedness of these clinical and carriage strains, one representative 
carriage strain from each household member per timepoint and the 
clinical strains were analyzed by WGS. In a total, 9 E. coli and 7 
K. pneumoniae strains were analyzed by WGS.

3.5 Co-carriage of ESBL/AmpC-producing 
Enterobacterales strains

The presence of ESBL/AmpC-E carriage strains in companion 
animals and cohabitant humans harboring the same resistance genes 
was observed in eight Portuguese households (18.6%, n = 8/43) and 
two households from the UK (9.1%, n = 2/22) (Figure 2). Of these, 
five households (PT = 3; UK = 2) included companion animal–
human E. coli paired strains with matching REP-PCR that were 
selected for WGS analysis (one representative strain from each 
household member per timepoint, comprising a total of 20 
E. coli strains).

For another household, E. hormaechei strains were recovered from 
an animal/owner pair (Figure 2) presenting the same resistant genes 
and susceptibility profile; these strains (n = 2) were also sequenced.
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For one household from the UK (UK105), the blaCMY-2 gene was 
associated with an E. coli in the dog and a K. pneumoniae in the owner; 
in a similar way, in a household from Portugal (PT219), the blaCTX-M-15 
gene was found in a K. pneumoniae and E. coli from the cat and at 
E. coli strains from its cohabitant humans. These strains were not 
sequenced as companion animals’ and owners’ strains belonged to 
different bacterial species and different E. coli REP-PCR profiles 
(Figure 2; Supplementary Table S2).

3.6 Core genome relatedness between 
animals and humans’ strains

Evidence of sharing was found in several households. In household 
PV003, K. pneumoniae ST556 strains harboring the blaCTX-M-15 gene, 
recovered from dog and owners’ fecal samples at different timepoints, had 
≤7 SNP differences from animals’ clinical strains, indicating possible 
transmission of the pathogenic bacteria (Figure 3; Supplementary Table S4).

Maximum likelihood phylogenetic tree based on the SNP 
alignment of 29 E. coli core genomes showed six large clusters 
corresponding to five different households from Portugal and one 
cluster comprising strains from two UK households (Figure 4).

In two of the Portuguese households clusters (PT110 and PV004), 
the sharing of companion animal’s E. coli clinical strains was 
confirmed (Figure 4). At household PT110, an E. coli ST2179 strain 
harboring the blaCTX-M-65 and blaTEM-1 genes causing SSTI in the dog 
was shared between the pet and owner (2 SNP difference). These 
strains were classified as APEC due to the presence of hlyF, iutA, iroN, 
iss, and ompT virulence genes (Supplementary Table 5).

For household PV004, the cat–human pair was colonized by an 
E. coli ST131 strain harboring the blaCMY-2 gene causing UTI in the cat. 
Cat’s clinical and colonization strains from T0, T2, and T3, as well as 
its owner’s strains, recovered at timepoint T2 and T3, displayed ≤3 
SNP difference (Figure 3; Supplementary Table S6). The strains from 
household PV004 displayed virulence genes typically associated with 
UPEC (chuA, fyuA, and yfcV) (Supplementary Table S5).

Among the remaining three Portuguese household clusters 
(PV003, PT101, and PT124), analysis of the core genomes confirmed 
that no distinction could be made between E. coli carriage strains from 
the three companion animal–human pairs as within-household 
strains presented ≤4 SNPs differences (Figure 4). For households, 
PT101 sharing over time of the E. coli ST617 strains harboring blaCTX-

M-15 was also observed as strains were isolated from the dog at T2 and 
T3 and its owners at T0, T2, and T3. Furthermore, clonal strains 
presented the same MLST result, the same resistance genes, plasmid 
replicons, and pathotypes (Figure 4; Supplementary Table S5). Strains 
from household PT124 displayed virulence genes typically associated 
with pathogenic E. coli strains and were classified as ExPEC (kpsMII, 
papC, and sfaD) (Figure 4; Supplementary Table S5).

The strains from the two UK households clustered together 
(UK101 and UK103), presented only 9 SNPs of difference between 
them (Figure  4; Supplementary Table S6). These results 
demonstrated that sharing of the same ESBL/AmpC-producing 
E. coli carriage strains occurred between companion animals and 
owners and between participants from different households in the 
UK. These E. coli strains belong to ST963 harboring the 
blaCMY-2 gene.

FIGURE 2

Distribution of ESBL/AmpC- or carbapenemase-producing Enterobacterales across fecal/nasal swabs sampling timepoints of 32 positive households in 
Portugal (PT) and nine households from the United Kingdom (UK). See the color key on the right side of the figure. SSTI, skin and soft tissue infection; 
UTI, urinary tract infection.
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In addition to the ESBL/AmpC genes, sequenced 
strains exhibited a wide variety of genes encoding for 
narrow-spectrum beta lactamases (blaTEM–1 and blaOXA-1) and 
resistance against aminoglycosides [aadA5, aph(6)-Id, and 

aph(3″)-Ib], fluoroquinolones (qnrS and qnrB1), macrolides 
[mph(A)], phenicols (catB3 and floR), sulphonamides (sul1 and 
sul2), trimethoprim (dfrA14 and dfrA17), tetracyclines [tet(A) and 
tet(B)], and point mutations in gyrA, parC, and/or parE genes, 

TABLE 4 Genotypic characteristics of third- and fourth-generation cephalosporin-resistant Enterobacterales strains causing infection in companion 
animals (n  =  10).

Household Host Type of 
infectiona

Strain code Bacterial 
species

Pattern of resistanceb Beta-lactam-
resistant 
genes

PT110 Dog SSTI PT110/0-D1F3E1 Escherichia coli AMC, AMP, C, CIP, CFL, CTX, F, FOX, TMS blaCTX-M-65, blaTEM-1

PT125 Dog SSTI PT125/0-D1I3E1 Escherichia coli AK, AMP, CAZ, CFL, CIP, CTX, CPM, F blaCTX-M-27

PT202 Dog UTI PT202/0-D1I3E1 Escherichia coli AMP, CIP, CFL, CTX, TMS blaCTX-M-1, blaTEM-1

PT209 Dog UTI PT209/0-D1I3E1 Escherichia coli AMC, AMP, CAZ, CFL, CN, CTX, F, FOX, TMS blaCMY-2, blaTEM-1

PT212 Dog UTI PT212/0-D1I4E1 Escherichia coli AMP, CAZ, CFL, CIP, CTX, FOX blaCTX-M-15

PT213 Cat UTI
PT213/T0-

C1I3K1

Klebsiella 

pneumoniae

AMC, AMP, CAZ, CFL, CN, CPM, CTX, F, FOX, 

TET, TMS

blaCTX-M-15, blaSHV-28, 

blaTEM-1

PV001 Dog UTI PV001G1D1U1 Enterobacter spp.
AMC, AMP, CAZ, CFL, C, CIP, CN, CTX, F, 

FOX, TET, TMS
blaCMY-2

PV002 Dog UTI PV002V1UD1U1
Klebsiella 

pneumoniae
AMC, CAZ, CIP, CFL, CN, CTX, CPM, TMS

blaCTX-M-15, blaCMY-2, 

blaTEM-1

PV003 Dog UTI PV003V1UD1K5
Klebsiella 

pneumoniae
AMP, CAZ, CFL, CTX, CPM, F, TET, TMS

blaCTX-M-15, blaSHV-11, 

blaTEM-1

PV004 Cat UTI PV004V0C1I0E1 Escherichia coli AMP, CAZ, CFL, CIP, CTX, CPM, TET, TMS blaCTX-M-27

aUTI, urinary tract infection; SSTI, skin and soft tissue infection.
bAntibiotics tested: AK, amikacin; AMC, amoxicillin/clavulanate; AMP, ampicillin; C, chloramphenicol; CAZ, ceftazidime; CFL, cephalothin; CIP, ciprofloxacin; CN, gentamicin; CTX, 
cefotaxime; CPM, cefepime; ETP, ertapenem; F, nitrofurantoin; FOX, cefoxitin; IMP, imipenem; MEM, meropenem; TET, tetracycline; TMS, trimethoprim/sulfamethoxazole.
Minimum inhibitory concentrations (MICs) were interpreted using the criteria of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2024 (The European 
Committee on Antimicrobial Susceptibility Testing, 2024), except for amoxicillin/clavulanate, ampicillin/sulbactam, and trimethoprim/sulfamethoxazole, for which criteria from the Clinical 
and Laboratory Standards Institute (CLSI) were used (CLSI, 2024).

FIGURE 3

Core genome SNP analysis and genetic features of clinical and carriage ESBL/AmpC-producing Klebsiella pneumoniae strains from companion animals 
and their cohabitant humans. (A) Maximum likelihood phylogeny of the core genome of six K. pneumoniae strains and the K. pneumoniae subsp. 
pneumoniae MGH 78578 strain. Bootstrap support values are shown in bold on each node. (B) Heatmap shows the sequence types, antimicrobial 
resistance determinants, plasmid replicons, and virulence factors for each strain (see color key at the bottom of the figure).
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which could confer resistance to nalidixic acid and 
fluoroquinolones (Figures 3, 4; Supplementary Table S5).

E. hormaechei dog-owner paired strains share high nucleotide 
similarity presenting 16 SNPs difference (Supplementary Table S7). 
These strains harbored a blaACT-24 gene, flanked by multiple regulon 
genes and an integrase, suggesting that it has been integrated into the 
chromosomal DNA (Figure 5).

4 Discussion

The close relationship between pets and humans supports the 
likelihood of transferring antibiotic-resistant bacteria and 

resistance-mediating mobile genetic elements, between them (Pomba 
et al., 2017). Here, we presented insights on the co-carriage of ESBL/
AmpC-E and CPE strains between companion animals receiving 
antimicrobials and their owners in Portugal and the UK, as well as the 
transmission of animals’ clinical strains within the household. WGS 
combined with phylogenetic analysis was used to infer bacterial 
resistance transmission dynamics.

This study used a prospective, longitudinal design to examine the 
effect of antibiotic treatment on the selection and carriage of ESBL/
AmpC-E and CPE strains in a cohort of dogs and cats with UTI or 
SSTI. The prevalence of ESBL/AmpC-E carriage in companion 
animals under antibiotic therapy in this study (PT = 55.8%; 
UK = 36.4%) was higher compared to the prevalence in healthy 

FIGURE 4

Core genome SNP analysis and genetic features of clinical and carriage ESBL/AmpC-producing Escherichia coli strains from companion animals and 
their cohabitant humans. (A) Maximum likelihood phylogeny of the core genome of 33 E. coli strains and the E. coli K-12 MG1655 strain. Bootstrap 
support values are shown in bold on each node. (B) Heatmap shows the E. coli sequence types, antimicrobial resistance determinants, plasmid 
replicons, and pathotypes based on a repertoire of virulence factors for each strain (see color key on the right side of the figure).

FIGURE 5

Map of blaACT-24 genetic environment comparison between carriage Enterobacter hormaechei subsp. hoffmannii strains from a dog and their cohabitant 
human fecal samples. Antibiotic resistance genes are represented by red arrows, integrase by green arrows, and other genes with black arrows.
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animals in both countries (12.7 and 8.5% for Portugal and the UK, 
respectively) during the same timeframe (Menezes et al., 2023). While 
care must be taken when comparing data from different studies, the 
similarity in recruitment and methods between these studies allows 
for a meaningful comparison. The critical distinction that one study 
focused on healthy animals, while the current study involves 
companion animals under antibiotic therapy, supports the potential 
for antibiotic selection pressure being exerted upon the animals in the 
current study based on the observed prevalence rates. Furthermore, 
in the present study, 15.6% of the companion animals from Portugal 
and 13.3% from the UK acquired ESBL/AmpC-E strains after 
antibiotic treatment. These findings suggest a role for companion 
animals under antibiotic treatment as reservoirs of AMR that may 
be potentially transmissible to the environment and to other hosts, 
including their owners.

Despite the absence of significant differences, the prevalence of 
ESBL/AmpC-E strains in companion animals was higher than in their 
owners (PT = 35.9%; UK = 12.5%), following the pattern previously 
found in other studies (Abbas et al., 2019; Dazio et al., 2021) that 
suggest companion animals as a source of this type of resistance in 
a household.

The observed differences in the detection of ESBL/AmpC-E 
strains between Portuguese and British individuals align with the 
broader patterns of higher prevalence of 3GC-resistant 
Enterobacterales isolates in Southern European countries compared 
to Northern European countries (Marques et al., 2016; WHO Regional 
Office for Europe/European Centre for Disease Prevention and 
Control, 2022). This suggests that geographical variation could 
be associated with the acquisition of resistant bacteria, potentially 
emerging as a risk factor. Such geographical disparities may reflect 
underlying regional differences in antimicrobial usage. In Portugal, 
there is a higher rate of antimicrobial use in the community, especially 
for systemic treatments with cephalosporins and other beta-lactam 
agents, compared to England (European Centre for Disease Prevention 
and Control, 2023; UK Health Security Agency, 2023). However, the 
substantial discrepancy in sample size between Portugal (n  = 78 
humans) and the UK (n = 24) might have also contributed to the 
observed difference. Although statistical adjustments were made to 
account for these variations, the impact of sample size on the 
robustness of our comparisons and the generalizability of our findings 
should be considered.

CPE carriage was only found in companion animals. This finding 
was somewhat surprising as such isolates are primarily reported in 
human clinical samples and carbapenems are not authorized for 
veterinary use (EMA, 2019; World Health Organization, 2024). The 
lack of positive cases in humans may be attributed to the limited 
sample size featured in this study. In addition, recent studies have 
shown that carbapenemase carriage is generally rare among healthy 
individuals globally (Diebold et al., 2023). Hospital settings, however, 
are known to harbor antimicrobial resistance genes, making 
carbapenemase genes more common in inpatient and outpatient 
cohorts compared to healthy individuals who were the focus of our 
study. In contrast, the animals in our study were exposed to veterinary 
hospital environments, where antibiotic use could facilitate the 
co-selection of resistant strains, potentially explaining their CPE 
carriage. These findings emphasize the importance of incorporating 
dogs/cats in the assessment of antimicrobial resistance circulation in 
the community setting.

We did not identify any risk factors for ESBL/AmpC-E or CPE 
carriage. In previous studies, raw food diets and prior antimicrobial 
use have been identified as risk factors for ESBL-E carriage in 
companion animals (Baede et al., 2017; Schmidt et al., 2018). However, 
no association between the consumption of raw food and ESBL/
AmpC-E or CPE carriage was found (p = 0.6817  in Portugal; 
p = 0.7175  in the UK) or between antimicrobial treatment 3–12 
months prior to sampling and carriage (p = 0.9121 in Portugal and 
p = 0.9333 in the UK). Yet, the acquisition of resistant bacteria was 
observed after a single course of antibiotics. Similarly, hospital setting 
contact has also been strongly associated with AMR carriage (Adler 
et al., 2016; Nigg et al., 2019); here, being a healthcare professional 
(p = 0.9206 in Portugal; p = 0.9792 in the UK) or recently hospitalized 
(≤12 months) (p = 0.9680 in Portugal; p = 0.9792 in the UK) was not 
established as risk factors among humans participants. This may 
be explained by the small sample size of participants presenting these 
characteristics, which was not powered to detect changes. Although 
given the extensive dissemination of ESBL/AmpC-E strains, there are 
numerous routes for acquiring these resistant strains, making the 
identification of risk factors difficult (Salgado-Caxito et  al., 2021; 
WHO Regional Office for Europe/European Centre for Disease 
Prevention and Control, 2022; Zamudio et al., 2022).

E. coli was the most predominant species identified in 
3CG-resistant carriage isolates, suggesting that this bacterial species 
may act as a reservoir of ESBL/AmpC-E genes. The detection of 
phylogroup B2 and D strains in high rates of occurrence in the 
community emphasizes the need for ongoing surveillance. These two 
phylogroups are commonly associated with strains causing 
extraintestinal infection, namely, urinary tract infection (Schmiedel 
et al., 2014).

ESBL/AmpC-producing K. pneumoniae was the second most 
found among carriage strains. K. pneumoniae stands as a healthcare-
associated pathogen known for causing various infections and its 
ability to develop antibiotic resistance (WHO Regional Office for 
Europe/European Centre for Disease Prevention and Control, 2022). 
The prevalence reported here for ESBL/AmpC-producing 
K. pneumoniae is higher in contrast with previous observations by our 
group in healthy companion animals and humans in both countries 
(Menezes et al., 2023) but in agreement with studies in dogs and cats 
presented to veterinary hospitals in Switzerland (12.3%) (Dazio et al., 
2021). Also of notice is the high proportion of multidrug-resistant 
ESBL/AmpC-E strains pointing toward a rising trend of AMR within 
the community setting.

Despite the ubiquitous nature of resistance genes, there was a 
variation in their distribution and frequency between geographical 
origins. The blaCTX-M-15 gene was more frequent in Portugal compared 
to the UK, where the blaCMY-2 gene was more common. These 
observations are consistent with previous resistance determinant 
patterns observed in both countries (Wedley et al., 2017; Carvalho 
et al., 2021). On the other hand, the blaACT-24 gene was only identified 
in shared E. hormaechei strains. Enterobacter spp. strains often harbor 
an inducible chromosomal ampC gene encoding AmpC beta-
lactamase (Meini et al., 2019). The blaACT-24 gene has been identified 
before as chromosomally integrated in E. hormaechei strains (Lasarte-
Monterrubio et al., 2023). In our study, this resistant gene was found 
surrounded by an integrase indicating that it was chromosomally 
integrated and highlighting its potential for mobilization and spread 
within microbial communities.
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Transmission of bacteria strains causing infections in 
companion animals to their household members has been 
sporadically reported, encompassing bacteria resistant to 
medically important antimicrobials, such as NDM-5-producing 
E. coli (Grönthal et al., 2018), as well as dog-derived UTI ExPEC 
strains resulting in UTI in the owners (Johnson et al., 2008), and 
the reverse scenario has also been described (Johnson and Clabots, 
2006; Johnson et  al., 2008; Toombs-Ruane et  al., 2020). In the 
present study, three households from Portugal had owners 
carrying the ESBL/AmpC-E strains causing infection in their 
cohabiting companion animal. The shared index E. coli strains 
belong to UPEC and APEC pathotypes. UPEC is the primary cause 
of urinary tract infections in humans, while APEC typically causes 
a range of infections in poultry (Geurtsen et al., 2022). Intriguingly, 
studies have shown that APEC exhibits genetic similarity with 
human ExPECs, including the possession of virulence genes 
associated with UTIs and meningitis (Tivendale et  al., 2010; 
Mellata, 2013), thus emphasizing its potential for zoonotic 
transmission. The co-occurrence of both variants causing infection 
in companion animals and their owners’ fecal samples is 
particularly noteworthy, indicating that companion animals 
may act as reservoirs and disseminators of these strains. This 
highlights the importance of infection control measures during 
animal disease.

Overall, here we documented the sharing of carriage of ESBL/
AmpC-E between companion animals and owners within the same 
households in Portugal (13.9%, n  = 6/43) and the UK (9.1%, 
n = 2/22) based on core genome analysis. When considering only 
households with positive participants for ESBL/AmpC carriage, the 
sharing frequency from Portugal increases to 18.8% (n = 6/32) and 
22.2% in the UK (n = 2/9). These frequencies are higher compared 
to the ones found among households with healthy companion 
animals in both countries (sharing of 4.9% in Portugal and 0% in 
the UK) (Menezes et  al., 2023). These differences could 
be  associated with the animal’s exposure to antibiotic selective 
pressure, as mentioned above, that increased carriage, making the 
occurrence of sharing more likely. Nevertheless, in a similar study 
to ours, no co-carriage was observed between dogs and cats 
presented to veterinary clinics and hospitals in Switzerland and 
their owners (Dazio et al., 2021). This could be related to the unique 
patterns of antimicrobial usage and resistance observed in both 
animals and humans across different geographical locations, as 
reported elsewhere (European Centre for Disease Prevention and 
Control, 2023; European Medicines Agency and European 
Surveillance of Veterinary Antimicrobial Consumption, 2023; UK 
Health Security Agency, 2023). Southern European countries, such 
as Portugal, generally exhibit higher levels of antimicrobial 
resistance compared to Northern countries (Marques et al., 2016; 
WHO Regional Office for Europe/European Centre for Disease 
Prevention and Control, 2022). Consequently, places with higher 
resistance levels have an increased likelihood of sharing 
resistant bacteria.

Although a high prevalence of intra-familial co-carriage was 
observed, underestimation cannot be  excluded since data rely on 
bacterial culture, a methodology that has a low sensitivity (Tofteland 
et al., 2007).

Shared strains within households belonged to five different E. coli 
sequence types (ST131, ST2015, ST2179, ST617, and ST963), 

K. pneumoniae ST556, and E. hormaechei, which include bacterial 
lineages that have been already reported in the animal and human 
settings before (Jure et al., 2019; Sepp et al., 2019; Salgado-Caxito 
et al., 2021; Donà et al., 2023). Although direct transmission cannot 
be confirmed, the diminutive number of SNP differences suggests 
very recent acquisition from a common source or recent direct 
transmission. The last one could have occurred via petting, cuddling, 
licking the owner’s face, or cleaning the pet’s waste, behaviors that 
were reported on the questionnaires to occur at least occasionally in 
over 90% of the households. Determining the direction of 
transmission or whether both humans and dogs were contaminated 
by the same source is challenging, given that the study design 
precluded its assessment. Numerous potential routes of exposure 
exist, including common food and water, the surrounding household 
environment, and contaminated hospital environment.

In two households from the UK (UK101 and UK103), dogs and 
their cohabitant humans carried indistinguishable E. coli ST963 
strains, indicating a common source of exposure. Notably, both dogs 
attended the same veterinary hospital, where they may have acquired 
the bacteria through a contaminated hospital environment and then 
transmitted it to their owners. Veterinary hospitals have been 
implicated in the selection and dissemination of AMR among patients 
(Nigg et al., 2019; Dazio et al., 2021). The lack of rigorous infection 
prevention and control (IPC) measures in these settings exacerbates 
this issue (Willemsen et al., 2019). Implementing robust IPC programs 
tailored to veterinary clinics is crucial to mitigate the occurrence of 
transmission events that could further spread to the animal and 
human population and the environment.

Further exhaustive study into plasmids harboring antimicrobial 
resistance, coupled with the role of other mobile genetic elements, 
including transposons, in the transmission and epidemiology of 
these resistance genes, is needed. This constitutes a significant 
limitation of the current study as there is the potential for plasmid-
mediated gene transfer to occur, for example, as in the case of the 
blaCMY-2 and blaCTX-M-15 genes, which were associated with two 
different bacterial species in the UK105 and PT219 households, 
respectively. Another limitation is the noteworthy proportion of 
participants failing to conclude the longitudinal study, 
notwithstanding favorable initial recruitment. Consequently, this 
study may potentially underestimate the prevalence of persistent 
carriage of ESBL/AmpC-E and CPE strains.

This study highlights the need for long-term, globally 
standardized monitoring of AMR among companion animals and 
cohabiting humans to understand the dynamics and relative 
significance of the various sources influencing the burden of AMR 
over time. The potential for inadvertent selection of antibiotic-
resistant colonizing bacteria should be considered in prospective 
antimicrobial stewardship strategies aimed at limiting the 
development and dissemination of AMR and thus the importance of 
adopting a One Health approach that integrates both human and 
animal health.
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High resolution E. coli phylogenetic tree linked to molecular data is 
available at Microreact platform, https://microreact.org/
project/6r3o1DHTVwF5qPVK4LbPpM-e-coli-transmission-during-
different-types-of-animal-infection; K. pneumoniae phylogenetic 
tree can also be found at https://microreact.org/project/
iHYMJ8K9dZpkzctDeCprdd-klebsiella-pneumoniae-sharing.
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