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Age-correlated changes in the 
canine oral microbiome
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Introduction: Canine oral disease has been associated with significant changes 
in the oral microbiome rather than the presence or absence of individual species. 
In addition, most studies focus on a single age group of canines and as of yet, 
the relationship between canine microbiomes and age is poorly understood.

Methods: This study used a shotgun whole gene sequencing approach in 
tandem with the Aladdin Bioinformatics platform to profile the microbiomes of 
96 companion dogs, with the sourmash-zymo reference database being used 
to perform taxonomic profiling.

Results: Findings showed significant age correlations among 19 species, 
including positive correlations among several Porphyromonas species and 
a negative correlation with C. steedae. Although a significant correlation was 
found between predicted and actual ages, ElasticNet Regression was unable 
to successfully predict the ages of younger canines based on their microbiome 
composition. Both microbiome samples and microbial species were successfully 
clustered by age group or age correlation, showing that the age-microbiome 
relationship survives dimensionality reduction. Three distinct clusters of 
microbial species were found, which were characterized by Porphyromonas, 
Conchiformibius, and Prevotella genera, respectively.

Discussion: Findings showed that the microbiomes of older dogs resembled 
those that previous literature attributed to dogs with periodontal disease. This 
suggests that the process of aging may introduce greater risks for canine oral 
disease.
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Introduction

Microbiomes are the collection of all microorganisms that are found in an environment 
which are present in all eukaryotic organisms and live in symbiosis with the host. Different 
microbiomes can be found in the mouth, respiratory tract, urogenital tract and gastrointestinal 
tract as well as on the skin (Grzeskowiak et al., 2015; Malard et al., 2021). Besides being 
involved in metabolism, the microbiome is also deeply connected with the health and diseases 
of the host. At surfaces that are in contact with the external environment (e.g., skin, oral cavity 
or intestine), the community of diverse microorganisms prevents the establishment of 
potentially invasive pathogens. The microbiome is also critical in the development and 
maintenance of the host’s immune system, which learns to recognize resident microorganisms 
and initiate inflammatory responses against invaders. Dysbiosis or drastic changes in the 
microbiome are often associated with diseases (Young, 2017; Deo and Deshmukh, 2019; 
Malard et al., 2021).

The canine oral microbiome is an enormously complex and diverse community within a 
host organism. Despite the variety of changes in the environment, the oral microbiome 
remains relatively stable over time and has coevolved with the host organism (Zaura et al., 
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2014). Depending on the method of delivery (either vaginal or 
Cesarean section), most organisms acquire their oral microbiome 
during birth when the newborn is exposed to the mother’s vaginal or 
gut flora (Zaura et  al., 2014). The healthy canine microbiome is 
defined by common clades of aerobic bacteria, including species from 
Actinomyces, Porphyromonas, and Campylobacter (Niemiec 
et al., 2021).

Significant, microbiome-wide changes occur in canines with oral 
diseases. Periodontal disease is an inflammatory oral disease 
commonly seen among canines. Compared to a healthy canine oral 
microbiome, microbiomes of diseased oral cavities exhibit a shift 
towards anaerobic bacteria (Davis et al., 2013; Santibanez et al., 2021). 
The abundance of bacteria of the genus Porphyromonas increases 
more than two-fold in the oral microbiome of dogs with periodontal 
disease (Santibanez et al., 2021). Species including Porphyromonas 
cangingivalis can regulate the host immune response, exacerbating 
inflammation. Moreover, they can also contribute to the breakdown 
of the host gingival epithelium (Santibanez et al., 2021). Such oral 
diseases have been observed at high rates among more senior canines, 
with frequent oral dysbiosis being observed (Templeton et al., 2023).

Whole genome sequencing (WGS) has been shown to more 
accurately detect broader microbiome diversity compared to existing 
16S amplicon methods (Lewis et al., 2021). A previous study on the 
metagenomes of aging dogs was able to effectively use WGS to 
measure longitudinal alpha diversity changes in senior companion 
dogs (Templeton et al., 2023). However, canine microbiome changes 
across age groups are not well characterized. Understanding 
compositional changes related to physical traits will be important for 
establishing benchmarks when comparing the microbial flora of 
healthy and diseased dogs where age, sex and weight may be a relevant 
variable. Age and weight have both previously been correlated with 
the progression of periodontal disease in canines (Carreira et  al., 
2015). However, their oral flora was not examined, which leaves both 
age and weight as possible confounders in the origin of canine 
periodontal disease. Understanding this relationship will be important 
for determining how these factors influence canine oral health and its 
decline. Given previous findings that both periodontal dysfunction 
and microbial changes are common among aging dogs, it was 
hypothesized that aging will have a significant relationship with 
bacterial species associated with oral disease. A longitudinal analysis 
was not possible due to sampling limitations, but single-factor level 
correlations could still be used to perform a cross-sectional analysis. 
This study uses shotgun WGS to characterize metagenomic differences 
across dogs of varying ages, weights and sexes.

Results

Metagenome composition

Whole genome shotgun sequencing was performed on 96 dogs 
from the study Rubbi et al. (2022) and profiled using the shotgun 
taxonomy profiling pipeline on the Aladdin Bioinformatics Platform, 
which conducted quality assurance and microbiome identification. 
The kmers species composition is shown in Figure 1A. The majority 
of kmers belonged to Canis lupus. The canine microbiome contained 
102 species with more than 0.1% abundance of all kmers belonging to 
microbial species. The distribution of bacterial abundances across all 
samples is shown in Figure  1B. Among samples of lower ages, 

Conchiformibius tends to be the dominant genus, while at higher ages 
Porphyrmonas becomes more abundant. The Moraxella clade becomes 
more common in middle age but is less abundant among dogs near 
the extremes of the age spectrum. The change in abundance of species 
with significant age correlations is shown in Figure 1C. The abundance 
of C. steedae decreases substantially with increasing age and several 
Porphyromonas species increase over time.

Species correlated with age

Pearson correlations between all microbial species, age, sex and 
weight were computed (Supplementary Figure S1). The correlation 
matrix of microbial species that exhibit a significant correlation with 
age is shown in Figure 2. The correlation of microbiome composition 
with weight and sex is also included in Figure 2. Of the 102 species 
detected, 19 of them were found to be significantly correlated with age 
(p < 0.05, FDR adjusted). Supplementary Table S1 displays the species’ 
abundances, age and Simpson’s Index (calculated with the whole 
microbiome) of each sample. A significant correlation (p = 0.0013) was 
found between Simpson’s Index and age with a coefficient of 0.014016 
(standard error: 0.004228), indicating that alpha diversity increased 
with age. Of the 19 species found to be significantly correlated with age, 
six belonged to the genus Porphyromonas, which all displayed positive 
Pearson correlations. Four species (M. sp002224245, F. canicola, 
C. steedae, and C. haemoglobinophilus) had negative correlations with 
age. The change in abundance of species that had significant age 
correlations with p  < 0.001 and age is shown in Figure  3. Notably, 
C. steedae has a significant negative correlation with age and quickly 
decreases with increasing age. Of the 19 species that showed a 
correlation with age, none showed a significant correlation with sex and 
only three showed a significant correlation with weight: Tannerella 
forsythia, Campylobacter sp012978815, and Porphyromonas crevioricanis.

Canine microbiome samples and microbial 
species cluster by age group

To visualize the relationships between samples in a lower 
dimensional space, uniform manifold approximation and projection 
(UMAP) was performed using cosine distance. UMAP analysis was 
performed twice, once with all species considered and again with only 
species with significant age correlations. Afterward, k-means clustering 
was performed to identify groups of similar samples. Silhouette scores 
were used to find the optimal number of clusters. Although seven 
clusters were found to be optimal in the UMAP of all samples, the 
number was reduced to four to remain consistent with the UMAP of 
only species with significant age correlations. The UMAP and age 
distributions of all samples when considering all microbial species are 
shown in Figures  4A,C and of samples when considering only 
significantly age-correlated species are in Figures 4B,D. Wilcoxon tests 
were performed to compare age distributions. When all species were 
considered, Cluster 4 was found to have a significantly different age 
distribution than Clusters 1, 2, and 3. Clusters 1, 2, and 3 were not found 
to have significantly different ages from each other. When considering 
only significantly age-correlated species, Cluster 1 was found to 
be significantly different from Clusters 2 and 3, but not Cluster 4. Cluster 
4 was found to have a significantly different age distribution than 
Clusters 2 and 3. Cluster 2 was not significantly different from Cluster 3.
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Next, the similarity between bacterial species was investigated. 
Although the Silhouette score indicated that two clusters were optimal, 
three were used to better resolve different groups of species. From the 
species UMAP, we identified three clusters (Figure 5A). Clusters 1 and 
3 had higher age correlations than Cluster 2, while Cluster 1 and 3 
were not shown to have significantly different age correlations between 
each other (Figure 5B). The distribution of abundances showed a 
similar pattern where the species in Cluster 2 had a significantly 
different abundance from those in Clusters 1 and 3. However, the 
species in Clusters 1 and 3 did not have significantly different 
abundances (Figure 5C). We sought to investigate the phylogenetic 
distribution of bacterial species in each cluster. The sunburst plot 

displays the taxonomy of all species colored by cluster (Figure 5D). 
Notably, the family Bacteroidaceae contained most Cluster 3 bacteria. 
Cluster 1 contained most Porphyromonas species in addition to all of 
the detected Desulfomicrobium, Desulfovibrio, and Treponema_B 
species. Phylum Firmicutes was contained entirely in Cluster 2.

Age prediction based on microbiome

To investigate whether the microbial composition of a canine could 
be used to predict its age, ElasticNet regression was performed using the 
abundance of microbial species as features and the age of the dog as the 

FIGURE 1

(A) Number of kmers corresponding to dog (Canis lupus), cat (Felis catus), human (Homo Sapiens), microbial, brown rat (Rattus norvegicus) and 
unrecognized species in each dog. Samples increase by age left to right. (B) Relative abundance of all microbial species with at least 0.01% abundance 
which shows changes in alpha diversity over time. Samples increase by age left to right. (C) Relative abundance of species which have a significant 
(p  <  0.05, FDR adjusted) age correlation. Samples increase by age left to right.
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FIGURE 3

Linear regression describing the change in abundance of species with age correlations with p  <  0.001.

FIGURE 2

Correlation matrix of species with significant age correlation with sex and weight. *<0.05, **<0.01, ***<0.001.
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response. Twenty-fold grid cross-validation was performed to find 
optimal hyperparameters. This cross-validation method tests a range of 
alpha (orders of magnitude between 1 × 10−5 and 100) and l1 ratio (0.2, 

0.4, 0.6, or 0.8) combinations to select the ones with the highest accuracy: 
an alpha of 10 and an l1 ratio of 0.2 were chosen. The results of this cross-
validation method are in Supplementary Table S2. Fourteen species had 

FIGURE 5

(A) UMAP dimension reduction on all samples. Each point represents a species. (B) Differences in distribution of age correlations for each cluster. 
(C) Log(abundances) across each cluster. (D) Sunburst plot of all microbial species separated by cluster.

FIGURE 4

(A) UMAP dimension reduction on all species. Each point represents a sample. (B) UMAP dimension reduction on species with significant age 
correlation. Each point represents a sample. (C) Violin plots showing differences in age distribution across clusters for (A). Wilcoxon test, FDR adjusted. 
*<0.05, **<0.01, ***<0.001. (D) Violin plot showing differences in age distribution across clusters for (B). Wilcoxon test, FDR adjusted. *<0.05, **<0.01, 
***<0.001.
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non-zero coefficients (Figure 6). Although a significant correlation was 
found between the actual and predicted ages, higher real ages were often 
underestimated, while lower real ages were often overestimated by 
ElasticNet. The mean squared error of the model was 9.77, meaning that 
the model tended to predict within ± 3.13 years of the dogs’ actual ages.

Discussion

Simpson’s Index was found to be positively correlated with age. 
This is congruent with findings in Templeton et al. (2023), which 
observed significant increases in bacterial alpha diversity. In human 
subjects, alpha diversity, as measured by the Shannon index, has been 
observed to be  significantly higher among those with chronic 
gingivitis and Stage I periodontitis (Kharitonova et al., 2021). This 
may suggest that the canine’s ability to regulate its oral flora is 
diminished with age. This may also support that the microbiomes of 
aging canines resemble those who have periodontal disease. We found 
that the genus Porphyromonas shows a significant positive correlation 
with age. Species of the genus Porphyromonas have been previously 
observed to be  enriched in the oral microbiome of dogs with 
periodontal disease (Santibanez et al., 2021). P. gulae and P. gingivalis 
are both associated with the progression of the disease (Hajishengallis 
and Lambris, 2012; Nomura et al., 2020). P. gulae has been established 

as part of the core oral bacteriome of dogs with periodontal disease 
(Niemiec et al., 2021). As an opportunistic pathogen, P. gingivalis is 
capable of subverting a host’s innate immune response and even 
remodeling the periodontal microbiota (Hajishengallis and Lambris, 
2012). It has been observed that in small dog breeds, P. gulae likely 
causes oral disease through the formation of FimA proteins (Yasuda 
et  al., 2024). These proteins polymerize to form fimbriae, which 
greatly increase P. gulae virulence and allow for more rapid formation 
of biofilms in the gingival margins. This leads to inflammation and 
eventual tooth decay and loss (Yasuda et al., 2024). The pathogenicity 
of P. gingivalis is largely due to gingipains, which cleave T-cell 
receptors, immunoglobulins, as well as extracellular matrix 
components (Bostanci and Belibasakis, 2012). This allows P. gingivalis 
to evade immune response and accumulate to form a biofilm, which 
leads to periodontitis and dental decay.

By contrast, species from several phyla show negative correlations 
with age (Santibanez et al., 2021). A prior study compared the relative 
abundances of various microbial species between the oral 
microbiomes of healthy dogs and dogs with mild periodontitis 
through 16S rRNA gene sequencing. In their findings, reductions in 
C. steedae were found to be  associated with both gingivitis and 
periodontitis. Similarly, C. steedae abundance had a significant 
negative correlation with age, suggesting that older dogs have 
microbiomes more similar to dogs with oral disease. Thus, the oral 

FIGURE 6

(A) Non-zero ElasticNet regression coefficients (alpha  =  10, l1 ratio  =  0.2). (B) Comparison between actual sample ages and ElasticNet predicted ages. 
Orange line represents the least squares regression line through all points. Blue line is ideal actual  =  predicted age.
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microbiome of older dogs resembles the periodontal microbiome. 
Overall, the significant difference in relative abundances of several 
microbial species between younger and older dogs may be explained 
by the fact that periodontal disease is more prevalent in older dogs 
(Nomura et al., 2020). It is also possible that the observed results are 
a product of natural shifts in oral microbiomes as a result of age. 
Previous literature has suggested that there may be  a genetic 
predisposition to oral disease and that some breeds may lack resistance 
to potentially pathogenic strains of bacteria (Wallis and Holcombe, 
2020; Wallis et al., 2021). Differences in the longevity of different 
breeds may also play a role, as those with longer lifespans may 
accumulate additional subgingival plaque and be at higher risk for 
periodontal disease. Additional investigation is needed to understand 
potential genetic risk factors for oral dysbiosis. Understanding 
potential genetic risk factors or differences in oral dysbiosis among 
different breeds could help to guide future efforts to prevent the 
development of canine periodontal disease as veterinarians would 
be  better able to recommend prophylactic action to dog owners. 
Because samples were collected without medical examination, the 
disease state of the canines cannot be confirmed. Future research may 
seek to confirm this possible relationship found in this study by 
conducting regular health checks in a longitudinal design.

The use of k-means clustering showed that taxonomically 
unrelated species could be  grouped based on similarities in age 
correlations. Clustering was able to distinguish between clades 
traditionally associated with canine periodontal disease. Cluster 1 
largely contained Treponema, Desulfomicrobium and many 
Porphyromonas species, which are associated with canine periodontal 
disease (Harvey, 1998; Riggio et al., 2011). Cluster 3 was characterized 
by Prevotella species, which are similarly implicated in canine 
periodontal disease and are frequently found in canine plaque and 
periodontal pockets (Stephan et al., 2008). N. canis was also found in 
Cluster 3, which has been found in canine mandibular abscesses 
(Cantas et  al., 2011). Both Porphyromonas and Prevotella are 
associated with human periodontal disease (Stephan et al., 2008). 
Conchiformibius and Actinomyces, found in Cluster 2, have been 
associated with oral health, and declining abundance with worsening 
oral health (Watanabe et al., 2023). Clusters 1 and 3 both possessed 
significantly higher age correlations than Cluster 2, suggesting that 
k-means clustering is able to distinguish between groups associated 
with both age and disease.

Various approaches have been used to predict human ages using 
gut microbiome data (Seo et al., 2023). However, there has been no 
concerted effort to predict canine ages based on their microbiomes. 
This study was able to predict dogs’ actual ages within 3.13 years of 
their actual age by using ElasticNet regression, a regularized model. 
The largest negative coefficient in the ElasticNet model belonged to 
Conchiformibius steedae, which further supports the conclusion that 
increased age is associated with the decline of beneficial oral flora. 
Three Porphyrmonas species possessed positive coefficients, suggesting 
that their abundances are positively associated with age. 
Porphyromonas has also been associated with increased periodontal 
disease severity (Watanabe et al., 2023). While still nascent, being able 
to predict age and health status based on microbiome composition 
may be useful for identifying risk factors and deviations from normal 
aging and canine health. Future studies may look into improving the 
accuracy of predictive methods and comparing machine learning and 
regression models, as well as performing longitudinal analyses to 

better control for microbial changes over time and their relationship 
to disease progression.

Methods

Whole genome sequencing and processing

DNA was extracted from the buccal swabs using the vendor-
supplied protocol. Buccal swabs were incubated overnight at 50 
degrees Celsius before DNA Extraction. 100 ng of extracted DNA was 
used for Whole Genome Sequencing (WGS) library preparation. 
Fragmented DNA was subject to end repair, dA-tailing and adapter 
ligation using the NEBNext Ultra II Library prep kit using dual 
unique index adapters (IDT). Libraries were subject to PCR 
amplification using KAPA HiFi Uracil+(Roche) with the following 
conditions: 2 min at 98°C; 14 cycles of (98°C for 20 s; 60°C for 30 s; 
72°C for 30 s); 72°C for 5 min; hold at 4°C. Library QC was performed 
using the High-Sensitivity D1000 Assay on a 2200 Agilent 
TapeStation. Pools of 96 libraries were sequenced on a NovaSeq X 
Plus (10b lane) as paired-end 150 bases (Rubbi et al., 2022). The mean 
number of reads was 3,612,534 per canine. The Aladdin 
Bioinformatics Shotgun Platform, which uses the qiime2 reference 
databases, was used to process the sequence data, profile taxa and 
conduct quality assurance (Ewels et  al., 2016; Chen et  al., 2018; 
Bolyen et  al., 2019). Aladdin uses FastQC to conduct quality 
assurance by measuring the frequency of duplicated reads as well as 
G-C content and removing sequences of extreme length (Chen et al., 
2018). Sourmash identifies the kmers composition of the samples by 
comparing kmers to the sourmash-zymo database (Ewels et al., 2016). 
Sourmash performs taxonomic profiling by creating the smallest 
possible list of matches to its reference database based on existing 
k-mers, which are profiled. This smallest possible metagenome is 
compiled using the method described in Irber et al. (2022), in which 
containment of a sample hash within the larger reference is calculated 
using the smallest possible elements from the sample. After finding 
the match in the reference genome with the highest containment, the 
match is removed from the sample’s query and the process is repeated. 
Abundances are estimated using the Jaccard containment of the 
matched genome within the whole sample metagenome. Qiime2 was 
used to visualize the composition barplot (Bolyen et al., 2019).

Correlation and UMAP analysis

The generation of correlation matrices, violin plots, bar plots and 
scatter plots was done in RStudio version 2023.6.0.421 using the corrr 
and ggplot2 packages (Wickham, 2016; Kuhn et al., 2022; Posit Team, 
2023). The UMAP package was used to perform dimensionality 
reduction using the procedure described in McInnes et al. (2018). All 
p-values were corrected for using the false discovery rate method for 
multiple comparisons.

Age regression model

Jupyter Notebooks were used to generate sunburst plots and the 
bar and scatter plots for ElasticNet regression using the plotly and 
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sklearn packages (Pedregosa et al., 2011; Plotly Technologies Inc., 
2015; Kluyver et al., 2016). Grid Cross Validation tests a range of 
possible hyperparameters in order to find the optimal settings for 
ElasticNet regression. For alpha, orders of magnitude between 1 × 10−5 
and 100 were tested and for l1 ratio the following values were tested: 
0.2, 0.4, 0.6, or 0.8. Twenty fold Grid Cross Validation found optimal 
hyperparameters: l1 ratio = 0.2 and an alpha = 10. The results of all 
combinations of hyperparameters are available in 
Supplementary Table S2. These hyperparameters were used by 
ElasticNet regression to predict dogs’ ages based on their microbiome. 
A Pearson correlation and associated p-value were computed to 
measure the effectiveness of the prediction.
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