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The alarming rise in antimicrobial resistance (AMR) has created a significant 
public health challenge, necessitating the discovery of new therapeutic 
agents to combat infectious diseases and oxidative stress-related disorders. 
The Lentzea flaviverrucosa strain E25-2, isolated from Moroccan forest soil, 
represents a potential avenue for such research. This study aimed to identify 
the isolate E25-2, obtained from soil in a cold Moroccan ecosystem, and 
further investigate its antimicrobial and antioxidant activities. Phylogenetic 
analysis based on 16S rRNA gene sequences revealed the strain’s classification 
within the Lentzea genus, with a sequence closely resembling that of Lentzea 
flaviverrucosa AS4.0578 (96.10% similarity). Antimicrobial activity in solid 
media showed moderate to strong activity against Staphylococcus aureus 
ATCC 25923, Bacillus cereus strain ATCC 14579, Escherichia coli strain ATCC 
25922, Candida albicans strain ATCC 60193 and 4 phytopathogenic fungi. In 
addition, ethyl acetate extract of this isolate demonstrated potent antimicrobial 
activity against 7 clinically multi-drug resistant bacteria. Furthermore, it 
demonstrated antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free 
radicals, as well as a significant increase in ferric reducing antioxidant power. 
A significant positive correlation was observed between antioxidant activities 
and total content of phenolic compounds (p  <  0.0001), along with flavonoids 
(p  <  0.0001). Furthermore, gas chromatography-mass spectrometry (GC-MS) 
analysis revealed the presence of amines, hydroxyl groups, pyridopyrazinone 
rings, esters and pyrrolopyrazines. The Lentzea genus could offer promising 
prospects in the fight against antibiotic resistance and in the prevention against 
oxidative stress related diseases.
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1 Introduction

The advent of antibiotics in the 20th century revolutionized the 
treatment of infectious diseases, marking a new era in medical science 
(Browne et al., 2020). These “magic bullets” have saved countless lives by 
effectively targeting and eliminating bacterial pathogens (da Cunha et al., 
2019). However, the widespread and often indiscriminate use of 
antibiotics has created a significant public health challenge with 
antimicrobial resistance (AMR). Nowadays, antimicrobial-resistant 
infections have become the third leading cause of death, following 
cardiovascular diseases and cancer (Meštrović et al., 2023). AMR occurs 
when microorganisms such as bacteria, viruses, fungi, and parasites 
evolve mechanisms to withstand the drugs designed to kill them (World 
Health Organization, 2023). This phenomenon not only renders 
standard treatments ineffective but also increases the risk of severe illness 
and death (Tang et al., 2023). In 2019, approximately 1.27 million deaths 
were attributed to infections caused by antimicrobial resistance (AMR), 
and nearly 5 million deaths were linked to multidrug-resistant (MDR) 
infections (Salam et al., 2023). By 2050, this number is expected to rise 
to 10 million annually, greatly exceeding the mortality rates of cancer 
(Will 10 Million People Die a Year due to Antimicrobial Resistance by 
2050?). One of the earliest known “superbugs,” methicillin-resistant 
Staphylococcus aureus (MRSA), is linked to a high death toll from AMR 
infections globally (World Health Organization, 2023). Presently, 3.5% 
of active tuberculosis cases and 18% of previously treated cases are 
categorized as multidrug-resistant tuberculosis (MDR-TB) worldwide, 
with increasing concern over extensively drug-resistant tuberculosis 
(XDR-TB) in many MDR-TB cases (Uddin et al., 2021).

Given the alarming rise in infectious diseases and bacterial 
resistance, it is essential to discover new natural bioactive compounds 
as alternatives to antibiotics to combat the progression toward 
multidrug resistance (MDR). In this context, it was reported that the 
most effective source for discovering powerful new bioactive 
compounds is natural products derived from Microorganisms 
including bacteria (Hug et  al., 2020). Bacteria produce secondary 
metabolites, which are not necessary for survival but provide 
advantages under specific conditions (Hug et  al., 2020). These 
secondary metabolites exhibit diverse biological functions and are 
used as antifungals, anticancer, immunosuppressive, and antibiotics 
compounds (Barka et al., 2016; Jones and Elliot, 2017). Actinobacteria 
are massive antibiotic producers, accounting for almost two-thirds of 
all known antibiotics used in medicine (Lu et al., 2019). They are an 
important and inexhaustible source for the natural production of 
antibiotics, and they remain a source of interest for the discovery of 
new antibiotics (Genilloud, 2017). Furthermore, the Actinobacteria 
are recognized for their biocontrol potential due to their ability to 
produce bioactive compounds (Barka et al., 2016).

The Lentzea genus is a Gram-positive group, aerobic, non-motile, 
filamentous Actinobacteria characterized by branching aerial mycelia 
that fragment into rod-like elements (Cao et al., 2015). The Lentzea 
genome contains between 68.6 and 79.6% guanine and cytosine 

(G + C) (Cao et al., 2015). As part of our program focused on isolating 
Actinobacteria from the soils of the Azrou forest in the Fez-Meknes 
region of Morocco, aiming to explore their chemical diversity and 
potential in antibiotic discovery (Rammali et  al., 2022), we  came 
across a rare Actinobacteria strain identified as Lentzea sp. strain 
E25-2. Remarkably, the bioactive compounds produced by this genus, 
except for Lentzea violacea, have not been widely documented 
(Hussain et al., 2017). In this study, we first identified the genus of 
isolate E25-2, obtained from the soil of a cold Moroccan ecosystem. 
Secondly, our aim is to explore its biological properties, particularly 
focusing on its antimicrobial and antioxidant activities.

2 Materials and methods

2.1 Soil sampling, isolation and 
conservation

In February and early March 2019, a pure strain, designated 
E25-2, was isolated from a soil sample from an unexploited cold 
ecosystem in the Azrou forest, in the Fez-Meknes region of Morocco 
(GPS: 33° 26′ 28″ N 5° 13′ 22″ W). The soil sample was collected at 
five separate points over an area of 400 m2 following the described 
sampling method by Sengupta et  al. (2015) and underwent 
pretreatment by the enrichment method (Kitouni et al., 2005). For 
Actinobacteria isolation, M2 medium supplemented with 50 mg/L 
actidione (cycloheximide) (Bouaziz et  al., 2016) was used. Strain 
E25-2 was grown on ISP2 agar medium, incubated at 28°C, and 
subsequently stored temporarily in inclined tubes at 4°C and long-
term in a 20% glycerol solution at −20°C (Marimuthu et al., 2020).

2.2 Genotypic identification

The genomic DNA extraction from isolate E25-2, the amplification 
and sequencing reactions, was carried out following the protocol 
described in our previous work (Rammali et al., 2022, 2024). The 
obtained 16S rRNA gene sequence for isolate E25-2 was aligned with 
related Lentzea genus sequences using MEGA-X software (Kumar 
et al., 2018). Phylogenetic tree construction employed the neighbor-
joining tree method (Saitou and Nei, 1987). Sequence similarity was 
assessed using GenBank and EzBioCloud genomic databases.

2.3 Phenotypic characteristics of E25-2 
isolate

According to Shirling and Gottlieb (1966), the cultural 
characteristics of isolate E25-2 were observed on ISP (International 
Streptomyces Project) media (ISP-1, ISP-2, ISP-4, ISP-5 and GYEA). 
The cell morphology of the isolate was determined by light 
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microscopy with a digital camera (Olympus CX43RF) in its native 
condition and subsequent to Gram staining, employing the slide 
culture method (Williams and Cross, 1971). Melanoid pigment 
production, tolerance to various concentrations of NaCl (1, 2, 3, 4, 5, 
7 and 10%), tolerance to different pH values (4.63, 5.33, 6.41, 7.31, 
8.28, 9.27 and 10.03), growth at different temperature levels (4, 28, 37 
and 46°C) and assimilation of carbohydrates and their derivatives as 
the sole carbon source were evaluated in this study (Singh 
et al., 2016).

2.4 Preliminary evaluation of antimicrobial 
activity

Primary screening to evaluate the antimicrobial activity of the 
E25-2 isolate was performed using the double-layer method 
described by Badji et al. (2005), utilizing four agar media (Bennett, 
ISP1, ISP2, and GYEA) against various microorganisms: Escherichia 
coli ATCC 25922, Staphylococcus aureus ATCC 25923, Bacillus cereus 
ATCC 14579, and Candida albicans ATCC 60193 (obtained from the 
Institut Pasteur collection in Casablanca, Morocco), as well as 
Fusarium sp. MN944575, Fusarium sp. MN944576, and Trichoderma 
longibrachiatum M37 (these phytopathogenic fungi were obtained 
from the Laboratory of Agro-Alimentary and Health, Faculty of 
Sciences and Techniques, Hassan First University of Settat, Morocco).

2.5 Secondary evaluation of antimicrobial 
activity

2.5.1 Preparation of the extract of E25-2 isolate
The fermentation and secondary metabolite extraction of the 

E25-2 strain were conducted according to the protocol outlined in our 
previous work (Rammali et  al., 2022, 2023, 2024). Antimicrobial 
activity in organic extracts from isolate E25-2.

The assessment of the antimicrobial efficacy of extracts derived 
from the organic phase of the E25-2 isolate was conducted using the 
disk diffusion method (Badji et al., 2005). Evaluation involved testing 
against Escherichia coli strain ATCC 25922, Staphylococcus aureus 
strain ATCC 25923, Bacillus cereus ATCC 14579, Candida albicans 
ATCC 60193, and 5 clinical MDR strains (Enterococcus strain 
18k1386, Staphylococcus aureus strain 18k1052, Proteus vulgaris strain 
16C1737, Neisseria gonorrhoeae strain 16D1170, Escherichia coli strain 
16D1150). The antibiotic resistance profile of the clinical MDR strains 
tested was verified against 16 antibiotics (Supplementary Table S3). 
These MDR strains were obtained from the collection of the Pasteur 
Settat Morocco Medical Analysis Laboratory. Prior to antimicrobial 
testing, bacterial cells were harvested and adjusted to an optical 
density (OD) of 0.08–0.13 at 625 nm, approximately corresponding to 
106 CFU/mL, using a spectrophotometer (Selectra VR2000, Barcelona, 
Spain) (CASFM, 2020). Similarly, for antifungal activity assessments, 
inoculum optical densities were maintained within the 0.18–0.20 
range at 623 nm, corresponding to a concentration of approximately 
106 spores/mL (Bastide et al., 1986). DMSO-impregnated discs of 
equivalent volume served as negative controls. Streptomycin was used 
for antibacterial activity assessment, while cycloheximide served as 
the positive control for antifungal activities.

2.6 Total phenolic and flavonoid contents

The total phenolic contents quantification in the ethyl acetate 
extract of the E25-2 isolate was performed using the Folin–Ciocalteu 
method, as outlined by Bensadón et al. (2010). The absorbance was 
recorded at 760 nm, with gallic acid used as standard. Additionally, 
the total flavonoid contents were determined according to Bahorun 
et  al. (2006). The absorbance was recorded at 415 nm, quercetin 
as standard.

2.7 In vitro antioxidant activity tests

The DPPH assay of ethyl acetate extract of E25-2 isolate was 
carried out following the protocol of Blois (1965). The absorbance was 
measured at 517 nm. Ascorbic acid was used as a positive antioxidant. 
The ABTS assay of ethyl acetate extract of E25-2 isolate was assessed 
following the method previously adopted by Re et al. (1999). The 
result of the reaction was recorded by measuring absorbance at 
734 nm. Trolox was used as a positive antioxidant. Concerning FRAP, 
it was determined according to Oyaizu (1986). The absorbance was 
measured at 700 nm. With ascorbic acid used as the positive 
antioxidant. In all assays, a spectrophotometer (Selectra VR2000, 
Barcelona, Spain) was employed to measure the absorbance.

2.8 Evaluating toxicity of ethyl acetate 
extract of E25-2 isolate

The UV–visible spectrophotometer was used to measure the 
absorption spectra of the ethyl acetate extract from the E25-2 isolate, 
solubilized in DMSO, across the wavelength range of 190 to 850 nm 
(HACH lange DR6000) (Bastide et al., 1986).

2.9 Evaluating toxicity of E25-2 isolate 
using in vitro method hemolysis

The hemolytic activity of ethyl acetate extract of E25-2 isolate was 
performed following the methods described by our group (Rammali 
et al., 2024). The degree of hemolysis was expressed as the hemolysis 
rate, calculated according to the following formula:

 

( )
( )
( )
( )

OD Test
OD Negative control

Hemolysis rate 100%
OD Positive control
OD Negative control

  −
    = × −
 
  

2.10 Gas chromatography-mass 
spectrometry analysis

The gas chromatography-mass spectrometry (GC-MS) analysis 
was performed according to the protocol detailed in our previous 
work (Rammali et al., 2022, 2024).
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2.11 Statistical analysis

The experiments were conducted in triplicate, and the results were 
presented as the mean value along with the standard deviation (SD). 
To assess differences between groups in phenolic compound, flavonoid 
compound, and antioxidant activity assays, the GraphPad Prism 8.4.3 
software was used. Specifically, we performed a standard two-way 
ANOVA followed by Tukey’s multiple comparisons test. Statistical 
significance was set at p < 0.05. Pearson correlation analysis was 
conducted using GraphPad Prism 8.4.3 software to assess the 
relationship between total phenolic and flavonoid compounds and 
antioxidant activity.

3 Results

3.1 16S rRNA PCR and phylogenetic 
approaches

The sequencing analysis revealed that the almost complete 
sequence of the 16S rRNA gene of isolate E25-2 was 1,103 bp 
(GenBank accession number: OR865862) 
(Supplementary Table S1). By comparing the aligned sequence of 
the 16S rRNA gene of isolate E25-2 with the corresponding partial 
sequences of the 16S rRNA gene from type strains accessible in the 
GenBank genomic database, we  were able to determine the 
taxonomic classification of isolate E25-2. According to the results, 
strain E25-2 demonstrates approximately 97% similarity with the 
genus Lentzea (Supplementary Table S1). The phylogenetic tree 
indicated that the E25-2 strain exhibited a 16S rRNA sequence 
similarity of 96.10% with Lentzea flaviverrucosa AS4.0578 
(Figure 1).

3.2 Phenotypic analysis of Lentzea sp. 
E25-2 isolate

The culture characteristics analysis revealed that isolate E25-2 
exhibits growth on all tested agar culture media (ISP1, ISP2, ISP4, 
ISP5, ISP7, and GYEA) (Table 1). Colonies of isolate E25-2 are star-
shaped, ranging from 1 to 6 mm in diameter (Supplementary Figure S1). 
The aerial mycelium, observed on the surface of the medium, has a 
whitish, non-powdery appearance, while the substrate mycelium on 
the underside of the medium, has an orange-yellow color 
(Supplementary Table S2). Under light microscopy in the fresh state 
and after Gram staining, isolate E25-2 was identified as a filamentous, 
immobile Gram-positive bacterium. It displayed segmented, 
branched aerial mycelium under observation 
(Supplementary Figure S2). The isolate exhibits robust growth on all 
tested agar types (ISP1, ISP2, ISP4, ISP5, ISP7 and GYEA) after 
1 week of aerobic incubation at 28°C. The isolate E25-2 is negative for 
melanoid pigment production. In fact, no diffusible pigments were 
observed on the culture media. Moreover, it grows in a pH range from 
5.33 to 10.03, with optimal growth at pH 8.28, and is unable to grow 
at pH below 5 (Table  1). The isolate E25-2 tolerates NaCl 
concentrations from 1 to 6%, but no growth above 7%. The carbon 
source identification test showed that this isolate can assimilate all 
carbohydrate compounds: D-xylose, mannitol, D-raffinose, 

cellobiose, sucrose, D-galactose, melibiose, ribose, D-mannose, 
D-fructose, trehalose, maltose, and glucose except Melezitose and 
D-arabinose (Table 1).

3.3 Antimicrobial potential of isolate E25-2

Isolate E25-2 exhibited antimicrobial activity on all the agar media 
tested, with significantly higher activity observed on ISP2 and Bennett 
media. Conversely, ISP1 and GYEA provided less favorable conditions 
for secondary metabolite production (Figures 2, 3). The antimicrobial 
assays revealed significant activity of isolate E25-2 against both Gram-
positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus 
ATCC 14579) and Gram-negative bacteria (Escherichia coli ATCC 
25922), as well as Candida albicans ATCC 60193. Furthermore, isolate 
E25-2 demonstrated notable antimicrobial activity against two 
phytopathogenic fungi Fusarium sp. MN944576 and Fusarium sp. 
MN944575, as well as Trichoderma longibrachiatum (M37), which is 
known to cause invasive lung infections.

Antimicrobial activity, assessed using n-hexane, dichloromethane, 
ethyl acetate and n-butanol, revealed that ethyl acetate was the most 
effective solvent for extracting the main antimicrobial agents (with 
zones of inhibition ranging between 6.5 ± 0.71 and 25 ± 1.41 mm). In 
addition, isolate E25-2 underwent specific secondary screening, 
involving MDR pathogenic bacteria and phytopathogenic fungi 
(Figure  4; Table  2; Supplementary Table S3). Both primary and 
secondary screening results indicated a more pronounced activity of 
this isolate against Gram-positive bacteria, compared to Gram-
negative bacteria.

3.4 The phenolic and flavonoid content of 
ethyl acetate extract from E25-2 isolate

The findings of the flavonoid and total phenolic contents of the 
ethyl acetate extract of isolate E25-2 are presented in Table 3. Pearson’s 
statistical analysis revealed a positive correlation between the 
concentrations of ethyl acetate extract and total phenolic content 
(r = 0.997; p < 0.001), as well as a positive correlation with flavonoid 
content (r = 0.834; p < 0.05). These correlations were calculated as the 
mean of three repetitive measurements.

3.5 In-vitro antioxidant potential of E25-2 
isolate

The ethyl acetate extract of isolate E25-2 exhibited lower DPPH 
and ABTS activities com-pared to the standards (ascorbic acid and 
Trolox) (p < 0.0001) (Figures  5A,B). The results presented in the 
Figure 5A indicate that the ethyl acetate extract from the E25-2 isolate 
exhibited significant DPPH free radical scavenging activity between 
the different tested concentrations (p < 0.0001), with inhibition 
percentages ranging from 2.91 ± 0.92 to 37.78 ± 1.93% for 
concentrations between 0.2 and 1 mg/mL. In addition, the extract 
demonstrated high ABTS radical scavenging activity between the 
different tested concentrations (p < 0.0001), with inhibition 
percentages ranging from 1.32 ± 1.96 to 30.58 ± 1.78% over the same 
concentration range (Figure 5B).
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Regarding iron antioxidant reducing power (FRAP), the results 
revealed a significant iron-reducing activity for ethyl acetate extract 
across the tested concentrations (p < 0.0001). This activity showed 
values from 0.43 ± 0.01 to 0.89 ± 0.02 mg AAE (ascorbic acid 
equivalent) per milligram of extract (Figure 6).

3.6 Correlation between antioxidant 
activity and total phenol and flavonoid 
contents

To evaluate the relationship between the antioxidant capacity of 
E25-2 ethyl acetate extract and its total phenol and flavonoid contents, 
a correlation analysis was also carried out. Figures 7A–F presents the 
Pearson correlation coefficients between the variables. The findings 
demonstrated a remarkably strong positive association between 
antioxidant activity, as measured by DPPH, ABTS and FRAP assays, 
and the polyphenol and flavonoid contents of ethyl acetate extract of 
Lentzea sp. isolate E25-2. A significantly positive correlation was 
observed between the total polyphenol content (TPC) and the ferric 
reducing antioxidant power (FRAP) of the E25-2 extract (r = 0.987, 

p < 0.0001), as well as between the total flavonoid content (TFC) and 
FRAP of this extract (r = 0.821, p < 0.05).

3.7 Evaluating toxicity of ethyl acetate 
extract from isolate E25-2 using UV-visible 
spectral assay

Spectral examination of the ethyl acetate extract from isolate 
E25-2 indicated the absence of polyene molecules (Figure 8). Polyene 
molecules are generally defined by their tendency to exhibit three 
distinct absorption maxima in the UV-visible range, located between 
291 and 405 nm.

3.8 Evaluating toxicity of E25-2 isolate 
using in vitro method hemolysis

As shown in Figure  9, no visible hemolysis was observed at 
different concentrations (0.125 to 1.25 mg/mL) of the ethyl acetate 
extract from isolate E25-2. Additionally, quantitative determination of 

FIGURE 1

The phylogenetic tree, based on the 16S rRNA gene, was constructed using the Neighbour-Joining Tree statistical method using MEGA X software. The 
16S rRNA gene sequence analysis illustrates the evolutionary relationship between Lentzea sp. strain E25-2, indicated by a red circle, and its closest 
known taxa. The bar (0.02) represents the number of substitutions per nucleotide position. GenBank accession numbers are provided in brackets. 
Cryptobacterium curtum was used as the outgroup in the analysis. T, type strain.

https://doi.org/10.3389/fmicb.2024.1429035
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Rammali et al. 10.3389/fmicb.2024.1429035

Frontiers in Microbiology 06 frontiersin.org

hemoglobin by UV-vis spectroscopy also demonstrated negligible 
hemolytic activity of the ethyl acetate extract from isolate E25-2.

3.9 Gas chromatography-mass 
spectrometry analysis

GC-MS analysis of the ethyl acetate extract from isolate E25-2 
indicated the presence of amines, hydroxyl groups, pyrido-pyrazinone 
rings, esters, and pyrrolopyrazines. These chemical compounds were 
identified by comparing their mass spectra with the NIST library 
database. Detailed information regarding the chemical compounds, 
including their retention time, molecular weight, and molecular 
formula, is provided in Table 4. Moreover, their respective chemical 
structures are illustrated in Figure 10.

4 Discussion

The isolate named E25-2 was classified as belonging to the genus 
Lentzea. Based on the results of the phylogenetic analysis, strain E25-2 
has a 16S rRNA sequence similarity of 96.10% with Lentzea 
flaviverrucosa AS4.0578 NR_028763. Compared with the closest 
known strains, such as Lentzea flaviverrucosa, the sequence similarity 
is less than 98.7% (96.10%), suggesting the possibility that this is a new 
taxon according to Rossi-Tamisier et  al. (2015). This result was 
confirmed by EzBioCloud databases, which also indicated a sequence 
similarity of 96.10% with the same closest taxon 
(Supplementary Table S4). These findings reinforce the hypothesis that 
strain E25-2 may represent a distinct new taxon within the 
genus Lentzea.

In terms of phenotype, isolate E25-2 has a segmented, branched, 
whitish-colored, non-powdery aerial mycelium and a yellow-orange 
vegetative mycelium. This study also allowed us to characterize isolate 
E25-2 in terms of physiological, biochemical and micromorphological 
characteristics, to enhance our understanding of the isolate. Moreover, 
E25-2 can assimilate all carbohydrate compounds but it is unable to 
utilize D-arabinose and melezitose. These phenotypic characteristics 
of isolate E25-2 are similar to the Lentzea genus, it is Gram-positive, 
aerobic, non-motile bacteria that form highly branched substrates and 
segregated aerial mycelia, and it unable to assimilate D-arabinose and 
melezitose (Maiti and Mandal, 2022). Consistent with the description 
provided by Maiti and Mandal (2022), members of the Lentzea genus, 
including isolate E25-2, demonstrate an inability to assimilate 
D-arabinose and melezitose. The majority of Actinomycetes species 
thrive in mesophilic conditions, displaying optimal growth 
temperatures ranging from 25 to 35°C, and a preferred pH level 
between 6.5 and 8.0 (Goodfellow et  al., 2012; Barka et  al., 2016). 
Optimum growth for isolate E25-2 is between 28 and 37°C. No growth 
was observed at 4°C or 46°C. These findings align closely with the 
outcomes reported by Singh et al. (2012).

Lentzea species, in particular those belonging to group 692 (Maiti 
and Mandal, 2022), appear to be a diverse source of genes involved in 
the production of secondary metabolites with pharmaceutical 
importance including, antimicrobial, antioxidant, anticancer, 
antibacterial, antimycobacterial, antifungal, antiviral, insecticidal, 
antiparasitic and other properties associated with natural products 
(Maiti and Mandal, 2022). Isolate E25-2 has demonstrated 

TABLE 1 Characteristics of isolate E25-2.

Characteristics E25-2

Assimilation

Ribose +

Melezitose −

D-arabinose −

Mannitol 3+

Trehalose 3+

Cellobiose 3+

Sucrose 3+

Raffinose 2-

Xylose 2+

Melibiose 2+

Mannose 3+

Fructose 3+

Galactose 3+

Maltose 2+

Glucose +

Growth on

ISP1 3+

ISP2 3+

ISP4 3+

ISP5 3+

ISP7 3+

GYEA 3+

pH tolerance

4.63 −

5.33 +

6.41 +

7.31 3+

8.28 3+

9.27 3+

10.03 3+

NaCl tolerance

1% 3+

2% 3+

3% 3+

4% 3+

5% 2+

6% +

7% −

10% −

Growth on

4°C −

28°C 3+

37°C 2+

46°C −

−, no growth; +, low growth; 2+, intermediate growth; 3+, good growth.
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considerable antimicrobial activity against Gram-positive and Gram-
negative bacteria, as well as phytopathogenic fungi and yeasts. 
According to the results of the antimicrobial test, Lentzea sp. E25-2 
demonstrated antimicrobial activity against MDR pathogenic bacteria, 
as well as against phytopathogenic fungi and yeasts. According to the 
literature, the Streptomyces genus is recognized for its ability to 
naturally produce secondary metabolites with antimicrobial 
properties, and has strong biocontrol potential, acting effectively 
against MDR bacteria and phytopathogenic fungi such as Fusarium 
sp. (de Lima Procópio et al., 2012; Rammali et al., 2022). However, the 

antimicrobial activity of the Lentzea genus has rarely been reported in 
the literature. In our study, the Lentzea sp. E25-2 isolate could 
be considered an important source for the exploration of antimicrobial 
compounds, opening up promising prospects for potential 
applications in this field.

Reactive oxygen species (ROS), are reactive molecules that have 
the potential to inflict damage on nucleic acids, proteins, 
carbohydrates, and lipids, contributing to various disorders such as 
oxidative stress, aging, cancer, and immune dysfunction (Santos-
Sánchez et al., 2019). Antioxidants have the ability to slow down or 

FIGURE 2

Antibacterial (A) and antifungal (B) activities of isolate E25-2 assessed via double layer method on solid media.
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FIGURE 3

Antimicrobial activity of Lentzea sp. isolate E25-2 using the double-layer method on ISP1, ISP2, Bennet and GYEA media. (A) Antibacterial activity of 
E25-2 against Bacillus cereus ATCC 14579 using Bennett medium. (B) Antifungal activity of E25-2 against Fusarium sp. strain MN944575. 
(C) Antibacterial activity of E25-2 against Bacillus cereus ATCC 14579 using ISP2 medium. (D,E) Antibacterial activity of E25-2 against Escherichia coli 
ATCC 25922 using Bennett medium. (F) Antibacterial activity of E25-2 against Staphylococcus aureus ATCC 25923 using Bennett medium. 
(G) Antibacterial activity of E25-2 against Staphylococcus aureus ATCC 25923 using ISP2 medium. (H) Antibacterial activity of E25-2 against Escherichia 
coli ATCC 25922 using ISP2 medium.

FIGURE 4

Antimicrobial activity of Lentzea sp. isolate E25-2 against MDR clinical bacteria and plant pathogenic fungi using disk diffusion method. C (+), 
Streptomycin (positive control); C (−), negative control; H, hexane; D, dichloromethane; EA, ethyl acetate; B, butanol; PR, residual phase. (A) Antifungal 
activity of E25-2 and other isolates against Fusarium sp. strain MN944575. (B) Antibacterial activity of E25-2 against clinical Staphylococcus aureus 
23J2668. (C) Antibacterial activity of E25-2 against clinical Staphylococcus saprophyticus 23J2138. (D) Antibacterial activity of E25-2 against clinical 
Escherichia coli 16D1150. (E) Antibacterial activity of E25-2 against clinical Proteus vulgaris 16C1737. (F) Antibacterial activity of E25-2 against 
Staphylococcus aureus ATCC 25923.
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inhibit free radicals reducing oxidative stress and preventing cellular 
damage (Rammali et  al., 2022). Microorganisms such as 
Actinomycetes efficiently produce a variety of natural bioactive 
molecules, including antioxidants (Chandra et  al., 2020). A more 
recent study has shown that Lentzea genomes contain at least 53 genes 
for mitigating oxidative stress (Maiti and Mandal, 2022). Furthermore, 
existing literature suggests that relying on a solitary test is insufficient 
for a comprehensive evaluation of the antioxidant activity present in 
extracts (Tirzitis and Bartosz, 2010; Gupta, 2015; Law et al., 2019). 
Therefore, in order to obtain a more in-depth assessment, three in 
vitro tests including DPPH, ABTS and FRAP, were carried out. These 
three complementary methods provide a more complete picture of the 
antioxidant capacity of ethyl acetate extract from isolate E25-2. The 
ethyl acetate extract derived from Lentzea sp. E25-2 demonstrated 
higher antioxidant properties, suggesting the presence of bioactive 
compounds with diverse mechanisms of antioxidant activity. These 
findings imply that the Lentzea strain might possess the capability to 
produce one or more antioxidants, potentially valuable in preventing 
oxidative stress. To our knowledge, no strain of the Lentzea genus has 
been tested against DPPH, ABTS and FRAP free radicals to explore 
its antioxidant capacity. Phenolic compounds, characterized by an 
aromatic ring with hydroxyl groups, are recognized for their 
antioxidant properties (Balasundram et al., 2006). Furthermore, these 
substances exhibit additional advantageous bioactivities (Balasundram 
et al., 2006; Rammali et al., 2022). The statistical analysis conducted 

in this investigation substantiates this proposition by revealing a 
significant correlation (p < 0.0001) between the antioxidant activity of 
the ethyl acetate extract, assessed through DPPH, ABTS, and FRAP 
tests, and the concentrations of total phenolics and flavonoids.

Due to the structural similarity between human cholesterol and 
ergosterol, predominant in fungal cells, polyene antifungal molecules 
interact with cholesterol, disrupting fungal cell membranes and 
leading to cell death. This interaction with human cholesterol is 
associated with potential toxicity. As a result, researchers often avoid 
incorporating these molecules into research programs for new 
bioactive substances (Yilma et al., 2007). In this context, the strain 
studied, Lentzea sp. E25-2, is particularly interesting, as it is devoid of 
toxic polyene molecules, which are detected by three specific 
absorption maxima in the UV-visible range between 291 and 405 nm 
(Aouiche et  al., 2012). This characteristic suggests that this strain 
could be promising for the discovery of new bioactive molecules, 
particularly in the antifungal field.

A hemolytic assay was conducted to assess the impact of bioactive 
compounds present in the ethyl acetate extract of isolate E25-2 on red 
blood cell membrane disruption. Several studies have demonstrated 
that the in vitro hemolysis test correlates well with in vivo toxicity via 
the hemolytic effect (Lu et al., 2009). Hemoglobin is a protein found 
in red blood cells, playing a crucial role in transporting oxygen from 
the lungs to the tissues of the body. However, the hemoglobin released 
by hemolysis can break down into by-products, some of which can 

TABLE 2 Antimicrobial activity of E25-2 isolate using disk diffusion method according to extraction solvents.

Target strains Antimicrobial activity of E25-2 isolate (mm)

CPA HexB DichB EAB ButB

Staphylococcus aureus 

ATCC 25923

27.51 ± 2.12 — — 10.50 ± 0.71 —

Bacillus cereus ATCC 14579 28.00 ± 4.24 — — 11.50 ± 0.71 —

Clinical Enterococcus 

18k1386

11.00 ± 1.41 — — 10.50 ± 0.71 —

Clinical Staphylococcus 

aureus 18k1052

24.00 ± 1.41 — — 11.00 ± 050 —

Clinical Proteus vulgaris 

16C1737

35.50 ± 0.71 11.00 ± 1.41 12.50 ± 0.71 25.00 ± 1.41 23.50 ± 2.12

Escherichia coli ATCC 

25922

28.00 ± 1.41 — — 13.50 ± 0.71 —

Clinical Neisseria 

gonorrhoeae 16D1170

25.50 ± 2.12 — — 06.50 ± 0.71 —

Clinical Escherichia coli 

16D1150

27.00 ± 1.41 12.50 ± 0.71 9.50 ± 0.71 10.50 ± 0.71 8.50 ± 0.71

Candida albicans ATCC 

60193

27.00 ± 2,83 — — 19.00 ± 0.71 —

Clinical Candida albicans 

23I2445

29.00 ± 1.00 — — 10.50 ± 0.50 —

Clinical Staphylococcus 

aureus 23J2668

31.00 ± 1.00 — — 14.50 ± 0.50 —

Clinical Staphylococcus 

saprophyticus 23J2138

30.50 ± 0.50 — — 11.50 ± 0.50 —

Values expressed are means ± SD (n = 2). Columns marked with different letters A and B are significantly different (ordinary one-way ANOVA: Tukey’s multiple comparisons test, p < 0.05). CP, 
positive control (streptomycin); Hex, hexane; Dich, dichloromethane; EA, ethyl acetate; But; butanol; —, no inhibition zone.
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contribute to vasoactive reactions, resulting in damage to various vital 
organs such as the liver, kidneys and heart (Buehler and D’Agnillo, 
2010). Consequently, the extract showed no membranolytic activity 
on the erythrocyte membrane at all the tested concentrations. 

According to Saurav and Kannabiran (2012), evaluating membrane 
stability during exposure to new drugs is crucial, and erythrocytes 
serve as a suitable model for studying this stability. The impact of 
various bioactive compounds on the mechanical stability of the 
erythrocyte membrane serves as a reliable indicator of overall 
membrane stability.

GC-MS analysis was conducted to identify the bioactive 
compounds present in the ethyl acetate extract of isolate E25-2. The 
compounds identified in this study include phenolic compounds, 
characterized by an aromatic ring carrying one or more hydroxyl 
(OH) groups. These compounds are renowned for their well-
documented antioxidant properties. The phenolic compound detected 
in the ethyl acetate extract is maltol, whose structure includes a phenol 
group, represented by the aromatic ring. This compound has been 
shown to have antioxidant, anti-inflammatory and anti-tumor activity. 
The compounds identified encompass phenolic compounds 
characterized by an aromatic ring containing one or more hydroxyl 
(OH) groups, renowned for their antioxidant properties (Balasundram 
et  al., 2006). Within the ethyl acetate extract, maltol, a phenolic 
compound with a structure featuring a phenol group within the 
aromatic ring, was detected. Previous study has demonstrated that 
maltol exhibits antioxidant, anti-inflammatory, and anti-tumor 
activities (Han H. et al., 2015).

Phenolic compounds could be a natural source of physiological 
properties, such as antioxidant effects and other bioactivities 
(Balasundram et  al., 2006). Heterocyclic compounds were also 
identified in the ethyl acetate extract, including pyrazines and 
pyrrolopyrazines. Pyrazines, heterocyclic compounds commonly 
found in nature, are generally produced by microorganisms (Schulz 
and Dickschat, 2007). Some pyrazines have been associated with 
beneficial activities such as antioxidants, anticancer and 
antimicrobial properties (Ser et  al., 2016). The compound 
Hexahydro-2H-pyrido (1,2-a) pyrazin-3(4H)-one has been 
identified in the ethyl acetate extract of isolate E25-2 and has been 
reported in the literature to exhibit various properties, such as 
antifungal, diuretic, antidiabetic, anticancer, antibacterial, antiviral, 
hypnotic, analgesic activities, and antimycobacterial (Dolezal and 
Zitko, 2015).

TABLE 3 Flavonoid and total phenolic contents of ethyl acetate extract of 
Lentzea sp. E25-2 strain.

Concentration of 
E25-2 ethyl acetate 
extract (mg/mL)

Total phenols 
contents (mg 

GAE/mg 
extract)

Total flavonoids 
contents (mg 

QE/mg extract)

0.10 0.17 ± 0.01 ND

0.20 0.19 ± 0.01 ND

0.30 0.22 ± 0.01 ND

0.40 0.27 ± 0.01 ND

0.50 0.31 ± 0.01 ND

0.60 0.34 ± 0.01 ND

0.70 0.37 ± 0.01 0.02 ± 0.02

0.80 0.40 ± 0.01 0.06 ± 0.02

0.90 0.44 ± 0.01 0.09 ± 0.01

1.00 0.50 ± 0.01 0.14 ± 0.02

ND, not determined; GAE, gallic acid equivalent; QE, quercetin equivalent.

FIGURE 5

Antioxidant activity of ethyl acetate extract of Lentzea sp. E25-2 
strain in various antioxidant assays. (A) antioxidant activity by DPPH 
assay and (B) antioxidant activity by ABTS assay. Values expressed are 
means ± SD (n  =  3). Symbol (****) indicates p  <  0.0001 significant 
difference between ethyl acetate extract of Lentzea sp. E25-2 isolate 
and controls. (C+), positive control; (EA), ethyl acetate.

FIGURE 6

Ferric reducing antioxidant power (FRAP) of ethyl acetate extract of 
Lentzea sp. E25-2: standard deviation analysis for 10 doses 
(0.1  mg–1  mg) in triplicate (n  =  3).
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Pyrrolopyrazines are known for their diverse range of 
bioactivities, which include antioxidant, antitumor, antibacterial, 
antifungal, and anti-angiogenic properties (Ser et  al., 2015). 
Additionally, the compound “3-isobutyl-hexahydro-pyrrolo[1,2-a]
pyrazine-1,4-dione-” was detected in the ethyl acetate extract and 
has been reported in the literature to exhibit various properties, 
such as antibacterial (Ser et al., 2015; Sanjenbam and Kannabiran, 

2016; Raharja et al., 2019), fungicidal (Basavanna et al., 2021), 
antioxidant and insecticidal (Ho, 2012). Furthermore, the 
compound disulfide, dimethyl detected in the ethyl acetate extract 
has previously been reported to exhibit various biological 
activities, including antioxidant, antifungal, and analgesic effects 
(Morales-López et al., 2017; Pozsgai et al., 2017; Tyagi et al., 2020). 
Similarly, the compound 2-Butanamine, 3-methyl- detected in the 

FIGURE 7

Pearson’s correlation coefficients between total phenolic and flavonoid contents and antioxidant activities ethyl acetate extract of Lentzea sp. E25-2 
isolate. (A) Pearson correlation between DPPH and total phenolic content. (B) Pearson correlation between ABTS and total phenolic content. 
(C) Pearson correlation between FRAP and total phenolic content. (D) Pearson correlation between DPPH and flavonoids content. (E) Pearson 
correlation between ABTS and flavonoids content. (F) Pearson correlation between FRAP and flavonoids content. Symbol (****) indicates p  <  0.0001 
highly significant between tests.
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extract was previously reported to possess antimicrobial activities 
(Hameed et al., 2018).

Overall, the chemical compounds identified in the current 
study are well known for their antimicrobial and antioxidant 
activities, indicating that these components could be responsible for 
the antioxidant and antimicrobial activity of the ethyl acetate 
extract of Lentzea sp. E25-2. Consequently, this study provides 
further evidence of the potential of Lentzea sp. E25-2 derived from 
Moroccan forest soil as a promising source of antimicrobial and 
antioxidant agents. However, further research is needed to precisely 

identify the individual compound or combination of compounds 
responsible for the observed activities.

5 Conclusion

In conclusion, the isolate E25-2, derived from Moroccan forest 
soil, was classified as belonging to the genus Lentzea based on 16S 
rRNA sequencing and phylogenetic analysis. Notably, E25-2 
exhibited substantial antimicrobial activity against a range of 
Gram-positive and Gram-negative bacteria, phytopathogenic 
fungi, and yeast, with ethyl acetate identified as the most effective 
solvent for extracting antimicrobial agents. The ethyl acetate 
extract of E25-2 showed significant antioxidant properties, as 
evidenced by DPPH, ABTS, and FRAP assays, which correlated 
strongly with its phenolic and flavonoid contents. The ethyl 
acetate extract analysis by GCMS identified various bioactive 
compounds, including pyrazines, phenolics, and pyrrolopyrazines, 
known for their antimicrobial and antioxidant activities. 
Importantly, the extract was found to be non-toxic, as indicated 
by the absence of polyene molecules and negligible hemolytic 
activity. Our results suggest that Lentzea sp. E25-2 is a promising 
source of novel bioactive compounds with prospective 
pharmaceutical uses, particularly as antimicrobial and antioxidant 
agents. This highlights the soil-derived microorganisms’ value in 
the new natural products discovery. Further research is needed to 
isolate and characterize the specific compounds responsible for 
the bioactivities observed in Lentzea sp. E25-2, which could lead 
to new therapeutic agents’ development.

FIGURE 8

UV-visible spectrum of the crude ethyl acetate extract of Lentzea sp. 
isolate E25-2.

FIGURE 9

Evaluation of the PBS, ethyl acetate extract E25-2, and SDS effect on red blood cells: a comparative microscopic study. (A) Microscopic image showing 
the effect of PBS (negative control), (B) ethyl acetate extract, and (C) SDS (positive control) on red blood cells treated in different concentrations. 
(D) The ethyl acetate extract toxicity evaluation of strain E25-2 using the hemolysis test on human red blood cells.
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TABLE 4 Chemical compounds identified by GC-MS in E25-2 extract.

T (Time) Area 
(%)

M.W. 
(g/mol)

Molecular 
formula

Compound name Reported bioactivity

9.19 2.73 94.20 C2H6S2 Disulfide, dimethyl Antioxidant, antifungal, analgesic effect (Morales-López et al., 2017; 

Pozsgai et al., 2017; Tyagi et al., 2020)

10.43 0.38 87.16 C5H13N 2-Butanamine, 3-methyl- Antimicrobial activity (Hameed et al., 2018)

10.62 0.60 126.11 C6H6O3 Maltol Antioxidant, anti-inflammatory, and antitumor (Han Y. et al., 2015)

24.88 0.86 154.21 C8H14N2O Hexahydro-2H-pyrido (1,2)pyrazin- 3(4H)-

one

Antimycobacterial, antibacterial, antifungal, antidiabetic, diuretic, 

anticancer, antiviral, hypnotic, and analgesic (Dolezal and Zitko, 2015)

26.73 0.95 376.52 C23H36O4 Adipic acid, 2,6-dimethylphenyl nonyl ester Not yet reported

27.10 1.39 210.27 C11H18N2O2 3-isobutyl-hexahydro-pyrrolo[1,2-a] 

pyrazine-1,4-dione

Antibacterial (Ser et al., 2015; Sanjenbam and Kannabiran, 2016; 

Raharja et al., 2019), fungicidal activity (Basavanna et al., 2021). 

Antifungal, antioxidant, and insecticidal (Ho, 2012)

RT, retention time; M.W., molecular weight.

FIGURE 10

Chemical structures and mass spectra of 4 important secondary metabolites present in ethyl acetate extract of strain E25-2 analyzed by GC-MS.
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