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Background: Porcine deltacoronavirus (PDCoV) is a newly discovered porcine 
intestinal pathogenic coronavirus with a single-stranded positive-sense RNA 
genome and an envelope. PDCoV infects pigs of different ages and causes 
acute diarrhea and vomiting in newborn piglets. In severe cases, infection leads 
to dehydration, exhaustion, and death in sick piglets, entailing great economic 
losses on pig farms. The clinical symptoms of PDCoV infection are very similar 
to those of other porcine enteroviruses. Although it is difficult to distinguish 
these viral infections without testing, monitoring PDCoV is very important 
because it can spread in populations. The most commonly used methods for 
the detection of PDCoV is qPCR, which is time-consuming and require skilled 
personnel and equipment. Many farms cannot meet the conditions required for 
detection. Therefore, it is necessary to establish a faster and more convenient 
method for detecting PDCoV.

Aims: To establish a rapid and convenient detection method for PDCoV by 
combining RPA (Recombinase Polymerase Isothermal Amplification) with 
CRISPR/Cas13a.

Methods: Specific RPA primers and crRNA for PDCoV were designed, and the 
nucleic acids in the samples were amplified with RPA. Fluorescent CRISPR/
Cas13a detection was performed. We evaluated the sensitivity and specificity of 
the RPA–CRISPR/Cas13a assay using qPCR as the control method.

Results: CRISPR/Cas13a-assisted detection was completed within 90  min. 
The minimum detection limit of PDCoV was 5.7  ×  101 copies/μL. A specificity 
analysis showed that the assay did not cross-react with three other porcine 
enteroviruses.

Conclusion: The RPA–CRISPR/Cas13a method has the advantages of high 
sensitivity, strong specificity, fast response, and readily accessible results, and 
can be used for the detection of PDCoV.
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1 Introduction

Porcine deltacoronavirus (PDCoV) is a new type of porcine 
intestinal coronavirus discovered in the past decade. At the end of 
2012, Woo et al. detected deltacoronavirus in pigs for the first time in 
Hong Kong, China, and designated it PDCoV HKU-15 (Woo et al., 
2012). The incidence of swine infection was first reported in Ohio, 
USA (Wang et al., 2014), and the disease has since been reported in 
many countries in the Americas and Asia, including Canada (Pasick 
et al., 2014), Mexico (More-Bayona et al., 2022), Thailand (Pérez-
Rivera et al., 2019), Vietnam (Janetanakit et al., 2016), South Korea 
(Lorsirigool et  al., 2016), Japan (Lee and Lee, 2014), and China 
(Zhang et al., 2019). PDCoV, porcine transmissible gastroenteritis 
virus (TGEV), and porcine epidemic diarrhea virus (PEDV) are 
common enteroviruses in pigs. The symptoms and pathogenesis of 
these viruses are similar, and mixed infections occur. It is difficult to 
differentiate these viruses without laboratory diagnoses (Wang et al., 
2019). It is noteworthy that PDCoV strains have been isolated from 
plasma samples from children with acute fever, indicating that 
PDCoV is highly likely to be  transmitted in human populations 
(Lednicky et al., 2021). Furthermore, it has been demonstrated that 
PDCoV can infect human cell lines by interacting with 
aminopeptidase N (APN) (Li et al., 2018). This emphasizes the risk of 
the cross-species transmission of PDCoV, which may even spread 
among people, so it is important to strengthen the prevention, control, 
and monitoring of PDCoV.

Common diagnostic methods for PDCoV include electron 
microscopy, reverse transcription–PCR, enzyme-linked 
immunosorbent assay (ELISA) (Zhang, 2016). qPCR is often used as 
the gold standard detection method on pig farms (Zhao et al., 2023), 
however, the process is time-consuming and complex, requiring 
professional personnel and equipment. As a result, it is not suitable for 
ordinary pig farms or other situations with limited experimental 
resources. Therefore, a better PDCoV detection method is required.

The clustered regularly interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated (Cas) system is a novel technology for 
pathogen detection. The SHERLOCK in vitro nucleic acid detection 
platform established by Gootenberg et al. (2017) uses the CRISPR/
Cas technology combined with RPA to detect pathogens. RPA is first 
used for nucleic acid amplification, and the virus is then transcribed 
into single-stranded RNA (ssRNA), which is finally detected by the 
Cas13a protein of Leptotrichia wadei (LwCas13a). After the CRISPR 
RNA (crRNA) recognizes the target sequence, the LwCas13a protein 
is activated, and the nearby nontarget RNA is subjected to incidental 
cleavage. The presence of the target RNA is determined by observing 
whether the quenched fluorescent RNA releases a fluorescent signal 
(Gootenberg et al., 2017). More recently, a detection platform for 
double-stranded DNA (dsDNA) using CRISPR/Cas12a (Cpf1 
protein) was established (Chen et al., 2018). The CRISPR/Cas nucleic 
acid detection technology has been used to detect various viruses, 
including SARS-CoV-2 (Jiao et al., 2021), and can also be combined 
with lateral chromatography to quickly and easily read the results 
without equipment (Gootenberg et al., 2018).

Piepenburg et al. (2006) discovered the RPA technology, which 
allows for exponential amplification of nucleic acids under low 
temperature and constant temperature conditions. This method is 
renowned for its sensitivity and rapidity (Piepenburg et al., 2006). At 
present, RPA technology has been widely employed in the detection 

of pathogens and can be integrated with other methods to improve the 
efficiency of detection (Lobato and O’Sullivan, 2018).

Therefore, to establish a faster, more accurate, and more 
convenient detection method, we developed a new convenient and 
rapid detection platform for PDCoV by combining RPA with 
CRISPR/Cas13a. The advantages of this method are its simplicity of 
operation, its short detection time, the easily read results, and the 
portable detection of PDCoV with high sensitivity and 
high specificity.

2 Materials and methods

2.1 Viruses, clinical samples, and extraction 
of RNA

The strains of PDCoV, TGEV, Seneca virus A (SVA), Porcine 
Rotavirus (PoRV), and PEDV used in this study were all from 
Laboratory 308 of Southwest University College of Veterinary 
Medicine, Chong Qing, China. The clinical blood samples utilized in 
our study were sourced from XUKE Bioengineering Co., Ltd., which 
specializes in providing blood samples from pig farms located in 
various regions of Sichuan, China. The RNA was extracted from the 
samples using the phenol–chloroform method. Trizol Reagent (1 mL) 
was added to each sample in a centrifuge tube, which was shaken 
violently for 30 s and allowed to stand at room temperature for 1 min. 
Then 200 μL of chloroform was added to the tube, which was shaken 
violently for 15 s, allowed to stand at room temperature for 1 min, and 
centrifuged at 12,000 rpm for 5 min. After centrifugation, 400 μL of 
supernatant was removed into a new RNase-free centrifuge tube, and 
500 μL of isopropanol was added, before violent shaking for 15 s. Each 
sample was allowed to stand at room temperature for 1 min, and were 
then centrifuged at 10,000 rpm for 5 min. The supernatant was 
discarded, 1 mL of ice-cold 75% ethanol was added, and the sample 
was centrifuged at 7500 rpm for 5 min. After the supernatant was 
discarded, ventilate in the fume hood (note that RNA cannot 
be completely dried). Finally, 20 μL of diethyl pyrocarbonate (DEPC)-
treated water was added to the centrifuge tube, mixed well, and stored 
at −80°C.

2.2 Synthesis of standard plasmids, primers, 
crRNA, and reporter RNA

To ensure the specificity of the detection method, the sequences 
of the plasmids, primers, and crRNA used in this study were highly 
conserved. The conserved N gene sequence (1,029 bp in total) of 
PDCoV (GenBank: MK330604.1) was obtained with an alignment 
analysis in the National Center for Biotechnology Information 
(NCBI) database. The sequence was inserted into the pUC57 and 
sent to GenScript Biotechnology Co., Ltd. for the synthesis of 
pUC57–PDCoV as the standard positive plasmid. Cells were 
transformed with the synthesized plasmid and the plasmid was then 
extracted from the cells. The plasmid concentration was determined 
and the plasmid cryopreserved as the template for the subsequent 
detection of PDCoV. The conserved sequence of PDCoV was 
obtained with an alignment analysis in NCBI, and the primers for 
RPA were designed by NCBI. Three pairs of primers were designed 
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for RPA, and the T7 promoter sequence was added before the 5′ 
primer to facilitate subsequent in vitro transcription. crRNA design 
reference Zhang Feng laboratory Cas13a-related articles (Kellner 
et al., 2019), a total of two designs. The crRNA consists of a 36 nt 
long repeat sequence and a 29 nt long spacer sequence. We designed 
spacer sequences manually, and used SnapGene 7.0.2 to check 
secondary structure. The reporterRNA sequence 5′ modified as 
FAM, 3′ modified as BHQ1. The designed primer, crRNA, and 
reporter RNA sequences were sent to Shenzhen BGI Co., Ltd. for 
synthesis. The sequences used in this study are shown in Table 1. 
Details of crRNA are shown in Table 2.

2.3 Nucleic acid RPA

The amplification process was performed according to the 
instructions of the DNA thermostatic rapid amplification kit 
(Amplification Future Changzhou Biotechnology Co., Ltd). For the 
reaction system, 29 μL of buffer A was added to each tube, followed 
by 2 μL of the upstream primer (10 μM) and 2 μL of the downstream 
primer (10 μM), 5 μL of the standard plasmid template (468 ng/μL), 
and 9.1 μL of DEPC-treated water. Finally, 2.5 μL of buffer B was 
added to the reaction tube and fully mixed. Immediately after mixing, 
the reaction tube was placed in a thermostatic device at 37°C for 
30 min. In order to facilitate agarose gel electrophoresis, after the 
reaction, 50 μL of a solution of Tris-saturated phenol, chloroform, 
and isoamyl (Woo et al., 2012; Tian et al., 2023; Li et al., 2024) was 
added to the reaction product. After mixing evenly, the sample was 
centrifuged at 12,000 rpm for 5 min, and the supernatant was mixed 
with 6 μL of 6 × loading buffer. The mixed product can be directly 
used for agarose gel electrophoresis.

2.4 Establishment of CRISPR/Cas13a 
detection system

RNase inhibitor (1 μL), 2 μL of LwCas13a (GenScript 
Biotechnology Co., Ltd), 2 μL of crRNA (7.5 ng/μL), 1.2 μL of NTP 
mix (7.5 mM), 0.4 μL or T7 RNA polymerase, 0.3 μL of 10 × T7 
reaction buffer, 5 μL of FAM-BHQ1 RNA reporter (6 pmol/μL), 5 μL 
of 10 × Cas13a reaction buffer, 2 μL of RPA product, and 36.1 μL of 

RNase-free water were added to a 200 μL PCR tube. The reaction was 
performed at 37°C for 40 min, the fluorescent signal was collected 
every 30 s on Bioer Line Gene 9600 Plus Real Time Thermalcycler 
(FQD-96A, Hangzhou Bori Technology Co., Ltd).

2.5 Optimization of reaction conditions

We optimized the conditions of the whole reaction process, 
including the reaction time (10, 20, 30, and 40 min), reaction 
temperature (35, 36, 37, 38, 39, and 40°C), Cas13a protein 
concentration (50, 100, and 150 ng/μL), and reporter RNA 
concentration (10, 8, 6, 4, and 2 pmol/μL), by monitoring the 
fluorescence emitted by the CRISPR/Cas13a detection system.

2.6 Evaluating detection capability

Evaluation of specificity: Strains of PDCoV, TGEV, SVA, 
PEDV and PoRV were amplified using the RNA thermostatic 
rapid amplification kit (Amplification Future Changzhou 
Biotechnology Co., Ltd). For the reaction system, 29 μL of buffer 
A was added to each tube, followed by 2 μL of the upstream primer 
(10 μM) and 2 μL of the downstream primer (10 μM), 5 μL of the 
Virus samples, and 9.5 μL of DEPC-treated water. Finally, 2.5 μL 
of buffer B was added to the reaction tube and fully mixed. 
Immediately after mixing, the reaction tube was placed in a 
thermostatic device at 42°C for 30 min. The products were added 
to the established CRISPR/Cas13a detection system. The reaction 
was performed at 37°C for 40 min, and the fluorescent signal was 
collected every 30 s with the Bioer Line Gene 9600 Plus Real 
Time Thermalcycler.

Evaluation of sensitivity: The PDCoV plasmid standard was 
diluted to 5.7 × 107, 5.7 × 106, 5.7 × 105, 5.7 × 104, 5.7 × 103, 5.7 × 102, 
5.7 × 101, and 5.7 × 100 copies/μL, and amplified with RPA for 30 min. 
Then the RPA reaction product was added 2 μL to the CRISPR/
Cas13a detection system at 37°C for 40 min, and the fluorescent 
signal was collected every 30 s on the Bioer Line Gene 9600 Plus Real 
Time Thermalcycler. We simultaneously used the same concentrations 
of the standard plasmid for an qPCR analysis and compared 
the results.

TABLE 1 Sequences used in this study.

Name Sequence (5’-3’)

RPA-F1 TAATACGACTCACTATAGGGCAAGGGTAAAACCATTTCTCAGGTATTTGG

RPA-F2 TAATACGACTCACTATAGGGCCAAGGGTAAAACCATTTCTCAGGTATTTG

RPA-F3 TAATACGACTCACTATAGGGAACCGGTCTCGTACTGGTGCCAATGTCGGCT

RPA-R1 TTTTTAGGTTTCTTCTGCTGTTTGGGTTTA

RPA-R2 CAGAGTTACCTTTTTAGGTTTCTTCTGCTG

RPA-R3 TGATTGAGTACGAGAAGGTAAGGGTAATTG

crRNA1 GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACAGCGAAAAGCAUUUCCUGAACACCAGGC

crRNA2 GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAAACCCGUCUUCUCAGUGUCUGCAGAGCCGA

reporterRNA 5′/6-FAM/UUUUUU-BHQ1/3’

Primer (T7 promoter sequence was thickened), crRNA (repeat sequence was thickened), and reporter RNA.
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2.7 Evaluating detection repeatability

We used high (5.7 × 106 copies/μL), medium (5.7 × 103 copies/μL), 
and low (5.7 × 101 copies/μL) concentrations of the PDCoV plasmid 
standard. After RPA amplification for different times, we used the 
CRISPR/Cas13a system to detect and evaluate the repeatability 
of detection.

2.8 Evaluating sample detection

In this experiment, we used both the CRISPR/Cas13a method and 
qPCR to detect PDCoV in the same samples, and compared and 
analyzed the results of the two methods.

3 Results

3.1 Construction of CRISPR/Cas13a 
detection system

The RPA–CRISPR/Cas13a detection system steps are as follows. 
After RNA was extracted from the samples, it was processed with 
reverse transcription and RPA amplification, and the RPA product 
was then added to the CRISPR/Cas13a system. The T7 in the system 
was reverse transcribed into ssRNA, which was recognized by crRNA 

and activated the bystander activity of the Cas13a protein, so that the 
reporter RNA was cut and, consequently, emitted a fluorescent signal. 
We directly observed this fluorescence under blue and ultraviolet 
irradiation, or used instruments to quantify the fluorescent signal 
(Figure 1A).

Three pairs of RPA primers and two crRNAs were designed based 
on the conserved fragment of the N region of PDCoV (Figure 1B). 
The constructed PDCoV standard plasmid was RPA amplified with 
three sets of primers. Agarose gel electrophoresis showed that primer 
pair F1R3 achieved the best amplification efficiency and it was used in 
subsequent experiments (Figures 2A,B). The CRISPR/Cas13a system 
was used to detect the fluorescent signal, and the results showed that 
crRNA2 had the best cleavage efficiency (Figure 3A). A WebLogo1 
analysis confirmed the good conservation of the F1R3 primer pair 
(Figure 2C) and crRNA2 (Figure 3B). Therefore, primers F1R3 and 
crRNA2 were used to establish an effective detection system.

3.2 Optimized reaction conditions

We used the fluorescent signal emitted by the CRISPR/Cas13a 
system to optimize the temperature of the entire reaction, the Cas13a 
protein concentration, and the reporter RNA concentration. The 

1 https://weblogo.threeplusone.com

TABLE 2 Length of the spacers sequence and location of the spacers sequence in the target gene.

Name Spacer sequence (29  nt) Target gene Site

crRNA1 CAGCGAAAAGCAUUUCCUGAACACCAGGC GCCUGGUGUUCAGGAAAUGCUUUUCGCUG 708–736

crRNA2 ACCCGUCUUCUCAGUGUCUGCAGAGCCGA UCGGCUCUGCAGACACUGAGAAGACGGGU 641–669

FIGURE 1

(A) Flow diagram of the RPA–CRISPR/Cas13a detection method. (B) Schematic representation of the design of the RPA primers and crRNA. Three pairs 
of RPA primers and two crRNAs were designed based on the conserved fragment of the N region of PDCoV.
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optimization process examined single variables, including the reaction 
time (10, 20, 30, and 40 min), reaction temperature (35, 36, 37, 38, 39, 
and 40°C), the Cas13a protein concentration (50, 100, and 150 ng/μL), 
and the reporter RNA concentration (10, 8, 6, 4, and 2 pmol/μL). The 
results showed that the reaction efficiency was highest at 37°C 
(Figure 4A), that 50 ng/μL Cas13a protein was very highly reactive 
(Figure 4B), and that the fluorescent signal could be seen with the 
naked eye at an RNA reporter concentration of 2 pmol/μL (Figure 4C). 
When the reaction was conducted for 40 min, the fluorescence value 
reached its peak and subsequently stabilized. Therefore, we  have 
determined that 40 min is the optimal reaction time. (Figure 4D).

3.3 Detection capacity of CRISPR/Cas13a 
system

We evaluated the detection capacity of the CRISPR/Cas13a system 
by assessing its sensitivity and specificity. To evaluate its specificity, 

strains of PDCoV, TGEV, SVA, PEDV and PoRV were added to the 
established CRISPR/Cas13a system, and RNase-free water was used 
as the template in the negative control. Only the PDCoV sample tested 
positive, and the other viral samples tested negative, indicating that 
the system has good specificity (Figure 5).

To evaluate the sensitivity of the system, we diluted the standard 
PDCoV plasmid to 5.7 × 107, 5.7 × 106, 5.7 × 105, 5.7 × 104, 5.7 × 103, 
5.7 × 102, 5.7 × 101, and 5.7 × 100 copies/μL for RPA amplification. 
The reaction product was added to the CRISPR/Cas13a system at 
37°C for 40 min, and the fluorescent signal was collected every 30 s 
on the Gene-9600 Thermalcycler. According to the final 
fluorescence value, when the fluorescence value was higher than 
893.86, the sample was judged to be positive. At the same time, 
qPCR was used to analyze the same concentrations of the template. 
When the Ct value is less than 35, the sample is judged to 
be positive. The results showed that the CRISPR/Cas13a system 
detected as little as 101 copies of the PDCoV plasmid (Figure 6A), 
as did qPCR (Figure 6B).

FIGURE 2

Screening the RPA primers and crRNAs. (A) Screening the RPA primers. First, the downstream primer R3 was selected to screen the upstream primers 
(F1, F2, and F3), and F1 showed the highest efficiency. Then F1 was used to screen the downstream primers (R1, R2, and R3). The upstream primer F1 
and the downstream primer R3 were the best primer combination. (B) ImageJ was used to detect the gray value of the image, which was repeated 
three times, and draws a histogram. (C) Conservative analysis of RPA primers.

FIGURE 3

(A) crRNA screening. The real-time fluorescence curve and the end-point fluorescence value diagram indicate that crRNA2 had the better effect. 
(B) Conservative analysis of crRNA2.
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TABLE 3 The repeatability assessment of CRISPR/Cas13 system.

5.7  ×  106 
copies/μL

5.7  ×  103 
copies/μL

5.7  ×  101 
copies/μL

Coefficient of variation 1.609% 1.155% 7.177%

The coefficient of variation was calculated using Graph Pad prism8.0.2 software.

3.4 Repeatability

We used high (5.7 × 106 copies/μL), medium (5.7 × 103 copies/
μL), and low (5.7 × 101 copies/μL) concentrations of the PDCoV 

standard to perform RPA–CRISPR/Cas13a detection at different 
times to evaluate the repeatability of detection. The experimental 
results showed that the high, medium, and low concentrations of 
the PDCoV standard were detected at three different time points, 
confirming that the detection system has good repeatability 
(Table 3).

3.5 Sample detection

We collected 123 samples to verify the reliability of the CRISPR/
cas13a system in detecting clinical PDCoV samples. The extracted 

FIGURE 4

Optimization of the conditions of the detection system. (A) Optimization of reaction temperature. (B) Optimization of Cas13a protein concentration. 
(C) Optimization of reporter RNA concentration. (D) Optimization of reaction time.

FIGURE 5

Specificity evaluation of CRISPR/Cas13a system to detect PDCoV.
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samples were detected with both the qPCR and RPA–CRISPR/
Cas13a methods. As shown in Table 4, 39 samples were positive and 
84 samples were negative with qPCR, whereas 36 samples were 
positive and 87 samples were negative with the CRISPR/Cas13a 
method. Therefore, the results of the two methods were consistent 
(k = 0.94).

4 Discussion

The CRISPR/Cas system exists widely in prokaryotes and is an 
acquired immune system. It recognizes foreign viral gene fragments 
and cuts them into itself. After recognizing the corresponding 
pathogens, it produces a corresponding crRNA, which guides the Cas 
protein to recognize and degrade specific target sequences to protect 
the prokaryote from viral invasion (Pausch et al., 2020). The Cas13a 
(C2c2) protein, like Cas9 and Cas12, has incidental cleavage activity. 
After recognizing the specific target under the guidance of crRNA, its 
activated nuclease activity cleaves nonspecific nucleic acid fragments 
(East-Seletsky et al., 2017). To date, CRISPR/Cas13a has been used to 
detect a variety of pathogens, including hepatitis E virus (Li et al., 
2024), hepatitis B virus (Tian et al., 2023), avian influenza virus (Li 
et al., 2023), Vibrio alginolyticus (Wang et al., 2023), and Trichomonas 
vaginalis (Yang et al., 2024). However, as far as we know, this technique 
has not been used to detect PDCoV.

In summary, we  have established a new RPA–CRISPR/Cas13a 
method of PDCoV detection. We designed three pairs of primers based 
on the N region of PDCoV, and then designed two crRNAs based on 
the RPA product fragment. After screening, we showed that the F1R3 
primer combination and crRNA2 were optimal in this system. We then 
optimized the reaction conditions, and identified the best reaction 
temperature as 37°C, the optimal concentration of reporter RNA as 
6 pmol/μL, and the optimal concentration of Cas13a protein as 50 ng/

μL for the rapid and accurate on-site detection of PDCoV. This 
detection method is highly specific and does not cross-react with 
TGEV, SVA, or PEDV. The system is also highly sensitive and can detect 
copy numbers as low as 101, identical to the qPCR method. Compared 
with qPCR, the kappa value was 0.94 (k > 0.75), so the results of the two 
methods are highly consistent. Although RT–qPCR is more accurate in 
sample detection, the RPA–CRISPR/Cas13a detection method is more 
time efficient and less labor intensive, and reduced dependence on the 
instrument, so it is suitable for use on ordinary farms.

The PDCoV detection method established in this study has many 
obvious advantages (Woo et al., 2012). The combination of the RPA 
and CRISPR/Cas13a technologies rapidly and efficiently detects 
PDCoV (Wang et  al., 2014). The system has high specificity and 
sensitivity, and its detection ability is consistent with that of qPCR 
(Pasick et al., 2014). With the advantages of high sensitivity and high 
specificity, it is more convenient and less time-consuming than qPCR, 
so it is a simple and convenient detection method.

Although the method we established has many advantages, there 
is still room for improvement. We  used the phenol–chloroform 
method to extract the viral RNA. Although the extraction efficiency 
was high, there were several shortcomings, such as cumbersome and 
slow processes and the repeated opening of the lid of the reaction 
vessel, which increased the risk of contamination. Commercial RNA 
extraction kits are widely used in the industry, and they can serve as 
an alternative to phenol chloroform for RNA extraction in 
conventional pig farms. In future studies, we hope to find a more 
convenient and efficient method for extracting viral RNA to 
complement the detection system.

PDCoV, as an RNA virus, requires a reverse transcription step 
before RPA. To improve the convenience of the detection method, 
we  will try to combine the reverse transcription system with the 
isothermal amplification method in future research. Moreover, RPA 
and CRISPR/Cas13a are performed in two separate steps. In future 

FIGURE 6

(A) Sensitivity of CRISPR/Cas13a system to detect PDCoV. When the fluorescence value was higher than 893.86, the sample was judged to be positive. 
****p  <  0.0001, **p  <  0.01. (B) Sensitivity of RT–qPCR. When the Ct value is less than 35, the sample is judged to be positive.

TABLE 4 Sensitivity, specificity, and kappa value of CRISPR/Cas13 and qPCR were determined.

qPCR total sensitivity specificity Kappa value

+ −

CRISPR/Cas13a + 36 0 36 92.3% 100% 0.94

− 3 84 87

Total 39 84 123
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studies, we will try to combine the two steps and optimize them to 
further reduce the reaction time and the contamination risk.
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