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Bloodstream infections (BSIs) are a critical medical concern, characterized by 
elevated morbidity, mortality, extended hospital stays, substantial healthcare 
costs, and diagnostic challenges. The clinical outcomes for patients with BSI 
can be markedly improved through the prompt identification of the causative 
pathogens and their susceptibility to antibiotics and antimicrobial agents. 
Traditional BSI diagnosis via blood culture is often hindered by its lengthy 
incubation period and its limitations in detecting pathogenic bacteria and 
their resistance profiles. Surface-enhanced Raman scattering (SERS) has 
recently gained prominence as a rapid and effective technique for identifying 
pathogenic bacteria and assessing drug resistance. This method offers 
molecular fingerprinting with benefits such as rapidity, sensitivity, and non-
destructiveness. The objective of this study was to integrate deep learning (DL) 
with SERS for the rapid identification of common pathogens and their resistance 
to drugs in BSIs. To assess the feasibility of combining DL with SERS for direct 
detection, erythrocyte lysis and differential centrifugation were employed to 
isolate bacteria from blood samples with positive blood cultures. A total of 
12,046 and 11,968 SERS spectra were collected from the two methods using 
Raman spectroscopy and subsequently analyzed using DL algorithms. The 
findings reveal that convolutional neural networks (CNNs) exhibit considerable 
potential in identifying prevalent pathogens and their drug-resistant strains. The 
differential centrifugation technique outperformed erythrocyte lysis in bacterial 
isolation from blood, achieving a detection accuracy of 98.68% for pathogenic 
bacteria and an impressive 99.85% accuracy in identifying carbapenem-resistant 
Klebsiella pneumoniae. In summary, this research successfully developed an 
innovative approach by combining DL with SERS for the swift identification 
of pathogenic bacteria and their drug resistance in BSIs. This novel method 
holds the promise of significantly improving patient prognoses and optimizing 
healthcare efficiency. Its potential impact could be  profound, potentially 
transforming the diagnostic and therapeutic landscape of BSIs.
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Introduction

Bloodstream infection (BSI) is a critical condition characterized 
by the invasion of pathogenic bacteria into the bloodstream, leading 
to their proliferation, toxin and metabolite secretion, and cytokine 
production. In severe cases, BSI can progress to systemic multiple 
organ dysfunction syndrome (MODS), shock, and disseminated 
intravascular coagulation, culminating in a high mortality rate. 
Common clinical manifestations include fever, chills, and 
hepatosplenomegaly (Zhang et al., 2020). Annually, nearly 2 million 
cases of BSI are reported in North America and Europe, with an 
estimated 250,000 resulting in death. In China alone, research in 2019 
showed a link between bloodstream infections and more than half a 
million deaths (Zhang et al., 2023). This trend highlights the escalating 
impact of BSI as a significant public health issue globally (Goto and 
Al-Hasan, 2013). Timely administration of appropriate antibiotics is 
crucial for improving survival rates and patient outcomes. Studies, 
such as one by Liu et al., have shown that delays in treatment can lead 
to a 9% increase in mortality for each hour of delay (Liu V. X. et al., 
2017). However, the current diagnostic gold standard for BSI, blood 
culture, is limited by its low sensitivity and the extended period 
required for results, typically ranging from 2 to 6 days, which can 
be detrimental in the context of urgent clinical needs.

To our current understanding, advanced molecular diagnostic 
techniques, including matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry (MALDI-ToF MS), polymerase 
chain reaction (PCR), and metagenomic next-generation sequencing 
(mNGS), have been instrumental in the rapid detection of pathogenic 
bacteria (Hu et  al., 2021; Peri et  al., 2022; Wang L. et  al., 2023). 
MALDI-ToF MS has become a clinical mainstay for microbial 
identification, lauded for its ease of use, rapid analysis, cost-
effectiveness, and its ability to identify a wide array of microorganisms, 
encompassing aerobic and anaerobic bacteria, fungi, and 
mycobacteria. Despite these advantages, MALDI-ToF MS encounters 
difficulties in distinguishing between closely related bacterial species 
and is less effective in identifying multiple microorganisms when they 
are growing in a mixture. The technique’s efficacy in pathogen 
identification is also dependent on the isolation of a pure culture. 
Additionally, the visible single colony after the blood culture has 
turned positive requires 18 to 24 h for growth, which often does not 
meet the demand for a rapid diagnosis in clinical settings (Peri 
et al., 2022).

The polymerase chain reaction (PCR)-based diagnostic system is 
renowned for its exceptional detection rate, which is a notable 13 
times higher than that of traditional blood culture methods. This 
technique’s resilience to the presence of antibiotics renders it highly 
effective in identifying complex microbial infections, a challenge often 
encountered with blood culture techniques (Suberviola et al., 2016). 
Despite these strengths, PCR-based detection in blood samples 
confronts several hurdles. The low pathogen load in blood samples 
and the abundance of background DNA, along with PCR-inhibitory 
substances, can diminish the sensitivity of molecular detection 
methods. Overcoming these obstacles is essential for bolstering the 
reliability and precision of PCR-based diagnostics in clinical practice. 
Metagenomic next-generation sequencing (mNGS) has significantly 
expanded the horizons of pathogen detection. Capable of identifying 
all genomic material present, mNGS is adept at uncovering a wide 
spectrum of pathogens, with a detection rate that surpasses that of 

conventional methods. However, the mNGS process is complex, 
necessitates expensive reagents, and requires a sophisticated laboratory 
environment, which may hinder its accessibility and speed of 
execution (Wang L. et al., 2023).

Traditional antibiotic drug sensitivity testing methods, including 
micro broth dilution, disc diffusion, gradient diffusion, and various 
commercial automated systems, are often predicated on the availability 
of pure cultures. This requirement can extend the diagnostic process, 
potentially delaying the critical detection and treatment of patients in 
clinical settings. Despite the advancements in modern assays such as 
mass spectrometry (MS), PCR, and metagenomic next-generation 
sequencing (mNGS), which have enhanced diagnostic timelines and 
sensitivity, these methods are not without their challenges. They often 
contend with issues related to automation, cost-effectiveness, and 
operational simplicity. Given these constraints, there is an acute need 
for a diagnostic technique for bloodstream infections (BSIs) that is 
rapid, user-friendly, and highly efficient. The development of such a 
method could be revolutionary, significantly improving the speed and 
effectiveness of patient care in response to BSIs.

Surface-enhanced Raman scattering (SERS), a method based on 
the principles of Raman scattering, has emerged as a highly promising 
tool for the identification of pathogenic microorganisms. SERS is 
distinguished by its capacity to furnish intricate molecular structural 
information and to significantly enhance Raman scattering signals, 
thereby improving detection sensitivity. The technique is advantageous 
for several reasons: it is user-friendly, facilitates rapid analysis, is cost-
effective, allows for non-destructive sample examination, and is 
resilient against interference from moisture (Xia et al., 2022). A pivotal 
study conducted by Zhou et  al. (2014) achieved a significant 
advancement in SERS, increasing its sensitivity by 30-fold. This was 
made possible through the in situ synthesis of silver nanoparticles 
(AgNPs) on bacterial cell walls, effectively differentiating between 
various strains of Escherichia coli and Staphylococcus epidermidis. 
Further progress was made by Dekter et al. (2017), who demonstrated 
the effectiveness of Raman spectroscopy combined with a clustering 
algorithm for analyzing drug sensitivity profiles. Their results were 
found to be in close alignment with those from VITEK® 2 systems and 
traditional broth dilution methods. Despite these significant strides, 
traditional SERS spectroscopy encounters challenges in differentiating 
closely related bacterial species, often due to the complex and time-
consuming nature of the preprocessing steps required. To fully 
leverage the potential of SERS in microbial identification and profiling 
of drug sensitivity, there is an urgent requirement for the development 
and adoption of a classification algorithm that is both efficient and 
highly accurate.

Machine learning techniques, particularly support vector 
machines (SVMs), have proven effective in Raman spectroscopy for 
identifying specific pathogens, including Mycobacterium tuberculosis 
(Stöckel et al., 2017). However, these traditional approaches often 
necessitate extensive preprocessing of spectral data, which can 
be  time-consuming and complex. Deep learning (DL) presents a 
compelling alternative, with the capacity to automatically discern 
characteristic spectra from Raman data. Prior research has shown that 
DL can achieve high performance in classifying not only bacteria to 
the genus level but to the species level (Wang et al., 2022).

The direct detection of microorganisms from blood samples is a 
challenging task due to the low concentration of pathogens and the 
intricate nature of the blood matrix. To bolster the efficacy and precision 
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of diagnostic methods, this study has assessed two separation techniques: 
differential centrifugation and erythrocyte lysis. The investigation 
centers on their potential to enhance the direct isolation of bacteria from 
positive blood culture samples, which could lead to more accurate 
identification and analysis of pathogens in bloodstream infections. 
Given that many current detection methods depend on the time-
consuming process of obtaining a pure culture, this study also explores 
the integration of convolutional neural networks (CNNs) with SERS 
technology. The objective is to directly identify common pathogens and 
their drug resistance profiles in bloodstream infections, thereby 
providing a diagnostic approach that is both more efficient and reliable.

Materials and methods

Chemical and biological materials

Positive blood culture bottles were sourced from the microbiology 
laboratory of the Affiliated Hospital of Xuzhou Medical University, and 
collected over the period from June to September 2023. The study 
applied specific inclusion and exclusion criteria to ensure the relevance 
and accuracy of the samples analyzed. The inclusion criteria 
encompassed the following: (1) the specimen type was blood; (2) 
common clinical pathogens, namely Escherichia coli (E. coli), Klebsiella 
pneumoniae (K. pneumoniae), Acinetobacter baumannii (A. baumannii), 
Enterococcus faecium (E. faecium), Enterococcus faecalis (E. faecalis), 
Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa 
(P. aeruginosa), were identified using a MALDI-TOF MS mass 
spectrometer following inoculation and culture.

The exclusion criteria were designed to maintain the study’s focus 
and ensure the validity of the results, and included: (1) blood cultures 
derived from different regions of the same patient with Only one 
blood culture per patient included in the study; (2) samples with 
mixed infections involving multiple bacterial strains were excluded. 
Upon a positive result from the blood incubator (bioMérieux, France), 
blood samples underwent smear gram staining and were examined 
microscopically. Subsequently, the samples were inoculated onto 
blood agar plates and incubated at 35°C until the formation of single 
colonies. The bacterial strains were then definitively identified using 
MALDI-TOF MS mass spectrometry (Bruker, Germany). Antibiotic 
sensitivity profiles were determined with the VITEK-2 Compact 
Automated Microbial Identification and Drug Sensitivity Analyzer 
(bioMérieux, France). The findings from routine pathogen 
identification and drug sensitivity testing served as the benchmark for 
reference in this study.

Ethical considerations

The study was conducted with the approval of the Ethics 
Committee of Xuzhou Medical University Hospital, ensuring that all 
procedures were in compliance with ethical standards.

Bacterial sample preparation

Two distinct methods were employed to extract bacterial 
particles from positive blood culture bottles for SERS analysis: 

differential centrifugation and erythrocyte lysis (Figure  1). Both 
methods aimed to isolate bacterial particles for SERS analysis while 
minimizing the presence of blood components that could interfere 
with the detection of bacterial signals. (1) The differential 
centrifugation method: the blood sample (3 mL) was drawn from the 
positive blood culture bottle via a sterile syringe. The sample was 
centrifuged at 700 rpm for 10 min. The supernatant was collected and 
again centrifuged at 6,000 rpm for 10 min. After discarding the 
supernatant, the pellet was resuspended in 1 mL of deionized water 
and centrifuged at 700 rpm for 10 min, followed by another 
centrifugation at 6,000 rpm for 10 min, the pellet was precipitated and 
stored. (2) The erythrocyte lysis method: the blood sample (3 mL) 
was drawn from the positive blood culture bottle via a sterile syringe. 
The sample was centrifuged at 9,500 g for 5 min. After discarding the 
supernatant, 3 mL of ACK erythrocyte lysate (Han et al., 2020) was 
added, mixed, and incubated for 10 min. After incubation, the sample 
was centrifuged at 9,500 g for 5 min, the supernatant was discarded 
and the pallet was resuspened into 2 mL of deionized water. The 
sample was again centrifuged at 18,525 g for 2 min and the pellet 
was stored.

Preparation of negatively charged 
nano-silver-enhanced substrate

A solution was prepared by mixing 200 mL of ultrapure water with 
33.72 mg of AgNO3 in a sterile triangular flask that was heated to 
boiling while mixing with a magnetic stirrer. Next, 8 mL of a sodium 
citrate solution (1 wt%) was added and stirred at 650 r/min for 40 min 
with continued heating. Once the heating was halted, the stirring was 
maintained as the solution gradually cooled to the ambient 
temperature. The solution was adjusted to 200 mL, mixed properly, 
and then stored at 4°C in the dark for later use. Take 1 mL of the above 
solution in a 1.5 mL EP tube, centrifuge at 7,000 rpm for 7 min, discard 
the supernatant, resuspend it with 100 μL of ultrapure water, mix well, 
and set aside.

Raman spectroscopic measurements

To ensure the intensity of the SERS signal, we prepared higher 
concentrations of bacterial suspensions. The particles obtained by 
both methods were mixed with 20 μL of deionized water and 20 μL of 
uniformly dispersed negatively charged silver nanoparticles (NPs) (the 
bacterial concentration exceeded 109cfu/ml). The mixture was then 
incubated for 15 min. This mixture (7 mL) was poured onto a silicon 
wafer, allowed to dry in a biosafety cabinet, and promptly analyzed 
using a portable Raman spectrometer (B&W TEK, i-Raman Plus BWS 
465-785H, America). For each clinical sample, 50 to 100 Raman 
spectra were obtained by spectral detection. The measurement 
parameters were set as follows: excitation light source of 785 nm, 
excitation power of 20 mW, integration time of 5 s, and detection 
spectral range of 500 to 1,800 cm−1. Before spectrum collection, it was 
necessary to measure the spectra at 520 cm−1 using a blank silicon 
wafer, while simultaneously subtracting the dark current during the 
integration time. The spectra were collected using the BWSpec 
software, and 12,046 and 11,968 spectra were collected by differential 
centrifugation and erythrocyte lysis, respectively.
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Averaged SERS spectra and characteristic 
peaks

The surface composition of bacteria is intricate and comprises 
various biomolecules, including proteins, lipids, polysaccharides, and 
other biochemical components. Spectral features can potentially 
be  employed to identify bacterial species, while distinct Raman 
spectral signals may correspond to various molecular structures and 
represent the biochemical properties of biomolecules related to the 
bacteria (Zhao et al., 2023). The average SERS spectra and standard 
deviation of each bacterium were calculated and visualized using 
Origin 2023. To identify the distinctive peaks, the mean SERS spectra 
were imported into LabSpec 5 software (HORIBA Scientific, Japan). 
The spectra were further smoothed, baseline corrected, and 
normalized. The GaussLoren function was employed to detect the 
characteristic peaks in each mean SERS spectrum. The parameters for 
searching the characteristic peaks were set as level (%) = 10, size 
(pnt) = 15, and iteration = 5. Finally, dot plots were used to illustrate 
the distribution of the distinctive peaks present in each bacterial 
spectrum and elucidate their biological significance based on 
the reference.

Construction of CNN model

In this study, a SERS-CNN model was constructed to automatically 
classify and estimate the SERS spectra of seven pathogenic and 
antibiotic-resistant strains to implement the SERS method for the 
immediate identification of common pathogens and their drug 
resistance in BSIs. To enhance the application of computer recognition 
and DL algorithms, all pathogenic and antibiotic-resistant bacteria 
were detected with specific labels. Further, the LabelEncoder function 
was used to convert the pathogenic labels into discrete numerical 

variables. All the SERS spectral data were divided into training and 
test sets with the 5-fold cross-validation in the ratio of 8:2. The 
PyTorch DL framework was employed to construct the CNN model 
(Figure 2), which mainly consists of 6 convolution layers, 6 batchnorm 
layers, 3 max-pooling layers, 1 flatten layer and 2 fully connected 
layers (linear layers). The convolutional layers have a convolutional 
kernel size of 3 × 1, and the pooling layers have a sliding window size 
of 3 × 1. To expedite the training speed, improve the capacity of 
network expression, and minimize overfitting, a batch normalization 
layer, and a ReLU activation function were incorporated after each 
convolutional layer. The addition of a pooling layer enhances the 
ability of the model to learn local features and global features. Next, 
the flat layer transforms the multidimensional feature representation 
into a unidimensional form to enter the output of the pooling layer 
into the fully connected layer. Finally, the fully linked layer converts 
these attributes into the corresponding output categories. The model 
employed cross entropy as the loss function and used the 
SGD optimizer.

CNN model evaluations

To assess the classification and prediction potential of CNN on 
SERS spectra, this study selected three traditional machine learning 
algorithms to compare with CNN, namely, random forest (RF), 
support vector machine (SVM), and Adaboost. These algorithms were 
implemented using Scikit-learn with the default parameter 
configurations. Moreover, choosing appropriate metrics is crucial to 
evaluate the effectiveness of machine learning. In the current study, 
accuracy (ACC), precision (Pre), recall (Recall), and F1 scores were 
selected to score several algorithms. Accuracy denotes the percentage 
of accurate outcome predictions, Precision signifies the proportion of 
samples expected to be in the positive category that indeed belong in 

FIGURE 1

Bacterial sample preparation flowchart. In the upper part of the figure is the processing flow of the differential centrifugation method, and the lower 
part is the erythrocyte lysis method, this figure is drawn by Figdraw (www.figdraw.com).
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the positive category, and Recall represents the proportion of predicted 
positive categories that are positive categories. Subsequently, the 
performance of multiple machine learning models was evaluated 
using the method of five-fold cross-validation. The evaluation process 
was as follows: first, the sequence of data was randomly shuffled. Then, 
the data was evenly divided into five subsets. For each iteration, a 
different subset was selected as the test set to assess the model’s 
performance, while the remaining subsets were used as the training 
set for model training. This process was repeated five times, and the 
final evaluation result was obtained by averaging the results from the 
five test sets.

Results

SERS spectra of 7 pathogenic bacteria

The study analyzed a total of 130 blood culture bottles, which 
tested positive for the presence of bacteria, leading to the identification 
of seven distinct bacterial species. The breakdown of the bacterial 
isolates is as follows: E. coli with 43 isolates (N1 = 4,006 spectra from 
differential centrifugation, N2 = 3,953 spectra from erythrocyte lysis), 
K. pneumoniae with 28 isolates (N1 = 2,704, N2 = 2,650), A. baumannii 
with 16 isolates (N1 = 1,498, N2 = 1,342), E. faecium with 10 isolates 
(N1 = 908, N2 = 969), E. faecalis with 7 isolates (N1 = 605, N2 = 665), 
S. aureus with 13 isolates (N1 = 1,110, N2 = 1,224), and P. aeruginosa 
with 13 isolates (N1 = 1,215, N2 = 1,165) (Table 1). Here, “n” represents 
the number of blood culture vials, “N1” denotes the number of spectra 
acquired by differential centrifugation, and “N2” signifies the number 
of spectra acquired by erythrocyte lysis. Figure 3 presents the mean 
SERS spectra for the two extraction methods across the seven bacterial 
samples, with the shaded area representing the standard deviation 
(SD) of the spectra. Figure  3A illustrates the mean SERS spectra 
derived from the differential centrifugation method, whereas 
Figure 3B represents the mean SERS spectra from the erythrocyte lysis 
method. Additionally, Figure 4 provides dot plots that highlight the 
characteristic peaks in the average spectra of each bacterial species for 
both methods. Figure  4A corresponds to the dot plots from the 
differential centrifugation method, and Figure  4B corresponds to 
those from the erythrocyte lysis method. Table 2 summarizes the 
spectral band distribution of the main Raman characteristic peaks 

associated with the seven pathogenic bacteria, as documented in 
the literature.

Raman spectra of drug-resistant bacteria

This study aimed to assess the capability of SERS for the direct 
detection of antibiotic-resistant bacteria in bloodstream infections 
(BSIs). For this purpose, a total of 8 cases of carbapenem-resistant 
Klebsiella pneumoniae (CRKP) and 20 cases of carbapenem-sensitive 
Klebsiella pneumoniae (CSKP) were selected from the blood culture 
specimens. These strains were identified using standard microbiological 
procedures. The SERS spectra for both CRKP and CSKP strains, obtained 
through differential centrifugation and erythrocyte lysis methods, were 
computed to derive average spectra. These average spectra are depicted 
in Figure 5, which presents a comparative analysis of the spectral features 
associated with resistant and sensitive strains of K. pneumoniae.

Machine learning analysis of SERS spectra

In this study, the analysis of SERS spectral data was conducted using 
four distinct machine learning methods: convolutional neural network 
(CNN), random forest (RF), support vector machine (SVM), and 
Adaboost. The performance of these algorithms was rigorously evaluated 
based on their accuracy (ACC), precision (Pre), recall, and F1 scores. 
The results, as detailed in Tables 3–6, provide a comprehensive overview 
of the algorithmic analyses. Table 3 highlights that the CNN exhibited 
the most exceptional performance in classifying the SERS spectra of 
seven bacterial species obtained through differential centrifugation. The 
CNN achieved an accuracy of 98.68%, a precision of 98.71%, a recall of 
98.68%, and an F1 score of 98.67%. Table 4 shows that the CNN model 
also outperformed others in classifying the SERS spectra of the same 
seven bacterial species when obtained through erythrocyte lysis, with an 
accuracy of 95.75%, a precision of 94.92%, a recall of 95.75%, and an F1 
score of 95.14%. A comparison of the results presented in Tables 3, 4 
reveals that the CNN consistently demonstrated superior classification 
performance across the board, suggesting its efficacy in prognostication 
for pathogenic bacteria. Moreover, the data indicate that differential 
centrifugation is a more effective technique for the separation of bacteria 
from positive blood culture bottles when compared to erythrocyte lysis.

FIGURE 2

Schematic flow of CNN model for processing SERS spectra.
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Furthermore, the CNN model’s classification performance was 
superior to that of RF, SVM, and Adaboost in analyzing the SERS 
spectra of pathogenic bacteria. Tables 5, 6 present the outcomes of the 
algorithms employed to identify drug-resistant bacteria. The CNN 
model showed high accuracy in classifying both CRKP and CSKP 
from SERS spectra, regardless of the separation method used. Notably, 
the SERS spectra obtained through differential centrifugation achieved 
a slightly higher accuracy of 99.85% compared to the 99.13% accuracy 
from erythrocyte lysis SERS spectra.

The tables present the results of the differential centrifugation 
method for SERS spectral classification, which demonstrates superior 
performance. Furthermore, to assess the predictive capability of the 
classification model, we  generated subject operating characteristic 
(ROC) curves for all the machine learning approaches (Figure 6). The 
ROC curves are used to assess the performance of the classifier. The 
area under the ROC curves is denoted as the AUC; a higher AUC value 
indicates superior model classification performance. Further, the ROC 
curve point in the closest distance to the upper-left corner demonstrates 

the highest sensitivity and specificity. In the upper left corner, a higher 
AUC value indicates better classification performance of the model. The 
point on the ROC curve that was closest to the upper left corner showed 
the highest sensitivity and specificity, as depicted in the figure. Based on 
the SERS spectrum classification obtained via differential centrifugation, 
it is evident that the CNN algorithm shows the highest performance in 
classification and prediction ability, as indicated by its ROC curve being 
closest to the upper right corner among the four algorithms.

Lastly, this study selected the CNN model that yielded the most 
accurate classification outcomes and used the spectra acquired through 
differential centrifugation, which proved to be  the most effective 
method for isolating bacteria, to generate the confusion matrix 
(Figure  7). The matrix’s vertical axis corresponds to the bacterial 
species and drug resistance detected by the reference method, while 
the horizontal axis corresponds to the bacterial identifications and 
drug resistance by the CNN algorithm. As illustrated in Figure 7A, the 
outcomes of CNN identification for E. coli, E. faecium, P. aeruginosa, 
and E. faecalis were consistent with those identified by the reference 

TABLE 1 Information on the dataset of 7 bacterial species.

Species Clinical 
samples (n)

Differential centrifugation (N1) Erythrocyte lysis (N2)

Training data Testing data In total Training data Testing data In total

A. baumanii 16 1,198 300 1,498 1,074 268 1,342

E. coli 43 3,205 801 4,006 3,162 791 3,953

K. pneumoniae 28 2,163 541 2,704 2,120 530 2,650

E. faecalis 7 484 121 605 532 133 665

S. aureus 13 888 222 1,110 979 245 1,224

E. faecium 10 726 182 908 775 194 969

P. aeruginosa 13 972 243 1,215 932 233 1,165

In total 130 9,636 2,410 12,046 9,574 2,394 11,968

CRKP 8 624 156 780 601 150 751

CSKP 20 1,539 385 1,924 1,519 380 1,899

n is the number of blood culture vials collected, N1 is the number of spectra obtained by differential centrifugation, N2 is the number of spectra obtained by erythrocyte lysis.

FIGURE 3

Average Raman spectra of the two methods and seven bacteria, the shaded area represents 20% of the standard deviation. (A) Average SERS spectra 
for the differential centrifugation method. (B) Average SERS spectra of the erythrocyte lysis method. Horizontal coordinates indicate Raman shifts.
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method, as determined by differential centrifugation of the SERS 
spectra. The accuracy of S. aureus identified by CNN was 98.2%, with 
0.45% of SERS spectra being mistaken for E. coli. The CNN predicted 
A. baumanii with an accuracy of 94%, and the remaining 1.33% of the 
SERS spectra were misidentified as E. coli, 2% as E. faecium, 0.67% as 
S. aureus, 0.67% as E. faecalis, 1.33% as S. aureus, and 1.33% as 
E. faecalis, 1.33% were misclassified as K. pneumoniae. The CNN 
predicted K. pneumoniae with 99.82% accuracy and the remaining 
0.18% were misclassified as E. coli. Figure 7B shows the confusion 
matrix of CRKP and CSKP obtained by CNN detection of differential 

centrifugation. The CNN accurately and precisely identifies CRKP and 
CSKP, with findings that align perfectly with the reference method.

Discussion

SERS is an analytical technique renowned for its rapidity, 
non-destructiveness, and exceptional sensitivity, making it an ideal 
candidate for early clinical diagnosis. SERS offers several distinct 
advantages for the detection of biological samples. It provides detailed 

FIGURE 4

Characteristic peaks of the two methods and seven bacteria. (A) Characteristic peaks of the differential centrifugation method. (B) Characteristic peaks 
of the erythrocyte lysis method. The horizontal axis indicates the different species of bacteria, the vertical axis indicates the Raman displacements 
where the characteristic peaks are located, and the Raman displacements where the characteristic peaks of different species of bacteria are located are 
marked with solid dots of different colors.
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molecular structural information, which is crucial for pathogen 
identification. The technique also eliminates the need for extensive 
sample pretreatment, saving valuable time. Raman spectroscopy 
improves early identification of Candida and contributes to early 
optimal antifungal therapy (Chouthai et al., 2015). SERS analysis enables 
accurate detection of H. pylori in gastric fluid samples, establishing a 
novel noninvasive test for H. pylori (Tang et al., 2024). Additionally, 
SERS is resilient against interference from moisture, a common 
challenge in biological assays, and facilitates real-time detection, which 
is critical for timely clinical interventions. These attributes render SERS 

highly amenable to the rapid analysis of biological specimens, including 
those from bloodstream infections (Chen et al., 2023). The effectiveness 
of SERS is largely attributable to the significant enhancement of the 
Raman signal, a process typically achieved through the use of noble 
metal nanoparticles (NPs) or nanostructures, such as silver (Ag) and 
gold (Au). In the present study, we harnessed the power of negatively 
charged nanosilver as an enhancement substrate to amplify the Raman 
signals across the spectrum of pathogens responsible for bloodstream 
infections. This approach enabled the successful identification of 
common pathogens associated with bloodstream infections and their 
respective drug resistance profiles.

AgNPs’ superior enhancement makes them a favored choice in SERS 
for bacterial detection, with notable successes including the identification 
of various Staphylococcus species and fungal pathogens (Rebrošová et al., 
2017; Witkowska et al., 2018). Wang X. et al. (2023) demonstrated the 
detection of E. coli using an aptamer-modified Au@macroporous 
magnetic silica photonic microsphere (MMSPM) 3D SERS-activated 
substrate. Concurrent efforts focused on monitoring bioactive 
metabolites secreted by ampicillin-resistant P. aeruginosa strains, 
revealing resistance mediated by the pigment pyoverdine (PYO) (Wang 
and Vikesland, 2023). To mitigate the impact of silver nanoparticle size 
and aggregation on Raman spectroscopy signals, we employ a series of 
strategies, including precise control over synthesis conditions for 
uniform particle size, utilization of stabilizing agents to prevent 
aggregation, ultrasonication for temporary dispersion, and centrifugation 
to remove aggregates. Despite these advances, pure culture-based SERS 
still has limitations in meeting clinical diagnostic speed requirements, 
for example, the reliance on pure culture bacteria in SERS spectroscopic 
characterization does not fully satisfy the immediate diagnostic 
requirements of clinicians, who are faced with additional time constraints 
for blood plate and culture procedures. Addressing this, research has 
shifted towards SERS detection from complex samples. Studies have 
shown promise in isolating bacteria from blood using reagents like 
Triton X-100 and in developing rapid antibiotic susceptibility testing 
methods (Lorenz et al., 2019). However, most SERS applications remain 
in the lab, with few translating to clinical use. A 2023 study by Tseng et al. 
introduced a SERS-DL model for identifying bacteria from clinical blood 
cultures, highlighting the need to overcome spectral interferences from 
blood components like hemoglobin (Tseng et al., 2023).

Considering the imperative for rapid and accurate bacterial 
separation from blood, this study meticulously compared differential 
centrifugation with erythrocyte lysis techniques. The results, illustrated 
in the dot plot (Figure  4), revealed that differential centrifugation 
yielded SERS spectra with greater detail, facilitating superior 
differentiation of bacteria from other microorganisms. The application 
of a CNN model, bolstered by a five-fold cross-validation of accuracy, 
further confirmed the superior efficacy of differential centrifugation 
for bacterial isolation. While both methods face challenges in purifying 
bacterial samples from blood components, erythrocyte lysis, which 
primarily targets red blood cell removal, may not sufficiently eliminate 
other interfering substances that could obscure subtle SERS signals of 
certain bacteria (Croxatto et al., 2014). On the other hand, differential 
centrifugation, despite its initial limitations, benefits from a secondary 
round that effectively addresses the impact of specific blood 
components, enhancing the clarity of SERS spectra (Arana et al., 2023). 
This study’s findings are of profound significance, identifying a 
simplified, cost-effective, and more efficient method for bacterial 
enrichment in BSIs. This approach not only speeds up pathogen 

TABLE 2 Attribution of major Raman characteristic peaks of pathogens.

Raman shift 
(cm−1)

Band assignment References

517/520 S–S stretch Kahraman et al. (2008)

566/568 Carbohydrates Kahraman et al. (2008) 

and Zhou et al. (2014)

647/650/652/661/663 δ(COO–) guanine Walter et al. (2011), Zhou 

et al. (2014), and Chen 

et al. (2019)

725/727/730 Adenine, glycosidic ring 

mode

Walter et al. (2011) and 

Zhou et al. (2014)

810 υ(CN) tyrosin, porine, 

valin

Zhou et al. (2014)

857 Tyrosine Liu Y. et al. (2017), Wang 

et al. (2022)

861 υ(C–C) skeletal proteins Chen et al. (2019)

892/894 Phosphodiester 

backbone, deoxyribose

Chen et al. (2015)

956/958 υ(CN), protein Walter et al. (2011) and 

Zhou et al. (2014)

962/964 N–C stretching Chen et al. (2015)

1,001 “Breathing” in aromatic 

rings

Chen et al. (2019)

1047/1049 Carbohydrates Walter et al. (2011) and 

Wang et al. (2022)

1121/1123/1125 υ(C–C) skeletal of acyl 

backbone

Wang et al. (2022)

1217/1219/1242/ 

1244/1246/1248

Amide III or adenine, 

polyadenine and DNA

Ivleva et al. (2010) and 

Chen et al. (2019)

1250/1290 Amide III Knauer et al. (2010) and 

Zhou et al. (2014)

1319/1323 υ(NH2) adenine, 

polyadenine, DNA

Chen et al. (2019)

1381/1420 υ(COO–) symmetric Knauer et al. (2010) and 

Zhou et al. (2014)

1441/1442/1444/ 

1455/1457

δ(CH2) saturated lipids Knauer et al. (2010) and 

Zhou et al. (2014)

1570/1572/1573 Amide II, υ(CN), γ(NH) Knauer et al. (2010) and 

Zhou et al. (2014)

1659/1671/1682 Amide I Knauer et al. (2010) and 

Zhou et al. (2014)

https://doi.org/10.3389/fmicb.2024.1428304
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kang et al. 10.3389/fmicb.2024.1428304

Frontiers in Microbiology 09 frontiersin.org

detection and resistance analysis but also promises to advance the time 
to diagnosis of BSI by 24 to 48 h over traditional methods by 
eliminating the need to subculture pathogen cultures after reporting 
positive blood culture bottles. This substantial time savings could 
markedly improve the prompt and effective management of BSIs, 
marking a pivotal step forward in clinical diagnostics. Our system 
utilizes the synergy of SERS and CNNs to achieve a more 
straightforward and faster identification process compared to 
FilmArray, Verigene, and ePlex technologies. While these platforms are 
powerful, our approach requires only a small number of samples and 
simple pre-treatment for immediate results, potentially shortening the 
time it takes to adopt appropriate antibiotic therapy in 
BSIs management.

CNNs have emerged as powerful tools in various AI applications, 
particularly excelling in end-to-end learning processes. Their ability 
to automatically extract features from raw data has significantly 
reduced reliance on manual feature engineering. CNNs have shown 
remarkable effectiveness when applied to unprocessed spectral data, 
outperforming traditional machine learning approaches in several 
studies (Liu J. et al., 2017). This prowess is evident in the classification 
of pathogenic bacteria through SERS spectral analysis. Tang et al. 
(2022) highlighted CNNs’ superior predictive capabilities across 15 
genera of bacteria using SERS spectra. The consistent and stable 
prediction accuracy of CNNs further solidified their reputation for 

classifying a broad spectrum of pathogens. This was reinforced in 2023 
when a research team trained multiple machine learning and deep 
learning algorithms on a dataset of 3,126 SERS spectra from 11 
Candida species. The one-dimensional (1-D) CNN analyzed the 
Candida spectral dataset with an overall accuracy of ≥80%, 
underscoring its robust generalizability (Fernández-Manteca et al., 
2023). In the current study, the CNN model’s performance was 
benchmarked against RF, SVM, and Adaboost, revealing superior 
identification accuracies of 98.68 and 95.75% for spectra obtained 
through differential centrifugation and erythrocyte lysis, respectively. 
The CNN model was also assessed for its ability to isolate bacteria 
from positive blood culture bottles. Both differential centrifugation 
and erythrocyte lysis methods produced SERS spectra with high 

FIGURE 5

Mean Raman spectra of CRKP and CSKP, shaded areas represent 20% of the standard deviation. (A) Average SERS spectra from the erythrocyte lysis 
method. (B) Average SERS spectra of the differential centrifugation method. Horizontal coordinates represent Raman shifts and vertical coordinates 
represent intensities.

TABLE 3 Comparison of classification and prediction ability of four 
machine learning methods on SERS spectra of seven bacteria obtained by 
differential centrifugation method.

Algorithm ACC Pre Recall F1

CNN 98.68% 98.71% 98.68% 98.67%

RF 95.48% 95.56% 95.48% 95.46%

SVM 82.34% 83.97% 82.34% 81.66%

Adaboost 52.52% 53.00% 52.52% 50.68%

TABLE 4 Comparison of the classification and prediction ability of four 
machine learning methods on SERS spectra of seven bacteria obtained by 
erythrocyte lysis method.

Algorithm ACC Pre Recall F1

CNN 95.75% 94.92% 95.75% 95.14%

RF 94.72% 94.76% 94.72% 94.71%

SVM 77.84% 78.90% 77.84% 77.09%

Adaboost 51.86% 53.05% 51.86% 50.98%

TABLE 5 Comparison of classification and prediction abilities of four 
machine learning methods for SERS spectra of drug-resistant bacteria 
obtained by differential centrifugation method.

Algorithm ACC Pre Recall F1

CNN 99.85% 99.86% 99.85% 99.85%

RF 99.00% 99.00% 99.00% 99.00%

SVM 90.79% 91.17% 90.79% 90.34%

Adaboost 98.52% 98.52% 98.52% 98.52%
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accuracy (ACC ≥95%), indicating strong classification potential. 
However, the differential centrifugation method outperformed 
erythrocyte lysis across five key evaluation metrics: ACC, AUC, 
precision (Pre), recall, and F1, suggesting its superiority in bacterial 
isolation from blood culture bottles.

The rise of CRKP is a significant threat to the treatment of BSIs, 
as it leads to higher mortality rates and challenges in anti-infective 
therapy. Traditional methods for detecting carbapenem resistance, 
including phenotypic assays like AST, mCIM, and eCIM, are often 
time-consuming. Molecular assays targeting carbapenemase genes, 
such as GeneXperT CarbaR, mNGS, and NG-Test Carba5, while more 
accurate, require specialized equipment and can be costly, limiting 
their accessibility in healthcare. In this study, a CNN model was 
developed and demonstrated exceptional performance in identifying 
carbapenem resistance in K. pneumoniae with 99.85% accuracy and 
an AUC of 100%, using differential centrifugation to obtain SERS 
spectra. This CNN model outperformed RF, SVM, and Adaboost in 
classifying pathogens and detecting drug-resistant bacteria. The 
success of this CNN model suggests that, when integrated with current 
detection methods, it could offer a more efficient and accurate 
approach to identifying pathogen drug resistance in the future.

FIGURE 6

ROC zone curves of SERS spectrograms obtained by differential centrifugation classified by four algorithms. (A) ROC curves of four algorithms for the 
identification of seven pathogenic bacteria. (B) ROC curves of four algorithms for the detection of CRKP and CSKP.

FIGURE 7

Confusion matrix of SERS spectra of pathogenic and drug-resistant bacteria obtained by CNN model classification differential centrifugation. 
(A) Confusion matrix of SERS spectra of seven pathogenic bacteria detected by CNN. (B) Confusion matrix of SERS spectra of CRKP and CSKP detected 
by CNN.

TABLE 6 Comparison of classification and prediction ability of SERS 
spectra of drug-resistant bacteria obtained by erythrocyte lysis of four 
machine learning methods.

Algorithm ACC Pre Recall F1

CNN 99.13% 99.14% 99.13% 99.13%

RF 97.89% 97.90% 97.89% 97.87%

SVM 81.62% 83.84% 81.62% 78.72%

Adaboost 97.17% 97.17% 97.17% 97.16%
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This study conducted a thorough evaluation of two bacterial 
isolation methods—erythrocyte lysis and differential centrifugation—
from positive blood culture bottles of patients with BSIs. The 
differential centrifugation method outperformed erythrocyte lysis by 
more effectively eliminating the confounding effects of blood 
components, thereby enhancing the acquisition of SERS spectral 
signals from infected pathogens. This approach significantly 
streamlines the process for subsequent pathogen identification. By 
integrating a CNN model with SERS, this study harnessed the model’s 
robust potential for rapid pathogen identification and drug resistance 
prediction in clinical BSIs. This method offers a marked advantage 
over traditional culture-based identification by reducing the detection 
timeline by at least 24 to 48 h. It also lays the groundwork for future 
direct pathogen detection from mid-stream clinical samples, 
promising for the early diagnosis and management of BSIs. Despite 
these advancements, the study acknowledges limitations, including a 
modest sample size and a restricted range of pathogens examined, 
which may not encompass all clinically relevant BSI pathogens. Due 
to the interference of multiple bacteria on the Raman assay results 
and the fact that we  did not collect enough polymicrobial blood 
cultures, this part of the blood culture was not evaluated for the time 
being. Further validation with larger, multi-center clinical trials is 
necessary to confirm the method’s broad applicability and 
discriminatory power. Nonetheless, the study’s findings are 
promising, particularly the CNN model’s demonstrated ability to 
rapidly identify pathogens in reported positive blood cultures, 
offering a glimpse into the future of direct pathogen detection from 
BSI specimens and potentially transforming clinical practices in 
the field.
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