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HIV-associated neurocognitive disorder (HAND) is now recognized to 
be relatively common in people living with HIV (PLWH), and remains a common 
cause of cognitive impairment. Unfortunately, the fundamental pathogenic 
processes underlying this specific outcome of HIV infection have not as 
yet been fully elucidated. With increased interest in research related to the 
microbiota-gut-brain axis, the gut-brain axis has been shown to play critical 
roles in regulating central nervous system disorders such as Alzheimer’s disease 
and Parkinson’s disease. PLWH are characterized by a particular affliction, 
referred to as gut-associated dysbiosis syndrome, which provokes an alteration 
in microbial composition and diversity, and of their associated metabolite 
composition within the gut. Interestingly, the gut microbiota has also been 
recognized as a key element, which both positively and negatively influences 
human brain health, including the functioning and development of the central 
nervous system (CNS). In this review, based on published evidence, we critically 
discuss the relevant interactions between the microbiota-gut-brain axis and 
the pathogenesis of HAND in the context of HIV infection. It is likely that 
HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis 
syndrome and a leaky gut on the one hand and (ii) inflammation on the other 
hand. In other words, the preceding features of HIV infection negatively alter the 
composition of the gut microbiota (microbes and their associated metabolites) 
and promote proinflammatory immune responses which singularly or in tandem 
damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is 
fairly prevalent in PLWH. This work aims to demonstrate that in the quest to 
prevent and possibly treat HAND, the gut microbiota may ultimately represent a 
therapeutically targetable “host factor.”
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1 Introduction

Nearly four decades after the emergence of the human immunodeficiency virus (HIV), 
HIV infection remains a major global public health concern (UNAIDS, 2022). As of 2022, the 
number of people living with HIV had reached approximately 39 million worldwide, and 
globally, almost 1.3  million individuals were newly infected by HIV and there were 
approximately 630,000 deaths in 2022 (UNAIDS, 2022). Fortunately, the development of 
modern antiretroviral therapy (ART) and widespread implementation thereof has significantly 
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reined in the HIV epidemic, and has reduced its previously inevitable 
progression to acquired immunodeficiency syndrome (AIDS) 
(Raubinger et al., 2022). Despite the large number of HIV-infected 
individuals receiving ART globally [29.8 million (76%)] (The Global 
HIV and AIDS Epidemic, 2023), HIV (which is known to be  a 
neurotropic virus), continues to affect the brain of people living with 
HIV (PLWH) (Wang et al., 2020). Indeed, HIV is known to have 
extensive effects on the neurological system (Mohamed et al., 2020), 
and for over a decade the term, HIV-associated neurocognitive 
disorder (HAND), has been used to represent a variety of 
neurocognitive impairments linked to HIV infection (Eggers 
et al., 2017).

The 2007 Frascati criteria defines HAND as an acquired cognitive 
impairment comprising at least two ability domains and, in severe 
cases, a deterioration in everyday functioning. Asymptomatic 
neurocognitive impairment (ANI), mild neurocognitive disorder 
(MND), and HIV-associated dementia (HAD) are the three stages of 
cognitive impairment, which are used to characterize the HAND 
syndrome (Antinori et  al., 2007). However, in the present era of 
modern ART, the Frascati criteria (which were developed in 2007 to 
aid in the diagnosis of HAND) has been observed to overestimate 
HAND positivity, particularly when utilized for the diagnosis of the 
milder forms of the HAND spectrum. Despite this known limitation, 
the Frascati criteria remain applicable in contemporary times (Meyer, 
2022); however, as suggested by Meyer, the criteria require revision 
and refinement (Meyer, 2022). Some researchers (Goodkin et  al., 
2014; Hakkers et al., 2018) categorize HAND into two forms, namely 
mild (ANI and MND) and severe, instead of the three forms presented 
in the 2007 classification. Other diagnostic tools exist, viz., the 
international HIV dementia scale (IHDS) and the Montreal cognitive 
assessment-basic (MoCA-B), and others. It should also be noted here 
that, similar to the Frascati criteria, the preceding diagnostic methods 
also possess inadequate psychometric parameter assessment capacity, 
further limiting their diagnostic accuracy (Mwangala et al., 2018). 
Although severe neurocognitive impairment has become rare since 
the introduction of modern highly active antiretroviral therapy 
(HAART), HAND manifestations, identified by cognitive impairment 
in HIV-1 infected individuals, persist (Wang et  al., 2020). 
Contemporarily, HAND remains a common cause of cognitive 
impairment worldwide (Saylor et al., 2016). At the same time, other 
potential contributing factors for the occurrence of HAND have now 
been described, including persistent latent HIV-1 reservoirs in the 
brain, irreversible central nervous system (CNS) insult prior to ART 
initiation, toxicity associated with antiretroviral drugs, host genetic 
factors predisposing to the emergence of HAND, deposition of 
amyloid and tubulin associated unit (Tau) protein, neuroinflammation, 
as well as damage (at a molecular level) to various neurotransmitter 
systems (Chang et al., 2008; Nagano-Saito et al., 2009; Hammoud 
et al., 2010; Sperner-Unterweger et al., 2014; Keegan et al., 2016).

Recently published investigations have highlighted the impact of 
gut microbiota on the gut-brain axis, and their potential influence on 
CNS-related diseases and neuropsychiatric disorders. Given that the 
gut microbiota and their microbial metabolites have been shown to 
profoundly affect host immunity, cognition, behavior, and metabolism 
(Marques et al., 2010; Cryan and O’Mahony, 2011; Foster and McVey 
Neufeld, 2013), increasing attention has been focused on the potential 
implications of the gut microbiota and microbial metabolites with 
respect to HAND pathogenesis. The preceding factors suggest that the 

microbiota-gut-brain axis may represent a thus far unrecognized 
therapeutic target in the quest to treat HAND. This therapeutic 
approach may potentially be highly beneficial, as HAND (i) induces a 
psychological and emotional burden on families, friends, and relatives 
of HIV positive patients, (ii) provokes difficulties with medication 
(ART) compliance and follow-up (Sharma, 2021; Zenebe et al., 2021), 
and (iii) causes HIV positive individuals to engage in high-risk 
behavior (such as casual unprotected sexual intercourse) favoring HIV 
transmission (Shrestha and Copenhaver, 2016). Furthermore, the 
emergence of HAND in HIV-infected individuals places a further 
burden on already strained resources in hospitals and medical 
facilities, and also exerts a financial toll on national health resources, 
even in affluent nations. Therefore, a comprehensive investigation into 
the role of the microbiota-gut-brain axis in HAND pathogenesis, and 
also in the treatment and prevention of HAND, may also pave the way 
toward more robust strategies against HIV infection.

In this review, we comprehensively discuss and highlight the role 
of the microbiota-gut-brain axis in modulating enteric and central 
nervous system functions from a clinical perspective. Specifically, 
we  (i) briefly review the prevalence of neurological disorders in 
HIV-infected individuals, (ii) extensively discuss the mechanisms 
whereby gut integrity influences the onset of neurological disorders, 
and (iii) discuss the influence of HIV-associated gut dysbiosis in the 
onset of neurological outcomes via the consequences of dysbiosis on 
alterations in the microbiota-gut-brain axis.

2 High neurological disorder 
prevalence in PLWH

Prior to the present era of modern combination antiretroviral 
therapy, severe cognitive impairments were reported in up to 50% of 
people living with HIV (Grant et  al., 1987). Although severe 
neurocognitive impairment secondary to HIV infection has become 
rare as a result of successful immune reconstitution in this era of 
modern and potent antiretroviral therapy, milder forms of cognitive 
impairment remain common in PLWH (Heaton et al., 2010; Clifford 
and Ances, 2013). To illustrate this point, observations from one 
recent meta-analysis (of 123 studies conducted in 32 countries) have 
indicated that the overall prevalence of HAND in HIV-infected adults 
was calculated to be  42.6%, equating to roughly 16,145,400 cases 
worldwide. Specifically, the prevalence of asymptomatic 
neurocognitive impairment (ANI), mild neurocognitive disorder 
(MND), and HIV-associated dementia (HAD) were observed to 
be 23.5, 13.3, and 5.0%, respectively (Wang et al., 2020). Additionally, 
longitudinal cohort observations have revealed that the presence of 
ANI, when compared against neurocognitively normal individuals, 
confers a 2–6-fold increase in risk for earlier development of 
symptomatic HAND (Grant et al., 2014). These observations are valid 
even in ART-treated individuals with undetectable HIV viral loads 
(Grant et al., 2014). Moreover, several observational cohort studies 
have observed that PLWH on antiretroviral therapy (ART) are 
relatively more likely to develop dementia compared to people without 
HIV (Lam et al., 2021, 2022). One of the preceding cohort studies 
observed that compared to HIV negative individuals, PLWH have a 
58% higher risk of developing dementia (Lam et  al., 2021). 
Interestingly, exposure to ART did not reduce this risk. Notably, major 
depressive disorder (MDD) is the most prevalent psychiatric 
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manifestation associated with HIV infection (Dubé et al., 2005), with 
a prevalence of up to 36% (Gaynes et al., 2015; Passchier et al., 2018), 
which is at least twice that observed in healthy community samples 
(Chibanda et al., 2014; Passchier et al., 2018). Overall, HIV is strongly 
implicated in the onset of HAND in ART-treated or ART-naïve 
PLWH. HIV neurotropism in the brain, which is characterized by 
inflammation resulting from HIV viral protein interactions with 
endothelial cells (Younas et al., 2016), increased production of reactive 
oxygen species (ROS) (Cirino et al., 2022), and brain damage resulting 
from the destruction of astrocytes and pericytes (Ahmed et al., 2018), 
is possibly responsible for the development of HAND. However, the 
potential etiological factors for HAND development, which relies 
solely on the preceding components will be an incomplete description 
of all the likely causal factors. We believe that the gut may well be seen 
as a further protagonist in the pathophysiological evolution of 
HAND. Thus, a picture depicting the influence of HIV on the gut is 
worth exploring.

3 HIV infection is associated with gut 
microbiota dysbiosis and related 
inflammation

The gut microbiota is composed of a community of 
microorganisms contained within the gastrointestinal (GI) tract, and 
exists symbiotically with the human host (Thursby and Juge, 2017). A 
healthy and stable gut microbiota community plays a vital role in 
maintenance of homeostatic balance of gut barrier integrity, gut 
function, gut metabolism, and immunity of the gut (Sun and Shen, 
2018). It is now well established that profound changes (in microbial 
composition, metabolites, and immune cells) occur within the gut of 
an HIV-infected individual.

The GI tract is known to harbor the majority of the body’s 
complement of immune cells (de Waele, 2021). The vast population of 
activated memory CD4+ T-cells, with abundant expression of 
chemokine receptors, provides HIV-1 with an ideal environment to 
establish infection (Mehandru et al., 2005). Indeed, activated CD4+ 
T-cells within the gut, in addition to predominantly expressing 
CXCR4 and CCR5 receptors [which facilitates HIV penetration of 
these cells (Poles et al., 2001)], are one of the primary targets of HIV 
(Zaongo et al., 2022). As such, researchers have hypothesized that 
interventions aimed at reducing the vulnerability of such cells may 
lower the risk of HIV acquisition (Lajoie et al., 2021). Thus, HIV 
infection can lead to rapid and substantial depletion of CD4+ T-cells 
in the lamina propria (Ishizaka et al., 2021). This depletion of CD4+ 
T-cells is mediated predominantly by apoptosis (Cooper et al., 2013), 
pyroptosis (Doitsh et al., 2010), and cytotoxic T-cells (Chávez-Galán 
et al., 2009; Liu et al., 2011). HIV also directly attacks the gut mucosal 
epithelium, resulting in intercellular tight junction disruption, death 
of enterocytes, and ultimately a more permeable gut (Younas et al., 
2019). The preceding scenario “opens the gate,” so to speak, to 
gut-associated dysbiosis syndrome, displacement of microbial product 
into the bloodstream (microbial translocation), and systemic 
inflammation (Younas et  al., 2019). Moreover, researchers have 
reported that CD4+ T-cell depletion occurs at all stages of HIV 
disease, and predominantly occurs in the GI tract (Brenchley et al., 
2004). Although ART may restore CD4+ T-cells in other anatomical 
locations, lymphocyte levels within the gut, in the majority of cases, 

are slow to return to normal levels and restoration of their numbers is 
most often incomplete (Kotler, 2005). Gut microbiota dysbiosis has 
the potential to influence HIV disease in various ways throughout all 
phases in the natural history of HIV disease progression, from 
transmission to end stage disease (Li et al., 2016).

According to previous research data, gut microbiota dysbiosis in 
PLWH mainly manifests as alterations in microbial diversity and 
relative abundance of certain specific gut microorganisms (Dillon 
et al., 2016; Deusch et al., 2018). The diversity of gut microbiota in 
HIV-infected people is significantly lower than that of the general 
population (Lu et al., 2018). One recent meta-analysis examined 22 
studies to evaluate alpha (α-) diversity in the gut microbiota of 
HIV-infected compared to HIV-uninfected individuals, and 
concluded that HIV status was associated with a decrease in measures 
of α-diversity (Tuddenham et  al., 2020). Apart from changes in 
diversity, HIV infection is associated with depletion of commensal 
species and enrichment of opportunistic pathogens (McHardy et al., 
2013). Several survey studies in human cohorts have compared the 
intestinal microbiota composition of HIV-positive patients with that 
of HIV-uninfected individuals (Lozupone et al., 2013; McHardy et al., 
2013; Vujkovic-Cvijin et al., 2013; Dillon et al., 2014; Mutlu et al., 
2014; Yu et al., 2014; Dinh et al., 2015; Nowak et al., 2015; Vázquez-
Castellanos et al., 2015; Dubourg et al., 2016; Ling et al., 2016; Monaco 
et al., 2016; Noguera-Julian et al., 2016; Sun et al., 2016; Vesterbacka 
et al., 2017; Armstrong et al., 2018; Lee et al., 2018; Lu et al., 2018; 
San-Juan-Vergara et al., 2018; Zhou et al., 2018; Vujkovic-Cvijin and 
Somsouk, 2019), and these have shown an enrichment of 
Erysipelotrichaceae, Enterobacteriaceae, Desulfovibrionaceae, and 
Fusobacteria, and a reduction of Lachnospiraceae (Vujkovic-Cvijin and 
Somsouk, 2019). Ruminococcaceae and Lachnospiraceae taxa comprise 
the primary producers of short-chain fatty acids (SCFA) within the 
gut, meaning that their relative depletion in HIV-infected individuals 
is also associated with a diminution of SCFA in the gut. Moreover, in 
HIV-infected individuals, a proliferation of proinflammatory 
microorganisms such as Candida albicans, and a diminution of anti-
inflammatory microorganisms such as Akkermansia muciniphila, is 
observed (Ouyang et al., 2020; MacCann et al., 2023).

In addition to microbial composition, HIV infection may also 
cause dysregulation of gut microbiota metabolism (McHardy et al., 
2013). SCFAs, which are the fermentation products of intestinal 
microbiota, is crucial for maintenance of the overall health of intestinal 
epithelial cells and regulation of local immune responses (Shi et al., 
2017). Compared with HIV-negative individuals, circulating levels of 
butyric acid and valeric acid are reduced in HIV-positive patients 
(Qing et  al., 2019). Moreover, levels of butyric and valeric acids 
positively correlate with the abundance of species such as 
Rikenellaceae, Ruminococcaceae, Alistipes, Roseburia, and 
Lachnospiraceae (Qing et al., 2019). Interestingly, different metabolic 
functions manifest based on the different microbial communities that 
are more abundant in HIV-infected subjects. McHardy et al., have 
observed that imputed metagenomic functions, including amino acid 
metabolism, vitamin biosynthesis, and siderophore biosynthesis 
differs significantly between healthy controls and HIV-infected 
subjects not receiving ART (Kang and Cai, 2019). Gut-resident 
bacteria with the capacity to metabolize tryptophan (TRP) through 
the kynurenine (KYN) pathway were observed to be  enriched in 
HIV-infected subjects (Vujkovic-Cvijin et  al., 2013), and gut 
microbiota communities in HIV-infected subjects exhibit an increased 
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capacity to catabolize tryptophan to kynurenine (Serrano-Villar et al., 
2016; Vujkovic-Cvijin and Somsouk, 2019). Degradation of TRP via 
the KYN pathway may result in decreased production of serotonin. 
Interestingly, several studies have noted low levels of serotonin 
[5-hydroxytryptamine (5-HT)] in the blood and CSF of patients with 
HIV-1 infection (Launay et  al., 1988; Larsson et  al., 1989; Ghare 
et al., 2022).

Thus, HIV infection is associated with alterations in microbiota 
composition and microbial metabolites, and physical disruption of the 
gut endothelial barrier. These changes may contribute to greater 
microbial translocation and the persistence of a proinflammatory state 
even subsequent to restoration of circulating CD4+ T-cell counts via 
ART (Takiishi et  al., 2017; MacCann et  al., 2023). The preceding 
repercussions of HIV infection within the gut, together with their 
consequences, may well influence the gut-brain axis and possibly 
mediate the subsequent development of HAND.

4 Neurocognitive disorders and their 
connections to gut microbiota as 
reported in HIV negative contexts

Cumulative research evidence implicates the gut microbiosis in a 
variety of psychiatric, neurological, and neurodegenerative diseases 
(Cryan et al., 2019). Evidence from both clinical and experimental 
studies show that there is an imbalance of gut microbiota and 
microbial metabolites present in various CNS diseases (Table 1). For 
example, clinical studies on the gut microbiota of patients with 
Alzheimer’s Disease (AD) and the gut microbiota in an AD mouse 
model have suggested differences in microbial diversity, compared to 
the control group. Specifically, it has been observed that AD is 
associated with a decrease in Fusobacteriaceae, Firmicutes, 
Actinobacteria, and Bifidobacterium, and an increase in Bacteroidetes 
(Westfall et  al., 2017; Megur et  al., 2020). In fecal samples from 
Parkinson’s disease (PD) patients, bacteria more commonly related to 
anti-inflammatory properties, such as genus Blautia, Coprococcus, and 
Roseburia, are significantly decreased, while proinflammatory Proteus, 
Enterococcaceae, and Enterobacteriaceae organisms increased 
(Keshavarzian et al., 2015; Scheperjans et al., 2015; Bedarf et al., 2017; 
Quigley, 2017). Similarly, recent studies (Jiang et al., 2015; Aizawa 
et  al., 2016; Sun and Shen, 2018) have suggested that (i) lower 
Bifidobacterium and Lactobacillus levels are more common in 
individuals with major depressive disorder, (ii) Faecalibacterium levels 
are negatively associated with severity of depressive symptoms in 
patients with major depressive disorder, and (iii) Enterobacteriaceae 
and Alistipes proportions are increased in people having major 

depressive disorder, compared to healthy controls. Recently, it has 
been reported that gut microbiota from patients with HAND showed 
significantly lower α-diversity compared with that from patients 
without HAND (Sun et al., 2016; Hamad et al., 2018; Zhang et al., 
2018). Notably, the gut microbiota composition in HIV positive 
patients with neurocognitive impairment is significantly different 
from those without neurocognitive impairment (Dong et al., 2021). 
HIV positive individuals with neurocognitive impairment also present 
a decreased abundance of butyrate-producing bacteria (BPB) and an 
increased abundance of Klebsiella (Dong et al., 2021).

Interventions utilizing therapeutic modalities such as antibiotics, 
probiotics, and fecal microbiota transplantation (FMT) may modify 
the composition of the gut microbiota and therefore influence the 
cognitive functioning of the host. Indeed, antibiotics are known to 
disrupt the gut microbial community, which may have negative 
consequences on brain function and behavior. In rodents, antibiotic 
administration induces changes in the gut microbiota, and this has 
been observed to be associated with subsequent object recognition 
memory impairment and altered hippocampal function (Desbonnet 
et al., 2015; Fröhlich et al., 2016; Möhle et al., 2016; Cryan et al., 2019). 
Additionally, through fecal microbiota transplantation (FMT), it has 
been demonstrated that transplanted gut microbiota may improve the 
symptoms of neurological disease by modulating the microbiota-gut-
brain axis. For instance, one murine model of AD observed that 
microbiota transplantation utilizing the gut microbiota from a healthy 
subject alleviates the formation of amyloid beta (β) plaques and 
neurofibrillary tangles, as well as improves glial reactivity, and 
cognitive impairment (Kim et al., 2020). Thus, via the observations 
gleaned from FMT experiments, it can be seen that gut microbiota 
may be able to transfer a behavioral phenotype or disease feature to a 
recipient, providing stronger evidence for a causal relationship 
between gut microbiota and CNS disease. The utilization of specific 
probiotics in humans has also demonstrated beneficial effects with 
respect to cognitive performance in both healthy and unhealthy 
individuals (Cryan et al., 2019). Significant improvements in various 
cognitive test scores (inclusive of memory, attention, executive 
function, and language) were observed in two studies in which PLWH 
received probiotics as supplements (Ceccarelli et  al., 2017). This 
indicates that the gut-brain axis plays a vital role in the manifestation 
of neurological disorders. Furthermore, in a recent publication, our 
team (Zaongo et  al., 2023) has published extensive information 
regarding the elements of the gut, which may influence brain 
development and functioning. We believe that the gut microbiome 
may also play critical roles in the development of neurodegenerative 
disorders (Table 2), inspired from our published article (Zaongo et al., 
2023). Notably, according to previously published investigations 

TABLE 1 Examples of altered gut microbiota composition in HIV-negative patients with CNS diseases or neurocognitive disorders.

Diseases Altered gut microbiota Subjects References

Alzheimer’s disease
Bacteroidetes↑, Fusobacteriaceae↓, Firmicutes↓, Actinobacteria↓, and 

Bifidobacterium↓
Humans, rats

Salminen et al. (1998); Westfall et al. (2017); Megur et al. 

(2020)

Parkinson’s disease
Proteus proinflammatory↑, Enterococcaceae↑, Enterobacteriaceae↑, 

genus Blautia↓, Coprococcus↓, and Roseburia↓
Humans

Keshavarzian et al. (2015); Scheperjans et al. (2015); 

Bedarf et al. (2017); Quigley (2017)

Major depressive 

disorder

Enterobacteriaceae↑, Alistipes↑, Bifidobacterium↓, Lactobacillus↓, and 

Faecalibacterium ↓
Humans

Jiang et al. (2015); Aizawa et al. (2016); Sun and Shen 

(2018)

↑: augmentation; ↓: reduction.
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TABLE 2 Elements of the gut which are potentially involved in the development of neurodegenerative disorders.

Groups Specific elements Utility/reported effect References

Metabolites or 

neurotransmitters

Serotonin At the pre-natal level, is essential for fetal forebrain development. Bonnin et al. (2011)

Vitamins K2 and B12 Essential for human survival and nervous system development.
Dror and Allen (2008); Santos et al. (2008); 

Marques et al. (2010)

Acetate Regulates microglial functions. Erny et al. (2021)

Butyrate Influences brain functions as it may regulate gene expression in the brain. Bourassa et al. (2016) Alpino et al. (2022)

Kynurenines (kynurenic acid, 

3-hydroxykynurenine, 

quinolinic acid, and 

3-hydroxyanthranilate)

They target neurotransmitter receptors and affect redox processes, and thus 

influence brain physiology.
Schwarcz et al. (2012)

Lipopolysaccharides
Induces anxiety or depressive-like or sickness behavior (fatigue, anorexia, 

low mood, or apathy later in life).

DellaGioia and Hannestad (2010); On Wah 

et al. (2019)

Bacteria

Lactobacillus reuteri Produces vitamin B12, which is essential for nervous system development Dror and Allen (2008); Marques et al. (2010)

Clostridium aminobutyricum

Responsible for infections located in the gut. These infections are linked to 

autism and schizophrenia as they influence the developmental programming 

of the brain.

Finegold et al. (2002); Finegold (2008); Mittal 

et al. (2008); Bale et al. (2010)

C. bifermentans

C. clostridioforme

C. difficile

C. Colceatum

C. nexile

C. orbiscindens

C. ramosum

C. roseum

C. scindens

Campylobacter jejuni Induces behavioral abnormalities including anxiety and impaired cognition.
Bilbo et al. (2005); Sullivan et al. (2006); 

Goehler et al. (2008)

Escherichia coli
Induces behavioral abnormalities including anxiety and impaired cognition Bilbo et al. (2005); Sullivan et al. (2006); 

Goehler et al. (2008)

Bifidobacteria

May influence brain fatty acid composition Wall et al. (2012)

In probiotics (predominantly Bifidobacterium longum and Bifidobacterium 

bifidum), they are suspected to have beneficial effects on depression in rats 

exposed to maternal separation stress in early life

Shkoporov et al. (2008)

Slackia Produces equol, which is essential in maintaining homeostasis. Schröder et al. (2013); Freedman et al. (2018)

A. muciniphila

May produce serotonin. Valles-Colomer et al. (2019)

Produces acetate, which has beneficial effects on neurodegenerative 

conditions.
Mirzaei et al. (2021)

Produces propionate, which has beneficial effects on neurodegenerative 

conditions.
Mirzaei et al. (2021)

Reduces inflammation by producing indole and indole acetic acid from 

tryptophan metabolism.

Schröder et al. (2013); Freedman et al. (2018); 

Liu et al. (2020)

Eubacterium hallii group

Produces propionate, which has beneficial effects on neurodegenerative 

conditions.
Durack and Lynch (2019)

Produces butyrate. Liu et al. (2020)

Lactococcus

Influences levels of serotonin (modulates serotonin signaling/metabolism). Oluwagbemigun et al. (2022)

Produces histamine, which is essential to regulate cognitive functions. Landete et al. (2008); Thomas et al. (2012)

Production of dopamine, which is essential to regulate cognitive functions. Tetz et al. (2018)

Pseudomonas

Influences levels of serotonin (modulates serotonin signaling/metabolism). Oluwagbemigun et al. (2022)

Production of gamma aminobutyric acid, a marker of Alzheimer’s disease.
Manyevitch et al. (2018); Strandwitz et al. 

(2019)

(Continued)
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(Morais et al., 2021; Mayer et al., 2022), it is hypothesized that the 
specific pathways which potentially define the relationships between 
the gut-brain axis and neurological disorders are either direct (direct 
effects on neurons and neuronal signaling), or indirect (via immune 
responses and/or microbial metabolites).

4.1 Neurons and neuronal signaling

Two neuronal pathways physically link the gut and the brain 
(Carabotti et al., 2015). These comprise the direct connections via the 
vagus nerve between the brain and the gut and the bidirectional 
exchange between the brain and the gut via the enteric nervous system 
(ENS) present in the intestine (Gwak and Chang, 2021). The vagus 
nerve is a significant component of both pathways. Indeed, the vagus 
nerve (VN) extends from the brainstem as the tenth (and longest) 
cranial nerve, to innervate the gut and the enteric nervous system 
(ENS) (Breit et al., 2018). Interestingly, Yoo and Mazmanian have 
observed that intestinal microbiota may mediate the development and 
the functional components of the enteric nervous system (ENS) (Yoo 
and Mazmanian, 2017). Similarly, De Vadder et  al. (2018), have 
demonstrated that neuronal innervation of colonic epithelium is 
reduced in germ-free (GF) mice, and that this phenotype is reversed 
15 days after colonization by gut microbes. Microbes and their 
products regulate the development and maturation of glial cell 
networks within the nervous system, and enteric glial cells (EGCs) are 
the major target of the gut microbiota (Kabouridis et  al., 2015). 
Furthermore, gut microbiota may affect the function of enteric 
neurons through chemical signaling. Indeed, it has been reported that 
supplementation with SCFA-producing gut microorganisms may 
suppress the activation of the neuronal pathway that mediates gut 

motility (Morais et  al., 2021). Additionally, direct neural 
communication between gut microbiota and the brain is mainly 
achieved through the VN (Borre et al., 2014). As such, the VN sensory 
fibers innervate the muscle and mucosal layers of the gastrointestinal 
tract, detect sensory signals, and subsequently transmit these signals 
to the CNS (De Vadder et al., 2018). In animal studies, injection of 
α-synuclein (a neuronal protein that regulates synaptic vesicle 
trafficking and subsequent neurotransmitter release) into the 
duodenal and pyloric muscularis layer induces its dissemination along 
the VN to the middle brain, causing neuronal damage (Kim et al., 
2019; Van Den Berge et al., 2019; Benakis et al., 2020). Although the 
VN is likely to be  involved in the pathogenesis of both acute and 
chronic brain disorders, its role in linking the gut microbiota to the 
natural history of any particular disease has not as yet been extensively 
investigated (Benakis et al., 2020).

4.2 Modulation of immune responses

The gut microbiota interacts intimately with the intestinal 
immune system. Microbial interactions with local immune cells may 
lead to functional changes that extend beyond the gastrointestinal 
tract. According to Agirman et al., this scenario may occur through 
alterations to the release of cytokines into the systemic circulation or 
through conditioning of immune cells that home to other anatomical 
sites, including the brain (Agirman and Hsiao, 2021). Notably, 
proinflammatory cytokines (IL-1, IL-17, and IFN-γ) have been 
observed to be  capable of modulating brain development and 
functions via their receptors located in the hippocampus (Tetz et al., 
2018). In addition to microbial effects on peripheral immune cells, the 
microbiota is also necessary for healthy development, maturation, and 

TABLE 2 (Continued)

Groups Specific elements Utility/reported effect References

Fungi

Candida albicans Memory impairment. Wu et al. (2019)

Geotrichum capitatum
Can disseminate in lung, liver, and skin. Thus, it may potentially infect the 

brain and influence its functioning.
Gao et al. (2015)

Saccharomyces boulardii Improves the behavior and emotions. Tao et al. (2021)

Virus HIV

HIV induces neuronal apoptosis. Ozdener (2005); Soontornniyomkij (2017)

Induces permanent gut dysbiosis syndrome, which allows translocation of 

microbial products in blood. Once in contact with the brain, they influence 

its functioning. van Marle et al. (2013); Rich et al. (2020)

Could influence brain function by killing enteroendocrine cells within the 

gut.

Chronic inflammation whereby cytokines produced by immune cells can 

influence the brain functioning.

Maek et al. (2007); Benakis et al. (2016); 

McArthur and Johnson (2020); Salvo-Romero 

et al. (2020)

Enteroendocrine 

cells

EC cells, D cells, I cells, K cells, 

and L cells

Produces neuroactive molecules (5-hydroxytryptamine/serotonin) and 

peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), which 

modulate brain functions via enteric nervous system, vagus nerve, and spinal 

afferent fibers.

Latorre et al. (2016); Needham et al. (2020)

Immune cells (CD4+ 

T-cells, dendritic 

cells, macrophages, 

etc.)

Pro-inflammatory cytokines 

(IL-1, IL-17, and IFN gamma)

Modulates brain development and functions via their receptors located in 

the hippocampus.
Salvo-Romero et al. (2020)
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activation of microglia, which are the innate immune cells of the brain 
(Abdel-Haq et al., 2019; Morais et al., 2021). Moreover, it has been 
reported that germ-free (GF) mice display global defects in microglia, 
with altered cell proportions and an immature phenotype, leading to 
impaired innate immune responses within the murine brain (Erny 
et  al., 2015). Defective microglia are also associated with limited 
microbiota complexity. Conversely, recolonization of the gut with a 
complex gut microbiota (particularly enriched with SCFA and bacteria 
producing SCFA) partially restores normal microglia phenotypic traits 
(Erny et al., 2015). A separate research group has also demonstrated 
that short-chain fatty acids and microbiota-derived bacterial 
fermentation products may restore microglial morphology and 
function (Erny et  al., 2015). Crucially, alterations in microglial 
function have been linked to stress, behavioral disorders, and 
neurodegenerative disorders, which suggests that the gut microbiota 
may influence human neurological diseases through effects mediated 
by microglia (Morais et al., 2021). The permeability of the blood–brain 
barrier has been shown to be  related to the gut microbiota and 
microbial metabolites. Some reports show that GF mice have increased 
blood–brain barrier (BBB) permeability relative to control mice 
(Braniste et al., 2014). The increased permeability of the gut and the 
blood–brain barrier induced by gut microbiota derangement may thus 
potentially mediate or influence the emergence of neurodegenerative 
disorders (Jiang et al., 2017).

4.3 Microbial metabolites

Microbial products and metabolites, including secondary bile 
acids, indole-derivatives, and SCFAs may transmit signals through 
enteroendocrine cells (EECs) and enterochromaffin cells (ECCs) to 
regulate the secretion of neuropeptides and neuromodulators such as 
the hormonal neurotransmitter, serotonin. Furthermore, subsets of 
gut bacteria may directly synthesize and release specific 
neurotransmitters and neuromodulators (Agirman and Hsiao, 2021). 
For example, Enterococcus spp., Escherichia spp., Lactobacillus spp., 
Lactococcus spp., M. morganii, and Streptococcus spp., to list a few, have 
been observed to produce serotonin (Agirman and Hsiao, 2021).

4.3.1 Short chain fatty acids
Short-chain fatty acids improve gut motility, reduce the release of 

proinflammatory cytokines, and modulate adaptive immune tolerance 
as well as the levels of gut hormones and neuropeptides (Dalile et al., 
2019; Benakis et al., 2020). SCFAs directly impact brain function, 
regulating BBB permeability, microglial function, and modulation of 
neuroinflammatory responses. As an example, Erny et  al., have 
demonstrated that mono-colonization by a butyrate-producing 
bacterium restores the integrity of the BBB in GF mice, and also plays 
a critical role in the maturation of microglia (Erny et al., 2015). In 
addition, SCFAs may affect neuro-inflammation by modulating the 
production and recruitment of immune cells such as T-cells and 
neutrophils, and of inflammatory cytokines (Parker et  al., 2020). 
Butyrate has been reported to stimulate memory and synaptic 
plasticity by inhibition of histone deacetylases (Kaur et al., 2019). 
SCFAs may also influence health and behavior. For instance, mice 
exposed to acute exogenous SCFA (sodium butyrate) are observed to 
have altered production of brain-derived neurotrophic factor (BDNF), 
which is a neuronal factor that has been associated with depression 

(Schroeder et al., 2007). In the preceding study, prolonged injection of 
exogenous sodium butyrate into mice (for 28 days) has been observed 
to reduce their depressive-like behaviors in a statistically 
significant manner.

4.3.2 Serotonin
The gut microbiota influences tryptophan (TPH) metabolites, and 

thus affects the pathogenesis of many neurologic and psychiatric 
disorders. TPH is the only substrate for serotonin synthesis, which 
occurs primarily in the distal gastrointestinal tract (90%) and, to a 
lesser extent, in the central nervous system (10%) (Roth et al., 2021). 
The commensal gut microbiota has multiple regulatory mechanisms 
for the peripheral serotonin pool. On the one hand, microbial 
metabolites such as indole, SCFAs, and secondary bile acids impact 
the generation and secretion of 5-HT by enteroendocrine cells (EECs) 
(Gao et al., 2020; Agirman and Hsiao, 2021). On the other hand, the 
commensal gut microbiota may directly utilize tryptophan to 
synthesize serotonin. Indeed, it has been reported that specific 
bacterial strains, such as Lactococcus, Lactobacillus, Streptococcus, 
Escherichia coli, and several bacteria of the Klebsiella genus, may 
produce serotonin by expressing tryptophan synthase (O’Mahony 
et al., 2015; Gao et al., 2020). Apart from changes to the peripheral 
serotonin pool, modulation of central serotonin metabolism by gut 
microbiota also occurs in multiple ways. Observations from some 
studies (Gao et al., 2018, 2019; Lukić et al., 2019) imply that alterations 
to gut microbial tryptophan metabolism may influence changes in 
central serotonin metabolism by affecting tryptophan availability. 
Moreover, the gut microbiota exhibits other pathways, which 
modulate central serotonin synthesis (Gao et al., 2018, 2019; Lukić 
et  al., 2019). For example, some microbial metabolites (especially 
butyrate, which may be transported into the systemic circulation) are 
thought to have neuroprotective effects in stressed mice via an increase 
in brain serotonin levels and a remediation of BBB impairments (Sun 
et al., 2016). Additionally, inflammatory stimuli have been observed 
to decrease serotonin levels in the prefrontal cortices of mice (Zhu 
et al., 2015). In the CNS, 5-HT is involved in the modulation of a 
range of mood, behavioral, and cognitive functions (Cryan and 
Leonard, 2000; Berger et al., 2009; Kennedy et al., 2017), and low 
serotonin levels have been reported to be associated with depression, 
fatigue, and impaired cognitive functions (Geldenhuys and Van der 
Schyf, 2011; Kaur et al., 2019).

4.3.3 Tryptophan metabolism
Approximately 90% of tryptophan is metabolized along the 

kynurenine pathway. TRP can be catabolized by the heme-dependent 
enzymes, TRP  2,3-dioxygenase (TDO) and indoleamine 
2,3-dioxygenase (IDO1), resulting in the production of kynurenine 
(KYN) and its derivatives (Stone, 1993; Guillemin et  al., 2003; 
Richard et  al., 2009). Fluctuating levels of kynurenine pathway 
metabolites, including kynurenine, kynurenic acid, 
3-hydroxyanthranilic acid (3-HAA), 3-hydroxykynurenine (3-HK), 
and the neurotoxic quinolinic acid are associated with many 
neurologic and psychiatric disorders (Schwarcz et al., 2012; Kennedy 
et al., 2017). Kynurenine and quinolinate, for instance, have been 
proposed as metabolites which are likely to perturb brain functioning 
and consequently cause depression-like symptoms (Oxenkrug, 2013; 
Kaur et al., 2019). The preceding observations indicate that the gut 
microbiota may influence brain functions through modulation of 
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the kynurenine pathway. Studies have reported that the gut 
microbiota not only regulates the expression of the kynurenine 
pathway genes in the hippocampus via an microRNA-dependent 
mechanism, but may also modulate the kynurenine pathway in the 
brain by directly impacting the activity of its key enzymes (Malmevik 
et al., 2016; Moloney et al., 2017; Gao et al., 2020). Additionally, 
circulating SCFAs, such as butyrate, may directly modulate central 
kynurenine pathways (Agirman et al., 2021; Sanmarco et al., 2021). 
Notably, the kynurenine pathway plays a primary role in influencing 
tryptophan availability by the clearance of excess tryptophan. Thus, 
dysregulation between serotonin synthesis and the kynurenine 
pathway may incite the emergence of neuropsychiatric disorders, 
such as depression (Kennedy et al., 2017; Gao et al., 2020). Other 
than serotonin synthesis and the kynurenine pathway, gut microbiota 
may directly transform tryptophan into indole derivatives. 
Subsequently, indoles of bacterial origin may be incorporated into 
the systemic circulation, may cross the BBB, and may exert 
neuroprotective effects via aryl hydrocarbon receptor (AhR) 
signaling (Rothhammer et al., 2016). One recent study observed that 
the microbial indole metabolites of tryptophan, including indole, 
indole-3-acetic acid (IAA), and indolic-3-propionic acid (IPA), may 
activate AhR signaling in astrocytes and hence modulate CNS 
inflammation (Rothhammer et al., 2016).

4.3.4 Membrane-derived molecules
Other gut microbiota-derived molecules may have significant 

effects on host immunity and neurological diseases (Benakis et al., 
2020). A prominent example is the endotoxin, lipopolysaccharide 
(LPS). LPS translocation is facilitated by gut permeability, which also 
causes a potent inflammatory response that may damage/disrupt the 
BBB and subsequently activate microglia (Banks and Erickson, 2010). 
For instance, Proteus mirabilis gavage has been observed to replicate 
PD-like symptoms, and enhances microglia activation via LPS in wild-
type mice (Choi et al., 2018).

Three parallel but related communication pathways may be used 
to send inflammatory signals from the GI tract to the central nervous 
system (Agirman et al., 2021). Intestinal inflammation (triggered by 
dysbiosis) induces the release of proinflammatory cytokines and may 
have dramatic extraintestinal consequences (Parker et  al., 2020). 
Circulating proinflammatory factors may disrupt epithelial tight 
junctions and compromise both the gut-vascular barrier (GVB) and 
BBB integrity (Parker et  al., 2020), thus “opening the door” for 
molecules, toxins, and pathogens originating from the gut lumen to 
enter the brain parenchyma, activating local immune cells, and 
inducing neuroinflammation. Increased systemic levels of the bacterial 
wall component, LPS, for instance, has been linked to cognitive 
decline, microglial activation, neuronal cell death, and cytokine-
mediated illness behavior (Zhao et  al., 2019). Moreover, the gut 
microbiota and their byproducts have been shown to have a direct 
impact on neuroimmunomodulatory functions within the CNS 
(Agirman et al., 2021), and a lack of immune priming results in an 
inadequate response to brain insults and inflammatory stimuli (Erny 
et al., 2015; Rothhammer et al., 2016; Thion et al., 2018; Van Hove 
et al., 2019). Local immune cells of the CNS may also be programmed 
by gut-derived cells whose functions can be  regulated by the gut 
microbiota (Agirman et al., 2021; Sanmarco et al., 2021). In the case 
of gut dysbiosis, intestinal immune cells may directly promote CNS 
neuroinflammation (Agirman et al., 2021). Multiple sclerosis (MS) is 

the most prevalent form of inflammatory disease in the CNS, and 
mounting evidence suggests that other neurological diseases such as 
AD, PD, and autism spectrum disorder (ASD) may also be significantly 
associated with inflammatory responses (Heneka et al., 2015; Park and 
Kim, 2021). Although each neurodegenerative disease has its own 
unique pathway that ultimately results in neurodegenerative changes, 
chronic inflammation that originates from and is dependent on the 
gut microbiota is often a key aspect of the progressive nature of 
neurodegeneration (Harry, 2013). Immune reactions in the CNS may 
reportedly have adverse long-term effects, especially in cases of 
chronic inflammation, and proinflammatory cytokines and oxidative 
stress have been causally linked to neuronal death (Millán Solano 
et al., 2023).

From the preceding details, it is fair to reason that the crosstalk 
between the gut and the brain is a crucial factor to consider when 
contemplating the fundamental nature of neurocognitive disorders, 
and this gut-brain crosstalk may involve multiple mechanisms. As 
such, and based on current evidence, we believe that the gut-brain axis 
plays a significant role in the pathogenesis of neurocognitive disorders 
that are encountered in PLWH.

5 The microbiota-gut-brain axis 
mediates neurological disorders in 
PLWH: evidence from the literature

Evidence from contemporary literature informs that HIV 
infection may affect both the brain and the gut. It is known that HIV 
may overcome BBB protection and penetrate the CNS [via a “trojan 
horse” (i.e., an infected CD4+ T-cell or a monocyte migrating from 
the bloodstream into the CNS), or via transcytosis (i.e., infected 
epithelial cells transporting HIV particles from the systemic 
circulation into the CNS)], where it may infect different types of cells 
(macrophages, microglia, and astrocytes), promote inflammation, and 
provoke neuronal damage (Araínga et al., 2017; Abreu et al., 2019; 
Wallet et al., 2019; McArthur and Johnson, 2020). The mechanisms 
(involving neuroinflammatory responses to viral proteins and 
inflammatory cytokines released by infected microglia and 
macrophages) whereby HIV exerts deleterious effects on neurons are 
(i) largely indirect and (ii) triggered by HIV neurotoxicity (Kaul et al., 
2001; Ellis et al., 2007; Saylor et al., 2016). As previously described, the 
proinflammatory reaction in the brain may alter CNS functions 
(Hsiao et al., 2013; Houser and Tansey, 2017). Thus, neuroinflammation 
is now considered to be  a key factor in the evolution of many 
neurodegenerative diseases (González et al., 2014; Houser and Tansey, 
2017). To illustrate this, observations from recent studies using MRI 
combined with metabolite spectroscopy have confirmed the presence 
of persistent neuroinflammation in individuals with HAND (Cysique 
et  al., 2018; Alakkas et  al., 2019; McArthur and Johnson, 2020). 
McArthur and Johnson have also reported that even virologically 
suppressed HIV-infected individuals display sustained inflammation 
and neural injury. These investigators have further suggested that a 
reduction of neuroinflammation and systemic inflammation may 
protect the CNS from immune-mediated damage (McArthur and 
Johnson, 2020). In addition to the inflammation resulting from the 
presence of HIV within the brain, previous studies have also shown 
that microbial translocation may drive neuroinflammation and 
thereby contribute to the pathogenesis of HAND (Ancuta et al., 2008; 
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Vera et  al., 2015). Indeed, HIV infection leads to gut microbiota 
imbalance, increases intestinal permeability, and causes persistent 
release of microbial products into the bloodstream (Lackner et al., 
2009). The preceding mechanisms, as observed in past research, 
significantly contribute to systemic inflammation (Mehraj et al., 2020; 
Luo et  al., 2022). Interestingly, several published articles have 
demonstrated that probiotic supplementation may positively influence 
neuronal functions, decrease neuroinflammation, and ameliorate 
cognitive impairment in PLWH (; Ceccarelli et al., 2017). Additionally, 
multiple studies have shown that reduced gut microbial diversity and 
reduction of their associated metabolites contribute to the 
development of neuroinflammation and cognitive impairment 
(Magnusson et al., 2015; Beilharz et al., 2016; Li et al., 2019; Saiyasit 
et al., 2020). Thus, it can be assumed that HIV infection within the gut 
may indirectly provoke HIV-associated neuronal damage and 
neurodegenerative diseases in PLWH.

Patients with HIV-1 infection have been shown to have 
reduced serotonin levels in their blood and CSF (Launay et al., 
1988; Keegan et al., 2016; Fu et al., 2023). Gut microbiota may 
regulate the synthesis of serotonin, and this may be related to an 
imbalance of gut microbiota composition and the alterations 
observed in levels of microbiota-associated metabolic products. As 
reported previously, factors related to the decrease in serotonin 
levels include a decrease in the abundance of symbiotic gut 
microorganisms which upregulate serotonin synthesis, an increase 
in the specific gut microbiota that regulate the kynurenine pathway, 
and a decrease in the microbial metabolites responsible for 
serotonin synthesis or release (O’Mahony et al., 2015; Gao et al., 
2020; Agirman and Hsiao, 2021). However, it is possible that low 
levels of serotonin can be therapeutically enhanced, as researchers 
have demonstrated that specific probiotic supplementation may 
significantly increase serum serotonin levels in PLWH (Scheri 
et al., 2017). Serotonin is known as a key neurotransmitter which 
is involved in a wide range of mood, behavioral and cognitive 
functions (Cryan and Leonard, 2000; Berger et  al., 2009). Low 
levels of serotonin have been associated with depression, fatigue, 
and impaired cognitive functions (Geldenhuys and Van der Schyf, 
2011; Kaur et  al., 2019). Interestingly, several past publications 
have shown that many HIV-positive patients with depression 
respond well to oral treatment with selective serotonin-reuptake 
inhibitors (SSRIs) (Caballero and Nahata, 2005). Accumulated 
evidence confirms that changes in gut microbiota composition and 
of their metabolites in PLWH may influence intrinsic serotonin 
production, and therefore promote the pathogenesis of depression 
and impaired cognitive functioning.

HIV infection may lead to the enrichment of gut-resident 
bacteria with the capacity to metabolize tryptophan (TRP) through 
the kynurenine (KYN) pathway, and these gut-resident bacteria 
may augment the production of kynurenine metabolites through 
increased expression of gut IDO1 (Rhee et al., 2005; Atarashi et al., 
2011; Vujkovic-Cvijin et  al., 2013). Several recent reports have 
shown that in HIV-infected individuals, serum TRP concentration 
is markedly decreased while the kynurenine concentration is 
increased, as reflected in elevated KYN to TRP (KYN/TRP) ratios 
(Huengsberg et al., 1998; Qi et al., 2018). Furthermore, it has been 
observed that severity of depression in HIV patients is associated 
with a decrease in plasma tryptophan concentration and an 
increase in the KYN/TRP ratio (Martinez et  al., 2014). The 

TRP-KYN pathway may also lead to changes in downstream 
metabolites (Heyes et  al., 1991; Qi et  al., 2018). Some of these 
metabolites may be  neurotoxic, such as 3-hydroxykynurenine 
(3-HK), 3-hydroxyanthranilic acid (3-HAA), and quinolinic acid 
(QUIN) (Stone, 1993; Guillemin et al., 2003, 2005; Davies et al., 
2010; Capuron et al., 2011; Keegan et al., 2016). More importantly, 
fluctuating levels of kynurenine pathway metabolites have been 
observed to be associated with several neurologic and psychiatric 
disorders (Schwarcz et al., 2012; Kennedy et al., 2017). Indeed, 
cerebrospinal fluid (CSF) levels of quinolinic acid have been shown 
to increase during HIV infection, and to be associated with HAND 
severity (Heyes et al., 1989, 1991; Achim et al., 1993; Sei et al., 
1995; Valle et al., 2004) Therefore, given the regulatory role of the 
gut microbiota on kynurenine pathway metabolites during HIV 
infection and the impact of kynurenine pathway metabolites on 
neurocognitive impairment, it is reasonable to suggest that HIV 
infection causes gut microbiota imbalance, promotes the activation 
of IDO, and favors the continuous accumulation of neurotoxic 
metabolites, which ultimately fosters the development of 
neurocognitive disorders.

An overall picture of the potential mechanisms whereby the 
gut-brain axis may influence HAND development during HIV 
infection is presented in Figure 1. Furthermore, an illustration of the 
relationship between HIV, gut microbiota, and HAND is provided in 
Figure 2.

6 Conclusion and perspectives

It is important to remember that HIV is a neurotropic virus 
which has the ability to affect the brain and to disrupt brain 
functions, and this may well account for the development of 
HAND. However, cumulative research evidence points, also, to the 
influential role of the microbiota-gut-brain axis in HAND 
development. Indeed, HIV-related gut associated dysbiosis 
syndrome, translocated microbial products, and sustained systemic 
inflammation are key features of HIV infection, which profoundly 
disrupts the homeostasis of both the gut and the brain. It is known 
that the gut and the brain interact via elements such as the 
autonomic nervous system, microbiota and their metabolites, the 
immune system, and the endocrine system. Herein, we  have 
considered and discussed how any change that occurs in the 
composition or functions of the preceding elements as a 
consequence of HIV infection may significantly dysregulate 
homeostasis of the gut-brain axis, and thus encourage the 
pathogenesis of HAND. The information reported in this article 
represents nuggets of compelling evidence, which exposes the 
potentially fundamental role played by the microbiota-gut-brain 
axis in the development of HAND. We have shown that HAND may 
result from inflammation, HIV-associated gut dysbiosis syndrome, 
and the leaky gut. As known consequences of HIV infection, these 
processes induce profound alterations in microbial metabolite 
composition (SCFA, serotonin, and tryptophan) and favor immune 
responses which, cumulatively, result in neuronal damage and/or 
inadequate neuronal signaling (Figure 2).

Despite the preceding observations, further evidence is 
required to establish the precise role of the microbiota-gut-brain 
axis during HAND pathogenesis. As such, it is necessary to further 
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FIGURE 1

Mechanisms potentially influencing HAND manifestation. In the HIV negative context, immune cells produce cytokines and influence the functioning 
of the brain (negatively or positively depending on the presence of inflammation or not, respectively) (Haroon et al., 2014, 2016; Haroon and Miller, 
2017). They reach the brain through the systemic circulation. Gut microbiota, particularly SCFA-producing microbiota, induce the production of 
neurotransmitters (serotonin) and metabolites (acetate, butyrate, and SCFAs). Consequently, the vagus nerve is stimulated by these molecules and 
transmits signals to the brain (Needham et al., 2020). Neurotransmitters and metabolites are able to cross the blood–brain barrier (via the systemic 
circulation) to subsequently directly affect brain health. Conversely, in the context of HIV infection, the gut epithelial/endothelial barrier and the blood 
brain barrier are disrupted and consequently are unable to selectively filter elements, which originate in the gut and consequently enter the brain. The 
production of different dysfunctional elements are also promoted. SCFA-producing microbiota are depleted and replaced by LPS/endotoxin-
producing microbiota. The latter are potentially pathogenic microbes, which produce endotoxins. The reduction of SCFA-producing microbiota 
induces a reduction in the production of serotonin and other beneficial metabolites (butyrate, acetate), while the production of LPS and other 
endotoxins are promoted by LPS/endotoxin-producing microbiota. In the HIV infection context, immune cells are depleted and produce 
proinflammatory cytokines, which exert a negative influence on brain cell development and functioning. The preceding elements (LPS, endotoxins, 
and proinflammatory cytokines) cause abnormal functioning of the vagus nerve, which may induce a sluggish intestinal transit time (constipation) 
which further promotes the growth of pathogenic bacteria within the gut (George et al., 2014). Furthermore, the preceding toxic elements may then 
easily reach the brain through the systemic circulation. Within the brain, endotoxins, HIV-infected immune cells (microglia, astrocytes, and 
macrophages, which produce proinflammatory cytokines, neurotoxins, ROS, and RNS), specific pathogenic microbes (potentially less likely), and HIV 
viral proteins work together to further compromise neuronal integrity, resulting in neuronal damage, synapse destruction, and ultimately neuronal 
death (Navarathna et al., 2016; Zhu et al., 2020). The preceding events which occur during HIV infection may well be seen as the potential pathogenic 
mechanisms whereby the gut-brain axis induces HAND development. ROS, Reactive oxygen species; RNS, Reactive nitrogen species.

explore the correlation between specific gut microbiota 
components and HAND in future research. Perhaps interventions 
using antibiotics, probiotics, and fecal microbiota transplantation 
(FMT) may (i) regulate composition and metabolites of gut 
microbiota, (ii) regulate the homeostasis of the microbiota-gut-
brain axis, and (iii) thereby prevent or alleviate potential 
neurological diseases in PLWH. Apart from dietary interventions, 
the administration of cannabinoid based drugs [such as dronabinol, 
a synthetic version of delta-9-tetrahydrocannabinol (THC)] at low 
dose may (i) regulate the microbiome-gut-brain axis, (ii) reduce 
neuroinflammation, and (iii) mitigate HAND pathogenesis in the 
context of HIV infection, as has been demonstrated recently 
(McDew-White et al., 2023).

Despite this curated narrative review of the contemporary 
literature being focused on the relationship between HIV infection, 
gut microbiota dysbiosis, and HAND, the absence of original data 
represents a major limitation to this work. Nonetheless, we believe 
that our work may serve to pave the way toward robust future 
investigations (particularly clinical trials) in this compelling area 
of endeavor.
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