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In this study, we present MetaBakery (http://metabakery.fe.uni-lj.si), an integrated 
application designed as a framework for synergistically executing the bioBakery 
workflow and associated utilities. MetaBakery streamlines the processing of any 
number of paired or unpaired fastq files, or a mixture of both, with optional 
compression (gzip, zip, bzip2, xz, or mixed) within a single run. MetaBakery 
uses programs such as KneadData (https://github.com/bioBakery/kneaddata), 
MetaPhlAn, HUMAnN and StrainPhlAn as well as integrated utilities and extends 
the original functionality of bioBakery. In particular, it includes MelonnPan for 
the prediction of metabolites and Mothur for calculation of microbial alpha 
diversity. Written in Python 3 and C++ the whole pipeline was encapsulated as 
Singularity container for efficient execution on various computing infrastructures, 
including large High-Performance Computing clusters. MetaBakery facilitates 
crash recovery, efficient re-execution upon parameter changes, and processing 
of large data sets through subset handling and is offered in three editions with 
bioBakery ingredients versions 4, 3 and 2 as versatile, transparent and well 
documented within the MetaBakery Users’ Manual (http://metabakery.fe.uni-lj.
si/metabakery_manual.pdf). It provides automatic handling of command line 
parameters, file formats and comprehensive hierarchical storage of output 
to simplify navigation and debugging. MetaBakery filters out potential human 
contamination and excludes samples with low read counts. It calculates 
estimates of alpha diversity and represents a comprehensive and augmented re-
implementation of the bioBakery workflow. The robustness and flexibility of the 
system enables efficient exploration of changing parameters and input datasets, 
increasing its utility for microbiome analysis. Furthermore, we have shown that 
the MetaBakery tool can be used in modern biostatistical and machine learning 
approaches including large-scale microbiome studies.
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1 Introduction

Numerous decisions are made by health care providers in 
medicine on the basis of a multivariate set of descriptors estimating 
probability that a specific disease is present in an individual (diagnostic 
context) or a specific condition is going to occur in the near future 
(prognostic context). In the former diagnostic case the probability that 
a particular disease may be present is useful for directing patients for 
further testing or start of immediate treatment next to exclusion of 
certain causes of observed symptoms. In the latter prognostic context 
predictions can be utilized to plan therapeutic decisions based on the 
risk for developing medical condition within specific timeframe and 
to stratify participants in intervention trials (Collins et  al., 2015; 
Moons et al., 2015). In either context, the combined information from 
multiple predictors observed and measured in an individual sample 
are utilized due to the fact that information from a single predictor is 
often insufficient to provide reliable estimates of diagnostic or 
prognostic value. Therefore multivariable models are being developed, 
validated with the aim to assist doctors and individuals in estimating 
probabilities and potentially guide their decision making (Collins 
et al., 2015; Moons et al., 2015).

However, recently the quality of reporting of prediction model 
studies was shown to be poor, therefore several initiatives such as 
TRIPOD (Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis Initiative) (Collins et al., 2015), 
SPIRIT-AI (Standard Protocol Items: Recommendations for 
Interventional Trials-Artificial Intelligence) (Cruz Rivera et  al., 
2020a,b), CONSORT-AI (Consolidated Standards of Reporting Trials-
Artificial Intelligence) (Liu et al., 2020a,b) were initiated to name a 
few. In addition, FAIR guiding principles for research software 
(Findable, Accessible, Interoperable, Reusable) were introduced in 
2022 (Barker et al., 2022; Loftus et al., 2022). This marked a significant 
milestone for the research community, acknowledging the growing 
importance of research software globally. These principles also 
established guidelines outlining minimum requirements for reporting 
algorithms in healthcare, emphasizing qualities such as explainability, 
dynamism, precision, autonomy, fairness, and reproducibility (Loftus 
et al., 2022).

Finally, good data management is the key leading to knowledge 
discovery and innovation, data integration and reuse by the 
community after the publication process. FAIR guiding principles for 
scientific data management (Wilkinson et  al., 2016) put specific 
emphasis on enhancing the ability of machines to automatically use 
the data and support its reuse by the community to maximize the 
added value. These principles also take into consideration sharing 
conditional on privacy considerations (GDPR), claims of proprietary 
control, practical constraints, access privileges, and the quality of 
accompanying metadata (Boeckhout et al., 2018).

Recently, two larger scale reports were published describing fecal 
microbiome-based machine learning for multi-class disease diagnosis 

(Gupta et  al., 2020; Su et  al., 2022) utilizing species-level gut 
microbiome information layer derived metagenomics sequencing 
runs. Detecting early signs of disease before specific diagnostic 
symptoms appear is crucial, particularly using biological samples that 
allow detailed characterization and can be collected noninvasively and 
regularly. This presents a promising opportunity for developing 
straightforward prescreening tests to aid both doctors and individuals 
in decision-making. However, these connections between human 
health and the accompanying microbiome must be based on real-
world conditions observed in the population, ensuring reliability and 
robustness across various human subjects, conditions, 
sub-populations, and other factors.

In addition to scientific research, also the industry for (human) 
microbiome-targeted products is faced with several challenges related 
to reproducibility and scientific rigor, which can impact the reliability 
and validity of research findings and the development of microbiome-
based products. The primary challenges in microbiome research 
include the absence of standardized methods and protocols for sample 
collection, processing, sequencing, and data analysis. Variability in 
samples affected by host genetics, environmental factors, diet, lifestyle, 
and other confounding factors all add to complexity. Additionally, 
limited data sharing and transparency, including controlled access to 
organized raw data, metadata, and analysis pipelines with respective 
hyperparameters hinder independent validation of results and the 
advancement of scientific rigor in this field (Pray et al., 2013; Sinha 
et al., 2015; Ma et al., 2018; D’Elia et al., 2023; Ruxton et al., 2023).

Broad data sharing policies now enforce the repurposing of 
existing data from published studies. This serves as real-world data for 
discovering widely applicable principles and methodologies, 
generating hypotheses, and validating results. By integrating diverse 
large datasets from thousands of participants across numerous 
countries, this approach offers a holistic view at a scale that surpasses 
single publication datasets.

Existing methods are designed based on the strong assumption 
that the data with sufficient sample size and accurate and detailed 
metadata information is available to design groups or train models. 
The current metadata of a considerable number of sequencing samples 
is incomplete, misleading, or not publicly available (Kumar et  al., 
2024), which may lead to these methods being infeasible or causing 
bias in biomarker inference. Moreover, their intrinsic design in using 
known phenotype information makes them incapable of revealing 
new subtypes or stages of diseases (Liu et al., 2022). The taxonomic 
analysis alone may induce spurious biomarkers since diverse microbial 
communities from different patients can perform remarkably similar 
functional capabilities as shown before.

Identification of biomarkers at the level of taxonomy although 
utilizing species information does not make use of all other layers of 
information derived from metagenomics, namely alpha diversity, 
functional genes, enzymatic reactions, metabolic pathways, 
metabolites that hence remain unexplored. In addition, the gap 
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between analyses of data using various generations of the same 
software remains underappreciated source of additional error, as 
textual information remains cited throughout the published literature 
while the underlying data re-analyses utilizing different versions of 
software and underlying databases may support advanced conclusions. 
Finally, the overall complexity of programs and the supporting 
databases constitutes another barrier for their deployment on high 
performance computing (HPC) or cloud computing. To fill this gap, 
we provide advances on many fronts, by (i) building a reproducible, 
stable, HPC ready, singularity image integrating the necessary plethora 
of heavy duty tools from bioBakery, mothur and MelonPann origin 
(Schloss et al., 2009; Segata et al., 2012; Truong et al., 2015; Pasolli 
et al., 2017; Franzosa et al., 2018; McIver et al., 2018; Mallick et al., 
2019; Schloss, 2020; Beghini et al., 2021), (ii) analyzing previously 
utilized datasets (Gupta et  al., 2020) in conjunction with not yet 
integrated datasets of clinical relevance (Youngblut and Ley, 2021), 
(iii) extending the analyses to novel layers of information (functional 
genes, enzymatic reactions, metabolic pathways, metabolites), (iv) 
assembling metadata from various studies, and (v) organizing the data 
into a complete machine learning dataset amenable for 70% of data 
for training and unseen 30% for validation. Finally, (vi) the meta 
integration of bioBakery v2, v3 and v4 versions of workflows of 
original publications enables anyone to back-map the mismatch 
between the original publications and advancement of algorithms and 
databases. In total, 4,976 publicly available samples pooled across 
multiple studies exploring 17 disease types in relation to healthy 
cohorts reported from 15 countries before, were analyzed. The wealth 
of data, rigorous analytical approach in data deconvolution and ML 
provide significant novel insight and actionable models for recognition 
of medical conditions over a large international dataset.

2 Materials and methods

2.1 Multi-study integration of human gut 
metagenomes

Data collection was commenced as described and detailed before 
(Gupta et  al., 2020; Supplementary Table S1). In short, published 
studies with publicly available WGS metagenome data of human stool 
(gut microbiome) and corresponding subject metadata were included. 
Also, where multiple samples were taken per individual across 
different time-points only the baseline first or so-called baseline 
samples reported in the original study were utilized. To keep up with 
the same stringency as in the original study, studies reporting on diet 
or medical interventions or children (<10 years of age) were excluded, 
in addition to samples collected from disease controls but not marked 
as healthy or without diagnose assignment in the original study. The 
primary criteria for data selection included the number of samples, 
comparable sequencing depth, the quality of QC-ed sequences, and 
availability of corresponding metadata.

Metadata were synchronized for Healthy group across complete 
dataset with respect to their BMI and assigned the following 
categories, irrespective of their initial classification in the original 
studies: underweight (BMI < 18.5), overweight (BMI ≥ 25 and < 30), or 
obese (BMI ≥ 30). Consequently, stool metagenome data were 
renamed as underweight, overweight, or obese in our analysis. In 
addition, the .fastq files from the following additional projects were 

included: (i) a subset of the Flemish Gut Flora Project dataset was 
acquired to explore the efficiency of fecal microbiome data layers in 
classification of depression based on fecal metagenomic data and 
metadata (age, sex, BMI, BSS, RAND) of 150 subjects (M  = 50, 
SD = 12,96, 38% male) – 80 with depression and 70 healthy controls 
(Valles-Colomer et  al., 2019); (ii) samples of the PreTerm project 
(n = 24) (Deutsch et al., 2022a); (iii) samples of the PlanHab project 
(n = 54) (Šket et al., 2017a,b, 2018, 2020); and (iv) 22 wildcard users 
(volunteers providing their own .fastq files and necessary metadata; 
utilized for validation).

Raw sequence files (.fastq files) were downloaded from the EBI 
(European bioinformatics Institute) next to NCBI Sequence Read 
Archive and European Nucleotide Archive databases (Gupta et al., 
2020) (Supplementary Table S1). Flemish Gut Flora Project data were 
requested from the Lifelines cohort study1 following the prescribed 
standard protocol for data access. Shotgun sequencing data and 
metadata are available at the EGA (accession no. EGAS00001003298). 
Subsequent requests for access to data need to be directed to Flemish 
Gut Flora consortium.

2.2 Sequence data analysis

All datasets were preprocessed utilizing Slovenian HPC cluster 
SLING/VEGA infrastructure2, 3 (accessed 28.2.2024) and Austrian 
HPC MACH24 (accessed 28.2.2024.) running Singularity-integrated 
MetaBakery V3. In total, 1.5 million CPU-hours were utilized to 
perform quality trimming and deconvolute the sequence information 
into taxonomy, diversity, functional gene, enzymatic reaction and 
metabolic pathway data layers next to relaxation network predicted 
metabolites (Figure 1).

In this study we prepared MetaBakery5, 6 as a skeleton application 
for a synergistic execution of the bioBakery worklow of programs 
(McIver et al., 2018)7 along with their supporting utilities. Arbitrary 
number of paired or unpaired fastq files or intermixed serves as input 
for MetaBakery, either uncompressed or compressed (gzip, zip, bzip2, 
xz, or mixed) within a single MetaBakery run. The fastq inputs are 
preprocessed using the KneadData8 or skipped for already 
preprocessed data. The inputs are then subjected to the main analyzing 
programs: MetaPhlAn (Truong et  al., 2015; Blanco-Míguez et  al., 
2023), HUMAnN (Beghini et al., 2021) and StrainPhlAn (Truong 
et al., 2015; Beghini et al., 2021) along with their supporting utilities 
(count feature, regroup table, renorm table and join tables). The 
original bioBakery functionality was enriched by the integration of 
MelonnPan (Mallick et  al., 2019) for metabolite prediction and 
Mothur (Schloss et  al., 2009) for calculation of microbial alpha 
diversity. The entire pipeline is executed in a nearly single-click way 
once input files are put in a directory; a config file may optionally 

1 https://lifelines.nl/lifelines-research/access-to-lifelines

2 https://en-vegadocs.vega.izum.si/

3 https://www.sling.si/en/sling-2/

4 https://www.uibk.ac.at/zid/systeme/hpc-systeme/mach2/

5 http://metabakery.fe.uni-lj.si

6 http://metabakery.fe.uni-lj.si/metabakery_manual.pdf

7 https://huttenhower.sph.harvard.edu/biobakery_workflows/

8 https://github.com/bioBakery/kneaddata
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be specified to tailor the execution. The pipeline automatically inspects 
the computer’s configuration to tune for an efficient execution 
(Supplementary Figure S1).

The skeleton application within MetaBakery is written in the 
Python 3 programming language and consists of more than twenty 
thousand lines of Python code, as well as some utilities written in the 
C++ programming language for increased efficiency. To achieve 
efficient running of a number of interdependent programs, an entirely 
new underlying framework called ExeFlow was developed building 
from the GUMPP skeleton application (Murovec et  al., 2021). To 
enable its direct adoption for large HPC clusters MetaBakery was 
packed as Singularity container (Kurtzer et al., 2017; Sochat, 2017; 
Sochat et  al., 2017) to integrate and preconfigure all embedded 
programs along with their and our own supporting utilities and the 
relevant databases (Table 1).

Singularity technology was shown to be  far better suited for 
running on high-performance computing facilities compared to other 
container technologies, like, e.g., Docker (Dirk, 2014) in addition to 
the fact that it is often the only supported container technology on 
such large systems.

In addition to improved usability and performance, 
MetaBakery offers additional benefits (Supplementary Figure S2). 
The results of all intermediate steps are stored in a specially crafted 
repository (on a local disk), where each result is associated with its 
full context, which includes the results of its predecessors and the 
full set of relevant parameters. On one hand, this enables crash 
recovery and prompt continuation of processing in the case of a 
workflow termination (operating system crash, power failure, full 

hard disk); this feature is offered by the bioBakery (Beghini et al., 
2021) workflows as well. In addition, MetaBakery enables efficient 
re-execution of the workflow with different parameters and/or 
extended or reduced input data sets. Upon MetaBakery’s 
re-execution, the available results from an arbitrary number of 
previous runs are instantly retrieved from the repository. Only new 
steps are subjected to actual processing. This system opens up the 
possibility to efficiently experiment with modified parameters or 
input datasets to observe their effects on the final results. Reuse of 
the past results is completely automatic and transparent. For 
example, if after a complete MetaBakery’s run, a user inspects the 
results and wants to alter some parameters of the HUMAnN step, 
then results of previous KneadData, MetaPhlAn and StrainPhlAn 
runs are instantly retrieved from the repository. This does not hold 
only for the next-to-the-last run, but for an arbitrary number of 
past runs. In a similar way, subsets of inputs (paired-end or 
single-end fastq files) may be freely added or removed between 
different MetaBakery runs, and only the affected processing steps 
are recalculated.

MetaBakery also provides a crucial feature for processing large 
human, non-human or environmental metagenomics projects 
(consisting of hundreds of fastq files or more). Such datasets can 
only be  processed in a reasonable amount of time on HPC 
platforms. However, HPC policies often prohibit, or at least 
penalize tasks with long wall times required to process such large 
input sets. To alleviate this difficulty, MetaBakery provides the 
ability to split an input dataset into an arbitrary number of subsets 
(by means of grouping files, not by splitting individual fastq files). 

FIGURE 1

Basic schematic representation of the MetaBakery approach. Highlights: all integrated programs and databases are fully preconfigured; external 
databases may be used instead of the built-in ones; efficient utilization of computing resources; suitable for autonomous and batch execution; suitable 
for High-Performance Computing facilities; automatic crash recovery; possibility of splitting large datasets into manageable chunks and processing 
them separately [on different computers and/or high performance computing (HPC) systems]; transparent handling of paired and unpaired reads 
(possibly intermixed); transparent handling of major compression formats (.gz, .zip, .bz2, .xz), possibly intermixed; automatic handling of command-
line parameters for included programs; experienced users can prescribe custom parameters; efficient restarts with changed parameters and input sets; 
complete screen and configuration dumping for easy documentation; easy access to command lines, exit codes and messages of programs; versions 
V4, V3 and V2 of bioBakery programs; only meaningful output files are presented to a user.
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The only restriction is that in the case of paired reads, the 
associated R1.fastq and R2.fastq files remain in the same subset. In 
the extreme case, each subset may consist of only a single unpaired 
fastq file or a single R1_R2 fastq pair. These subsets can 
be processed separately on different computers or HPC nodes, even 
in different parts of the world. The collected partial results can 
be  subjected to MetaBakery by activating its special mode of 
operation, in which the final results are reconstructed from the 
partial ones as if the entire input set had been processed in a single 
MetaBakery run. The reconstruction consists of all post-processing 
steps, such us: count feature, regroup table, renorm table and join 
tables, as well as extended features like Mothur calculations and 
prediction of metabolites with MelonnPan. In addition to 
bioBakery enabled databases, a custom built STRUO2 database 
(Youngblut and Ley, 2021) can be  utilized as an external 
component metaBakery.

MetaBakery is offered in three editions. The first edition 
contains version 4 of the BioBakery programs (MetaPhlAn 4, 
HUMAnN 3.6 – to be  replaced by version 4 when available, 
StrainPhlAn 4, along with associated utilities and appropriate 
databases). The second edition contains version 3 of the BioBakery 
programs (MetaPhlAn 3, HUMAnN 3, StrainPhlAn 3, with 
appropriate utilities and databases) (Suzek et al. 2007, 2015). The 
third edition consists of version 2 of the BioBakery programs 
(MetaPhlAn V2.7.7, HUMAnN 2.8.1, StrainPhlAn 1.2.0, together 
with the associated utilities and databases).

In summary, MetaBakery is suitable for standalone execution 
on both commodity hardware and high-performance computing 
facilities. All command-line parameters and intermediate file 
formats are handled automatically by the system, so the end user 
does not have to deal with these technical details. Nevertheless, 
experienced users can, if they wish, specify their own parameters 
for each included program to fine-tune its execution. To facilitate 

documentation of analyses and subsequent review of executions, 
MetaBakery stores an exact verbatim copy of its screen output as 
part of a final report. In addition, the actual command lines, 
standard output streams (stdout), standard error streams (stderr), 
and exit codes for each program are stored hierarchically on a disk 
for ease of navigation, review and debugging. The analysis setup is 
assisted by optional configuration files, where a complete workflow 
configuration is prescribed, which also aids in documenting a 
particular run. All features and mentioned use cases are explained 
in a user-friendly MetaBakery Users’ Manual9 and configuration 
file template.10 MetaBakery highlights are summarized in Table 2.

The following additional decision steps were taken in analogy 
with Gupta et al. (2020) when processing datasets with MetaBakery: 
(i) potential human contamination was filtered by removing reads 
that aligned to the human genome (reference genome hg19), in 
addition to repetitive elements; (ii) stool metagenome samples of 
low read count after quality filtration (<1 M reads) were excluded 
from our analysis; (iii) the alpha diversity estimates (n = 35) were 
calculated from biome formatted taxonomy profiles in mothur 
(Schloss et  al., 2009). As a result of all the extended additions, 
MetaBakery acts as re-implementation of the BioBakery workflow 
(https://huttenhower.sph.harvard.edu/biobakery_workflows/) 
integrating three versions of tools (V2, V3 and V4) to deliver 
various microbiome layers of information: (i) taxonomy (Bacteria, 
Archaea, Fungi, Protozoa, and Viruses), (ii) alpha diversity 
estimates; (iii) functional genes, (iv) enzymatic reactions, (v) 
metabolic pathways, and (vi) predicted metabolites, that are 
utilized next to subject (patient or healthy) metadata.

9 http://metabakery.fe.uni-lj.si/metabakery_manual.pdf

10 http://metabakery.fe.uni-lj.si/config_template.txt

TABLE 1 MetaBakery ingredients by its edition enabling comparison of results obtained from various versions of the same utilities.

MetaBakery V2 MetaBakery V3 MetaBakery V4

Program databases

KneadData 0.12 KneadData 0.12 KneadData 0.12

human_hg38_RefMrna (default) human_hg38_RefMrna (default) human_hg38_RefMrna (default)

hg37dec_v0.1 (default) hg37dec_v0.1 (default) hg37dec_v0.1 (default)

mouse_C57BL_6NJ mouse_C57BL_6NJ mouse_C57BL_6NJ

SILVA_128_LSUParc_SSUParc_

ribosomal_RNA

SILVA_128_LSUParc_SSUParc_ribosomal_

RNA

SILVA_128_LSUParc_SSUParc_ribosomal_

RNA

Program database

MetaPhlAn 2.7.7 MetaPhlAn 3.1 MetaPhlAn 4.0.6

v20_m200 v31_CHOCOPhlAn_201901 vJan21_CHOCOPhlAnSGB 202,103

Program databases

HUMAnN 2.8.1 HUMAnN 3.1.1 HUMAnN 3.6.1

CHOCOPhlAn 0.1.1 CHOCOPhlAn 201901b CHOCOPhlAn_201901_v31

UniRef90 1.1 (both, full and EC 

filtered)

UniRef90 201901b (both, full and EC 

filtered) UniRef90 201901b (both, full and EC filtered)

UniRef50 1.1 (both, full and EC 

filtered)

UniRef50 201901b (both, full and EC 

filtered) UniRef50 201901b (both, full and EC filtered)

Program StrainPhlAn 1.2.0 StrainPhlAn 3.1.0 StrainPhlAn 4.0.6

Program MelonnPan MelonnPan MelonnPan

Program Mothur 1.46.1 Mothur 1.46.1 Mothur 1.46.1
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2.3 Data content

The entire pipeline was used on two different datasets focusing on 
human microbiome studies: (i) smaller dataset [depression data; 
[(Valles-Colomer et  al., 2019); accession no. EGAS00001003298] 
consisting of n = 80 samples from patients with depression and n = 70 
healthy controls] and (ii) larger dataset (n = 4,976 samples - healthy 
controls and patients with different diseases such as ACVD, ankylosing 
spondylitis, colorectal adenoma, colorectal cancer, Crohn’s disease, 
impaired glucose tolerance, IBD, obesity, liver cirrhisos, NAFLD, 
overweight, rheumatoid arthiritis, type 2 diabetes, symptomatic 
atherosclerosis, ulcerative colitis and underweight) (Gupta et al., 2020; 
Deutsch et al., 2022a). Both datasets were previously published in 
scientific journals to ensure the comparability and efficiency of the 
MetaBakery tool.

In total, 4,976 samples were processed in this study within 1.5 mio 
CPU-hours at SLING/VEGA HPC cluster11 (accessed 28.2.2024).

The resulting six data matrices (taxonomy, diversity, functional 
genes, enzymatic reactions, metabolic pathways and predicted 
metabolites) were matched with the corresponding human subject 
metadata matrix and prepared for subsequent machine learning step.

The analyses were run on complete data. Sequences for 4,976 
individuals with different diseases and healthy cohorts as control 
group were downloaded. Bioinformatics was completed with our 
Singularity implemented pipeline and produced the following 
information tables: (i) taxonomy table (2,408 variables, file size 0.03 
Gb); (ii) gene families (11,451,445 variables, file size 134 Gb); (iii) 
enzymatic reactions (622,447 variables, file size 8 Gb); (iv) metabolic 
pathways (47,536 variables, file size 0.6 Gb); (v) predicted 
metabolites (80 variables, 0.008 Gb); (vi) diversity estimates (35 
variables, file size 0.005 Gb); (vii) participant metadata (10 variables, 
0.003 Gb).

11 https://en-vegadocs.vega.izum.si/

The compilation of all these variables for almost 5,000 samples 
produced a matrix with 13 million rows, exhibiting all of the 
characteristics of microbiome data (Marcos-Zambrano et al., 2021, 2023; 
Moreno-Indias et al., 2021; Ibrahimi et al., 2023; Papoutsoglou et al., 
2023). Contrary to previous approaches (Gupta et al., 2020; Su et al., 
2022) that involved significant data reduction steps using arbitrary 
assumptions (i.e., average OTU abundance <0.15, prevalence >5%) 
we did not involve such steps as there is no previous guidance on how to 
set the values in other information layers (diversity, functional gene, 
enzymatic reactions, metabolic pathways, predicted metabolites) or 
whether the same settings are transferable between information layers or 
which variables represent noise within or between multiclass categories.

Benjamini–Hochberg correction was used to control for multiple 
testing, and results were considered significant at false discovery rate 
(FDR) < 0.05 as described before in our past studies (Šket et  al., 
2017a,b, 2018, 2020; Murovec et al., 2020, 2021; Deutsch et al., 2021, 
2022a,b; Deutsch and Stres, 2021).

2.4 Machine learning

Automated machine learning, Just Add Data Bio (JADBio), an 
Amazon cloud based machine learning platform for analyzing 
potential biomarkers (Tsamardinos et al., 2022), was used to search for 
biomarkers on both datasets. The JADBIO platform was developed for 
predictive modeling and providing high-quality predictive models for 
diagnostics using state-of-the-art statistical and machine learning 
methods. Personal analytic biases and methodological statistical 
errors were eliminated from the analysis by autonomously exploring 
different settings in the modeling steps, resulting in more convincing 
discovered features to distinguish between different groups. JADBIO 
with extensive tuning effort and six CPUs was used to model different 
dataset choices in addition to the features observed in samples of all 
groups from different projects by splitting the total data into a training 
set and a test set in a 70:30 ratio. The training set was used to train the 
model and the test set was used to evaluate the model (Deutsch et al., 
2022a). The modeling step was evaluated using 12 different 
performance metrics (AUC, mean average precision, accuracy, F1 
score, Matthews correlation, precision, true-positive rate, specificity, 
true-positive, true-negative, false-positive, and false-negative). In all 
cases, 10-fold cross-validation without drop (with a maximum of 20 
repeats) was performed. 1,000–3,000 different model configurations 
(with different feature selection and predictive algorithms with 
different hyperparameters) were used and up to 100,000 different 
models were trained per each of the six datasets. The largest dataset 
representing the gene family data set was reduced to obtain rows with 
less than 25% zeros per row.

3 Results and discussion

3.1 MetaBakery development, streamlining 
and large-scale utilization

MetaBakery represents an integrated ready-made system that 
shortcuts the nontrivial need for technical details of installing and 
configuring the included programs, libraries and databases. 
Nevertheless, the high level of flexibility is retained as the integrated 

TABLE 2 MetaBakery highlights.

All integrated programs and databases are fully preconfigured.

External databases may be used instead of the built-in ones (not for V2).

Efficient utilization of computing resources.

Suitable for autonomous and batch execution.

Suitable for High-Performance Computing (HPC) facilities.

Automatic crash recovery.

Possibility of splitting large datasets into manageable chunks and

processing them separately (possibly on different computers and/or HPC systems).

Transparent handling of paired and unpaired reads (possibly intermixed).

Transparent handling of major compression formats (gz, zip, bz2, xz),

possibly intermixed.

Automatic handling of programs’ command-line parameters.

Experienced users can prescribe custom parameters.

Efficient restarts with changed parameters and input sets.

Complete screen and configuration dumping for easy documentation.

Easy access to command lines, exit codes and messages of programs.

V4, V3 and V2 versions of BioBakery programs.

Only meaningful output files are presented to a user.
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databases can be freely substituted by advanced users, amended with 
configuration setting options available to them12, 13 (Schloss et al., 
2009; Segata et  al., 2012; Truong et  al., 2015; Pasolli et  al., 2017; 
Franzosa et al., 2018; McIver et al., 2018; Mallick et al., 2019; Schloss, 
2020; Beghini et al., 2021).

The pipeline handles parallelism differently than the bioBakery as 
CPUs are always allocated to all running tasks guided by performance 
parameters (determined by empirical measurements in this study) 
that indicate the use of CPUs and disk by individual programs to 
execute as many tasks as possible in parallel without overloading the 
underlying hardware. Single-threaded or less efficiently parallelized 
programs no longer take up an entire group of CPUs for themselves, 
since they are executed evenly on all CPUs in parallel with other 
processing steps. Better resource utilization thus results from the 
simultaneous execution of multiple programs on the same set of CPUs 
which is of special importance when dealing with short HPC wall 
times. The built-in performance parameters are fully configurable 
although MetaBakery’s default settings were determined by empirical 
measurements on various pieces of hardware: (i) HPC nodes with 
varying numbers of CPUs from 256 down to 16, (ii) a desktop 
computer with dual XEON processor with 64 hyper-threaded 
processors, and (iii) less powerful desktop computers with 12 and 8 
CPUs. Hence, based on the test results our MetaBakery was 
programmed to tune itself to perform out-of-the-box on the entire 
hardware spectrum (Supplementary Figure S2).

12 http://metabakery.fe.uni-lj.si/metabakery_manual.pdf

13 http://metabakery.fe.uni-lj.si/config_template.txt

MetaBakery is offered in three editions. The first edition contains 
version 4 of the BioBakery programs (MetaPhlAn 4, HUMAnN 3.6 
– to be replaced by version 4 when available, StrainPhlAn 4, along 
with associated utilities and appropriate databases). The second 
edition contains version 3 of the BioBakery programs (MetaPhlAn 3, 
HUMAnN 3, StrainPhlAn 3, with appropriate utilities and databases). 
The third edition consists of version 2 of the BioBakery programs 
(MetaPhlAn V2.7.7, HUMAnN 2.8.1, StrainPhlAn 1.2.0, together 
with the associated utilities and databases).

3.2 Large scale computing results: 4976 
taxonomy layers

Our data integration resulted in utilization of 4,976 samples 
encompassing healthy and 16 disease states from 35 studies of 15 
countries. In our first data analysis we focused on delineation between 
the two groups, namely the healthy on one side and a group of disease 
states on the other. Overall taxonomy classification efficiency enabled 
us to build a relatively simple and effective model without any specific 
filtering as also deployed before in the past studies (Gupta et al., 2020) 
based on taxonomy information only. In essence, we were able to 
utilize taxonomy information to clearly separate healthy from the 
diseased states (Figure 2 and Supplementary Figure S3).

In our second analysis we  focused on multiclass problem of 
distinguishing various disease states among themselves. Classification 
models for many of the disease states based on taxonomy only 
utilizing rather modest numbers of samples also showed the clear 
need for larger cohorts on the one side, however clearly provided the 
necessary information that the signal can readily be detected in such 

FIGURE 2

(A) Receiver operating characteristic (ROC) curve (AUC  =  0.959) for class “Yes”  =  diseased. (B) Uniform manifold approximation and projection (UMAP) 
attempts to learn the high-dimensional manifold on which the original data lays, and then maps it down to two dimensions. UMAP plots provides a 
visual aid for assessing relationships among samples.
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small size data as well, guiding future larger-scale data integration 
(Figure 3).

Diversity metrics utilizing 35 indices were integrated as one of 
the outputs of the MetaBakery pipeline. For this purpose, the 
standard diversity calculators from Mothur (Schloss et al., 2009) 
were integrated into the MetaBakery pipeline, which combine the 
entire analytical concept of modern microbiology in one pipeline 
(Supplementary Figure S4), extending the so far amplicon centered 
approach to metagenomics in a streamlined way.

3.3 Large scale computing results: 
depression dataset

In our third analysis we focused on depression dataset, utilizing 
data integration of taxonomy, diversity, functional genes, enzymatic 
reactions, metabolic pathways and metabolites. Overall, variables were 
tested for information content that would separate healthy from the 
clinically depressed participants. We  took a two-step approach to 
model the depression data. In the first step, taxonomy data (852 
variables), gene family data (596,146 variables), enzymatic reactions 
(237,025 variables), metabolic pathways (14,525 variables), and 
predicted metabolites (80 variables) were modeled individually. In the 
second step, only the most important features were then modeled on 
the merged dataset (97 variables). In addition, taxonomy data from 3 
different MetaPhlAn versions were also modeled (MetaPhlAn 2.0–972 
variables, MetaPhlAn 3.0–859 variables, and MetaPhlAn 4.0–4,249 
variables) (Supplementary Table S2). A binary classification was used 
to distinguish between healthy and depressed individuals.

At the taxonomy level, 23 features (MetaBakery version 2.0), 22 
features (Metbakery version 3.0), and 25 features (Metbakery version 
4.0) were found to be the most significant in distinguishing depression 
patients from healthy individuals (Supplementary Figure S5). Because 
the AUC was highest in MetaBakery 3.0, the corresponding functional 
data were used to build more successful models at the functional 

fingerprint level (gene families, enzymatic reactions, metabolic 
pathways, predicted metabolites). Nine genes, 25 enzymatic reactions, 
16 metabolic pathways, and 25 predicted metabolites were discovered 
in each corresponding data set using JADBio ML 
(Supplementary Figure S6). In the last step, a subset of the significant 
features from the first step was used to improve the model. And the 
logistic ridge model with an AUC of 0.967 was constructed to 
distinguish patients with depression from healthy individuals 
(Figure 4).

4 Conclusion

In this study, we presented MetaBakery,14 an integrated application 
designed as a framework for synergistically executing the bioBakery 
workflow (Franzosa et al., 2018; McIver et al., 2018; Beghini et al., 
2021) and associated utilities. MetaBakery streamlines the processing 
of any number of paired or unpaired fastq files, or a mixture of both, 
with optional compression (gzip, zip, bzip2, xz, or mixed) within a 
single run. MetaBakery uses programs such as KneadData,15 
MetaPhlAn, HUMAnN and StrainPhlAn as well as integrated utilities 
and extends the original functionality of bioBakery. In particular, it 
includes MelonnPan for the prediction of metabolites and Mothur for 
calculation of microbial alpha diversity. Written in Python 3 and C++, 
this near single-click pipeline encapsulated as Singularity container 
leverages the ExeFlow framework for efficient execution on various 
computing infrastructures, including large High-Performance 
Computing (HPC) clusters. MetaBakery facilitates crash recovery, 
efficient re-execution upon parameter changes, and processing of large 
data sets through subset handling. MetaBakery is offered in three 

14 http://metabakery.fe.uni-lj.si

15 https://github.com/bioBakery/kneaddata

FIGURE 3

Representation of multiclass classification based on AUC curves utilizing taxonomy data layer only and different diseases. TPR, true positive rate; FPR, 
false positive rate.
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editions with bioBakery ingredients versions 4, 3 and 2. MetaBakery 
is versatile, transparent and well documented, with functions 
described in the MetaBakery Users’ Manual.16 It provides automatic 
handling of command line parameters, file formats and comprehensive 
hierarchical storage of output to simplify navigation and debugging. 
MetaBakery filters out potential human contamination and excludes 
samples with low read counts. It calculates estimates of alpha diversity 
and represents a comprehensive and augmented re-implementation 
of the bioBakery workflow. The robustness and flexibility of the system 
enables efficient exploration of changing parameters and input 
datasets, increasing its utility for microbiome analysis. Furthermore, 
we  have shown that MetaBakery tool can be  used in modern 
biostatistical and machine learning approaches including large-scale 
microbiome studies, potentially providing completely new insights 
into the microbial world.
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