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Introduction: The Brahmaputra, a major transboundary river of the Himalayas 
flowing predominantly through Northeast India, particularly Assam, is 
increasingly endangered by contamination due to rapid urbanization and 
anthropogenic pressures. These environmental changes pose significant risks 
at the microbial level, affecting nutrient cycling and productivity, and thereby 
impacting river ecosystem health. The next-generation sequencing technology 
using a metagenomics approach has revolutionized our understanding of the 
microbiome and its critical role in various aquatic environments.

Methods: The present study aimed to investigate the structure of the bacterial 
community and its functional potentials within the sediments of the Brahmaputra 
River, India, using high-throughput shotgun metagenomics. Additionally, this 
study sought to explore the presence of antimicrobial resistance genes in the 
river’s sediment.

Results and discussion: Shotgun metagenomics revealed a diverse bacterial 
community comprising 31 phyla, 52 classes, 291 families, 1,016 genera, and 
3,630 species. Dominant phyla included Pseudomonadota (62.47–83.48%), 
Actinobacteria (11.10–24.89%), Bacteroidetes (0.97–3.82%), Firmicutes (0.54–
3.94%), Cyanobacteria (0.14–1.70%), and Planctomycetes (0.30–0.78%). 
Functional profiling highlighted significant involvement in energy metabolism, 
amino acid and central carbon metabolism, stress response, and degradation 
pathways, emphasizing the microbial community’s role in ecosystem functioning 
and resilience. Notably, 50 types of antibiotic resistance genes (ARGs) were 
detected, with resistance profiles spanning multidrug, aminoglycoside, β-lactam, 
fluoroquinolone, rifampicin, sulfonamide, and tetracycline classes. Network analysis 
underscored the intricate relationships among ARG subtypes, suggesting potential 
mechanisms of resistance propagation. Furthermore, plasmid-related genes and 
185 virulence factor genes (VFGs) were identified, indicating additional layers of 
microbial adaptation and potential pathogenicity within the river sediments. This 
comprehensive microbial and functional profiling of the Brahmaputra’s sediment 
metagenome provides crucial insights into microbial diversity, resistance potential, 
and ecological functions, offering a foundation for informed management and 
mitigation strategies to preserve river health and mitigate pollution impacts.
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Introduction

The Himalayan Brahmaputra River is one of the world’s largest 
transboundary river systems, flowing through India (33.6%), China 
(50.5%), Bangladesh (8.1%), and Bhutan (7.8%) originating from the 
massive glacier mass in the southern Tibetan Kailash range (Singh 
et al., 2004). In India, the river flows for 916 km, entering through 
Northeast India. A major portion, approximately 640 km, flows 
through Assam, where the river gets the name Brahmaputra, flowing 
along the southern and northern banks (Datta and Singh, 2004). Large 
water volumes, considerable silt, rapid bed aggradations, continuous 
changes in channel morphology, and bank line erosion are some of the 
characteristics that define the mighty river (NDMA, 2012). The river 
is the fifth largest in terms of flow and serves as the primary water 
source for over 130 million people, providing essential space and 
resources (Mahanta et al., 2014; Ray et al., 2015). The river system is 
experiencing increased stress as a result of rapid industrialization and 
urbanization occurring in and around the river (Bhattacharjya et al., 
2017). The river flowing through urban areas are severely endangered 
and contaminated due to anthropogenic activities and inadequate 
waste management. In recent years, pollution levels in the 
Brahmaputra River have increased due to population growth and 
increased water utility demands. With an average annual discharge of 
591 km3/year, the river produces approximately 179 million liters of 
sewage per day. Between 2006 and 2019, water turbidity increased 
significantly, and microplastic pollution reached extremely high levels 
during 2018–2019. These trends signal serious concerns regarding the 
impacts of pollution on both the environment and human health 
(Bora and Goswami, 2017; Rakhecha, 2020; Barbulescu et al., 2021).

Microbes in river ecosystems are crucial for recycling nutrients, 
mineralizing organic matter, maintaining the ecosystem quality, 
facilitating energy flow in the food chain, degrading heavy metals, and 
many other beneficial properties (Findlay, 2010; Madsen, 2011; Liu 
et  al., 2012). River sediments are the primary site where both 
pollutants and microbes adhere and accumulate; hence, the 
abundance, diversity, and stability of microbes are greatly impacted by 
numerous anthropogenic pollutants that are present (Devarajan et al., 
2015; Saxena et  al., 2015; Beattie et  al., 2020). The impact of 
anthropogenic pollution on the microbial population composition can 
help predict the health and functionality of the ecosystem (Galand 
et  al., 2016; Santillan et  al., 2019). However, it is challenging to 
completely comprehend the structure, function, and interactions in 
such complex aquatic systems using culture-based techniques. 
Metagenomics has emerged as the ideal technique for the 
comprehensive study of the taxonomic and functional profile of 
microbial communities. Whole-genome metagenomic sequencing has 
revealed an understanding of the taxonomic diversity of freshwater 
and marine microbial species worldwide (Vogel et al., 2009; Toyama 
et al., 2016).

Metagenomics sequencing has emerged as a handy tool for 
exploring the antibiotic resistance profiles of microbes in the aquatic 
ecosystem (Xu et al., 2018; Li et al., 2020; Das et al., 2020). The aquatic 
environment represents a reservoir of resistance bacteria or antibiotic 

resistance genes (ARGs) that could be transmissible to animals and 
humans (Wang et al., 2020; Zhuang et al., 2021). Aquatic systems 
significantly impact the accumulation and spread of antibiotic 
resistance bacteria and ARGs in sediments and freshwater (Pham 
et al., 2018; Zhao et al., 2018). Mobile genetic elements (MGEs) such 
as plasmids, which function as a vector of ARG transfer and shape 
ARG patterns in microbial communities, mediate the horizontal gene 
transfer of ARGs (Zhang et al., 2011; Mencía-Ares et al., 2020). In 
recent years, the presence of antimicrobial resistance and ARGs has 
been reported in various aquatic ecosystems, posing a risk to human 
health (Taylor et  al., 2011; Reddy and Dubey, 2019). Similarly, 
virulence factor genes (VFGs) of pathogenic bacteria can 
be transferred to other bacteria through plasmids or phages, helping 
pathogens to cause infectious diseases (Wagner and Waldor, 2002; 
Chen et al., 2021; Kim et al., 2022). The metagenomics technique has 
advantages in exploring the presence of ARGs, MGEs, VFGs, and 
resistomes from various environments (Segata et al., 2012; Ma et al., 
2014; Bashiardes et al., 2016; Sukumar et al., 2016). The investigation 
of ARGs and VFGs in such environments helps to understand the 
possible human health risks associated with genes that exist in these 
environments and have the ability to spread to other regions.

Furthermore, metagenomics studies have facilitated researchers 
to identify many beneficial microbes in river sediment for 
bioremediation properties, plastic-degrading microbes, and classes of 
ARGs (Iyer and Damania, 2020; Cabral et al., 2019; Behera et al., 2021; 
Das et al., 2020). However, there has been limited exploration of the 
metagenomics of microbial communities, their functions, and 
potential ARGs in the Brahmaputra River, India. Therefore, the 
present research aimed to investigate the bacterial communities in the 
Brahmaputra River and explore the relationship between bacterial 
composition and their functional potential across different stretches 
by screening functional genes associated with ARGs. The study also 
explored MGEs, mainly plasmid-related genes and virulence factor 
genes (VFGs), derived from the sediment metagenome.

Materials and methods

Study area and collection of samples

Sediment samples were collected from six locations of the 
Brahmaputra River, India, covering the major landing centers of its 
upper (Sadiya and Dibrugarh), middle (Tezpur and Morigaon), and 
lower (Guwahati and Dhubri) stretches between September and 
October 2021 (Figure  1). The sampling locations were as follows: 
Sadiya (Code: BRS-1; 27° 49.14” N 95° 40.52″ E), Dibrugarh (Code: 
BRS-2; 27° 29.9” N 94° 54.13″ E), Tezpur (Code: BRS-3; 26° 36.58” N 
92° 47.27″ E), Morigaon (Code: BRS-4; 26° 17.20” N 92° 06.40″ E), 
Guwahati (Code: BRS-5; 26° 11.43” N 91° 45.20″ E), and Dhubri 
(Code: BRS-6; 26°1.20” N 89° 59.41″ E). At each sampling location, 
sediment samples were collected from five distinct points at a depth 
of 15–20 cm, resulting in a single composite sample of approximately 
500 g. This approach aimed to accurately represent the microbial 
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diversity present at each specific sampling location. The samples were 
transported in sterile containers within an icebox and stored at −80°C 
for further laboratory analysis.

Physicochemical parameters analysis

Water samples were collected from all six sampling sites of the 
Brahmaputra River using clean 1,000 ml polypropylene bottles for the 
determination of various physicochemical parameters. The river water 
samples were analyzed for temperature (°C), dissolved oxygen (DO), 
pH, total dissolved solids (TDS), salinity (%), specific conductivity (μS/
cm), biological oxygen demand (BOD), and chemical oxygen demand 
(COD) as per the standard methods of American Public Health 
Association (APHA) (APHA AWWA WEF, 2012). To collect sediment 
samples, an Ekman dredger was used. Three samples were collected 
from each sampling site. To obtain uniform composite samples, the 
residue was mixed thoroughly. The samples were transported in plastic 
pouch bags to the laboratory for further examination. The sediment 
samples were analyzed as per APHA standard methods for texture, pH, 
specific conductivity, organic carbon, available phosphate, and total 
nitrogen (APHA AWWA WEF, 2012). For heavy metal analysis, the 
sediment samples were preserved with concentrated HNO3 and 

analyzed using inductively coupled plasma mass spectrometry 
(ICP-MS) (NexION 1,000, PerkinElmer, Waltham, United States).

Extraction of DNA and high-throughput 
sequencing

Total genomic DNA was isolated separately from six sediment 
samples using Power soil DNA isolation kits (Qiagen, Germany) as 
per the manufacturer’s protocol. The purity and integrity of isolated 
DNA were assessed using agarose gel electrophoresis (0.8%) and by 
absorbance (260/280 ratio) in a Nanodrop-2000 spectrophotometer 
(Thermo Scientific, Burladingen, Germany). Six DNA libraries, each 
representing a different sampling location, were prepared using the 
Truseq Nano library preparation kit (Illumina #20015964). The 
libraries were quantified using a Qubit fluorometer (Thermofisher, 
Life Technologies, CA, United  States) and a DNA HS assay kit 
(Thermofisher #Q32851, United States), following the manufacturer’s 
protocol. The insert size of each library was estimated using 
Tapestation 4150 (Agilent, Waldbronn, Germany) (Agilent # 5067-
5582) according to the manufacturer’s protocol. Subsequently, the 
libraries were indexed using barcodes and sequenced using the 
Illumina NovaSeq 6,000 platform to generate paired-end reads.

FIGURE 1

Map showing sampling sites of Brahmaputra River, India.
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Data submission

The raw metagenomic sequence data, generated in the study was 
submitted to the National Center for Biotechnology Information 
(NCBI) Sequence Read Archive (SRA) with BioProject identification 
number PRJNA944918. Each sediment metagenome BRS (1–6) can 
be  assessed through SRA accession numbers (SAMN33764823, 
SAMN33764824, SAMN33764825, SAMN33764826, SAMN33764827, 
and SAMN33849149), respectively.

Sequence analysis and taxonomical 
binning

The sequence reads underwent preprocessing to remove the 
adaptors, poor-quality bases (quality value [QV] < 20 Phred score), 
and short reads using the fastP tool (version 0.23.2) (Chen et al., 
2018). Later, the high-quality reads were assembled using MEGAHIT 
version 1.2.9 (Li et al., 2015) for de novo metagenome assembly. The 
resulting assembled contigs were subjected to the taxonomic 
assignment using the Kraken2 tool (version 2.1.1) with background 
database prebuilt reference sequence (RefSeq) indices: PlusPF (version 
2022.06.07). Kraken2 assigns the taxonomic labels to the contigs on 
their k-mer content, comparing them to the reference genome 
sequences. The Kraken-mpa-report tools (version 1.2.4) were utilized 
to summarize read counts across taxonomic ranks for multiple 
samples (Wood and Salzberg, 2014).

Functional annotation

The bioinformatics database Kyoto Encyclopedia of Genes and 
Genomes (KEGG) was used to annotate and interpret functional 
genes and metabolic pathways in metagenomic data using best hit 
with a known reference sequence (Kanehisa et al., 2017). With over 
13,000 nodes, the KEGG classification is represented as a rooted 
tree—the leaves of which stand for several roots. Clusters of 
Orthologous Groups (COG) uses orthology to categorize proteins into 
functional groups, which helps with metagenomic investigations’ 
functional annotation of genes. The SEED database facilitates the 
discovery of metabolic pathways and functional potential in 
metagenomic datasets by offering functional annotations and 
subsystem classifications for microbial genomes. The analysis has been 
carried out using MEGAN 6 (Huson et al., 2007).

Detection of ARGs, MGEs-plasmid type, 
and VFGs from sediment metagenome of 
Brahmaputra River

The tool Abricate (version 1.0.1) (https://github.com/tseemann/
abricate) was used to detect antibiotic resistance genes (ARGs), MGEs-
plasmid type, and virulence factor genes (VFGs) in the metagenome 
by mass screening the assembled contigs against the Comprehensive 
Antibiotic Resistance Database (CARD) with minimum DNA 
percentage identity and percentage coverage of 80 and 70, respectively, 
for ARGs, PlasmidFinder (Carattoli et al., 2014) for MGEs-plasmid 
type and the virulence factor database (VFDB) for VFGs. For ARGs 

heatmap generation, the R ggplot2 package was used (Wickham, 2009). 
The input values for the heatmap were derived from antibiotic 
resistance genes (ARGs) identified using the ABRicate tool with the 
CARD. For each sample, we considered the top percentage identity 
value for each detected ARG. This means that the highest percentage 
identity match between the sample and the reference gene in the CARD 
database was used as the input for the heatmap. The color scale 
represents percentage identity values, ranging from green (lower 
identity) to red (higher identity), highlighting the strength of the match 
for each gene. This approach allows clear visualization of the strongest 
matches for each ARG in the different sample groups Brahmaputra 
River station 1 to station 6 based on their top percentage identity.

Statistical analysis

The difference in bacterial composition between samples was 
calculated using principal component analysis (PCA). The diversity 
indices (Fisher, Simpson, Chao1, and Shannon) were used to calculate 
the α-diversity across all the samples. The variation in species between 
bacterial composition was calculated using β-diversity indices. The 
multivariate statistical tool canonical correspondence analysis (CCA) 
was used to quantify the relationship between the relative abundance 
of microbes with water and sediment parameters. The pattern of 
co-occurrence among ARG subtypes was investigated using a network 
inference approach based on strong correlations (ρ > 0.8) and high 
statistical significance (p < 0.01), following the methodology outlined 
by Junker and Schreiber (2008).

Results

Metagenomics sequencing and assembly

The number of reads varied from 31.28 million (BRS-2; an upper 
stretch of the river) to 80.53 million (BRS-4; a middle stretch of the 
river), with an average read of 54.98 million reads per sample. The 
maximum number of scaffolds was found in BRS-6, and the minimum 
number in BRS-2. The high-quality reads (30 > Q) were assembled into 
contigs, and a total of 0.37 million contigs were generated, including 
all samples. The minimum and maximum lengths of the contig are 200 
and 123,389, respectively, with a mean value of 61,397 (Table 1).

Microbial community structure, diversity, 
and richness

The number of taxon abundance values varied from 2,451(BRS-3) 
to 3,148 (BRS-1) with a mean value of 2,744. Of these, 1,841 taxon 
abundance values were found to be common among all the samples. A 
large number of unique taxon abundance values were observed in the 
sample BRS-1 (186 numbers), followed by BRS-6 (79 numbers), BRS-3 
(37 numbers), BRS-5 (30 numbers), BRS-4 (26 numbers), and BRS-2 (22 
numbers), respectively (Figure 2). Accordingly, the Shannon’s H index 
was relatively high in BRS-1 (upper stretch) followed by BRS-6 (lower 
stretch of the river). The non-parametric diversity indices, that is, Fisher’s 
α and Chao1, were found maximum in the origin of the upper stretch of 
the river (BRS-1) and lowest in the middle stretch (BRS-3) (Table 2; 
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Figure  3). Taxonomic cluster analysis showed the similarities in 
microbial communities among the sampling sites. BRS-1 and BRS-6 
clusters under the same clade show similar groups of microbes than the 
other clade formed by BRS-2, BRS-3, BRS-4, and BRS-5 (Figure 4).

Comparison of microbial community 
across the samples

Among the microbial communities, the bacterial population 
dominates, contributing 99.22%, followed by archaea (0.40%), 

eukaryota (0.35%), and viruses (0.02%), respectively. A total of 31 
phyla of bacteria dominated by Pseudomonadota, Actinobacteria, 
Bacteroidetes, Firmicutes, Cyanobacteria, and Planctomycetes were 
observed in all the samples. The relative abundance of the phyla varied 
from 62.47 to 83.48% (Pseudomonadota), 11.10 to 24.89% 
(Actinobacteria), 0.97 to 3.82% (Bacteroidetes), 0.54 to 3.94% 
(Firmicutes), 0.14 to 1.70% (Cyanobacteria), and 0.30 to 0.78% 
(Planctomycetes) across the samples (Figure  3). In Archaea, 
Euryarchaeota (from 91.68 to 97.05%) dominates, followed by 
Thaumarchaeota (from 0.59 to 5.91%) and Crenarchaeota (from 2.36 
to 5.05%), respectively (Figure 5A). At the class level, the five bacterial 

TABLE 1 Summary of sequence assembly statistics.

Parameters BRS-1 BRS-2 BRS-3 BRS-4 BRS-5 BRS-6

Number of reads 45,094,339 31,286,856 42,980,657 80,530,119 49,806,226 80,221,151

Number of contigs 314,441 153,185 327,294 209,498 213,305 416,350

Contig length (minimum) 200 200 200 206 200 200

Contig length (maximum) 71,416 39,539 37,234 35,363 123,389 61,444

N50 652 786 818 790 887 687

N90 520 531 533 532 537 524

Overall GC content (guanine-cytosine content) 59.62 61 63.71 62.98 60.2 61.02

Genome fraction (%) 13.391 39.504 13.028 20.952 26.544 7.837

FIGURE 2

Venn diagram showing unique microbes in the six sampling sites. Different colors indicate different sampling sites; light brown color indicates BRS-1; 
light green color indicates BRS-2; light blue indicates BRS-3; dark green indicates BRS-4; dark blue indicates BRS-5; and dark red indicates BRS-6. A 
combination of colors indicates the union of two or more sites.
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classes β-proteobacteria, Gammaproteobacteria, α-proteobacteria, 
Actinobacteria, and Deltaproteobacteria are the most dominating 
categories in all the samples. In addition, in the Archaean class, 
Methanomicrobia and Halobacteria dominate among all the samples.

At the genus level, significant variations in the bacterial 
composition across all sampling sites are observed. Some of the 
prominent genera are Pseudomonas, Salmonella, Bradyrhizobium, 
Variovorax, Hydrogenophaga, Burkholderia, Cupriavidus, Thiobacillus, 
Mycobacterium, and Streptomyces in all the sampling sites. While the 
majority of the dominant species are unknown (uncultured), 
Thiobacillus denitrificans is the most abundant in all the sites, 
Salmonella enterica dominates in all sites except in BRS-1. 

Rhodocyclaceae bacterium_PG1-Ca6 dominates in all except in BRS-1 
and BRS-2; Pseudomonas frederiksbergensis and Arenimonas 
daejeonensis dominate in BRS-6 site; Bradyrhizobium erythrophlei 
dominates in BRS-2, BRS-3, and BRS-4; Ramlibacter tataouinensis 
dominates in BRS-3, BRS-4, and BRS-6; Polaromonas_sp_JS666 
dominates in BRS-3, BRS-5, and BRS-6; Variovorax paradoxus 
dominates in BRS-4 and BRS-6 and Novosphingobium sp_FW-6 
dominate only in BRS-1. The relative abundance of the most abundant 
bacterial species is shown in Figure 5B.

The difference in bacterial composition between samples was 
calculated using PCA. The findings highlighted significant differences 
between river sampling sites. The proportion of the total variability 
among the samples accounted for PC1 and PC2 is 90.79%. Two 
sediment samples obtained from BRS-2 and BRS-5 sites, which are the 
populated sites of the River, were positively correlated based on the 
bacterial community to component 2. However, the samples from the 
other four sites, BRS-1, BRS-3, BRS-4, and BRS-6, were clustered 
together and negatively correlated with the component 1 (Figure 6).

Correlation of microbial community and 
physicochemical variables

We used CCA to determine the relative abundance of the 
microbial community at the phylum level based on values of water 
and sediment parameters measured at the site, which allows us to 
identify quantifiable relationships between microbial communities 
and physiochemical parameters of sediment and water quality. The 
water and soil quality parameters were summarized in 

FIGURE 3

α-Diversity of sediment metagenome of Brahmaputra River, India. α-Diversity indices: parametric indices (Shannon and Simpson) and non-parametric 
indices (Fisher and Chao1) are shown in the bar diagram.

TABLE 2 Summary of microbial diversity indices.

Parameter BRS-
1

BRS-
2

BRS-
3

BRS-
4

BRS-
5

BRS-
6

Taxon 

abundance 

values

3,148 2,502 2,451 2,668 2,693 3,004

Simpson’s 

Index

0.9482 0.9436 0.9411 0.9405 0.9409 0.943

Shannon’s 

Index

4.628 4.556 4.476 4.442 4.48 4.628

Chao1 5,497 4,698 4,644 4,987 4,733 5,224

Fisher’s 

α-diversity 

index

752.1 631.9 582.1 584.7 634 653.7
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Supplementary Tables S1, S2. Physicochemical parameters were 
found to be  acceptable for the survival and growth of aquatic 
organisms. At the phylum level, Verrucomicrobia, Deinococcus-
Thermus, Crenarchaeota, Armatimonadetes, and Planctomycetes 
formed a major group and associated more with water parameters, 
such as dissolved oxygen, pH, water temperature, free CO2, 
turbidity, TDS, nitrate and nitrite and Gemmatimonadetes are 
shown to be associated with phosphate (Supplementary Figure S1). 
In sediment, the majority of the parameters, namely, available 
nitrogen, available phosphate, free CaCO3, heavy metals, pH, and 
organic carbon, are associated with microbial groups Deinococcus-
Thermus, Crenarchaeota, Pseudomonadota, Nitrospirae, and 
Acidobacteria, whereas Verrucomicrobia is associated with Arsenic 
(Supplementary Figure S2).

Functional profiling of microbes

Functional annotation of sequences of all six metagenome 
samples through KEGG databases revealed several important 
functional features. A total of 407,034 (BRS-1), 291,345 (BRS-2), 
414,113 (BRS-3), 673,709 (BRS-4), 410,221 (BRS-5), and 722,445 
(BRS-6) numbers of genes were assigned to KEGG pathway. A total 
of eight major metabolic pathways were identified using KEGG 
analysis. Based on KEGG annotation, the relative abundance of the 
top six metabolic pathways were metabolism (from 44.02 to 33.85%), 
environmental information processing (from 2.73 to 1.62%), genetic 
information processing (1.30 to 0.73%), human diseases (0.59 to 
0.20%), cellular processing (0.44 to 0.10%) and organismal systems 
(0.48 to 0.42%). The highest level of KEGG analysis showed that the 

FIGURE 4

Taxonomic clustering of microbial communities in different sampling sites.
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major metabolic pathways involved are alcohol dehydrogenase 
(NADP+), malate dehydrogenase (oxaloacetate-decarboxylating) 
(NADP+), succinate dehydrogenase (ubiquinone) membrane anchor 
subunit pyrroline-5-carboxylate reductase, nitrate reductase gamma 
subunit, fucose-1-phosphate guanylyltransferase and cysteinyl-tRNA 
synthetase are highly prominent across all sampling sites highlighting 
their role in energy and amino acid metabolism, central carbon 
metabolism, stress response pathways and degradation (Figure 7). 
Overall, these findings provide a thorough overview of important 
biochemical regulatory networks that are active at the study sites, 
reflecting the organism’s metabolic diversity and environmental 
adaptability (Figure 7).

Functional classification through SEED revealed 89,204 (BRS-1), 
57,373 (BRS-2), 82,793 (BRS-3), 134,077 (BRS-4), 81,239 (BRS-5), and 
147,565 (BRS-6) genes were assigned to six sediment metagenome of 
Brahmaputra River. SEED classification also revealed the presence of 
many functional genes in metagenome data from river sediments 
(Figure  8A). Among them, genes associated with metabolism, 
carbohydrates, secondary metabolism, stress response, defense, 

virulence, energy, and cellular process were found to be  more 
significant than the other functions in all the sampling sites. Some of 
the functions were found to be less significant in a few of the sites; for 
example, nitrogen metabolism is found to be less in sites BRS-5 and 
BRS-1, and energy function is also found to be  less significant in 
BRS-2, BRS-5, and BRS-6. COG categories assigned 2,69,246, 
1,95,054, 275,570, 434,904, 2,65,255, and 4,67,374 number of genes in 
the metagenome of river sediment. A total of 10,57,976 (63.83 to 
53.91%) genes are related to metabolism in all the samples, while 
6,90,906 (from 41.59 to 27.06%) genes are related to information 
storage and processing, and 1,58,521 (from 9.09 to 7.24%) are 
associated with cellular processing and signaling. The deeper level of 
COG analysis revealed that several pathways, including 
N-acetylglutamate semialdehyde dehydrogenase, RuvB-like proteins, 
cleavage and polyadenylation, and the type-I restriction-modification 
system, were prominently represented across all sampling sites 
indicating diverse functional capabilities and adaptive strategies of the 
microbial communities. A comprehensive overview of the other major 
pathways can be found in Figure 8B.

FIGURE 5

The figure shows two stacked bar charts depicting the relative abundances of bacterial taxa at the phylum and species levels across different sample 
groups (labeled BRS-1 to BRS-6). In both charts, the percentage scale along the x-axis shows the relative abundance (%) of each taxon per sample.

https://doi.org/10.3389/fmicb.2024.1426463
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sharma et al. 10.3389/fmicb.2024.1426463

Frontiers in Microbiology 09 frontiersin.org

Mining of antibiotic resistance genes, 
plasmid-related genes, and virulence factor 
genes

A total of 50 diverse antibiotic resistance genes (ARGs) were 
identified, including all sampling locations. These genes include 
multidrug resistance genes (MDR), aminoglycoside resistance (AGR), 
β-lactam resistance (BLR), fluoroquinolone resistance (FR), phenicol 
resistance (PR), rifampicin resistance (RR), sulfonamide resistance 
(SR) and tetracycline resistance (TER) genes generally and ARGs, 
namely, AAC (6′)-ly, CRP, acrA, H-NS, TEM-116, emrB, emrR, golS 
and mdsA, mdsB. A list shows genes linked to significant antibiotic 
groups (Table 3). The heatmap shows the presence/absence of various 
antibiotic resistance genes across the six sample groups (BRS-1 to 
BRS-6) based on their percentage identity (Figure 9A). These sampling 
sites pass through the major city areas, whereas the start point (BRS-1) 
and endpoint (BRS-6) sampling sites contain very few ARGs. 
Approximately 44% of the ARGs were resistant to two or more drug 
classes. The gene TEM-116 was dominant in all the sites except in 
BRS-1. The genes acrA, AAC (6′)-ly, ampH, H-NS, emrB, golS, mdsA, 
and mdsB were predominant in BRS-2. The abundant ARGs at site 
BRS-4 were CRP, ramA, mexN, H-NS, emrR, and mdsA. The sampling 

site BRS-5 harbored more mdsC, golS, and H-NS. Genes such as arr-1, 
arr-4, and vatB were prevalent at BRS-1. The genes bacA, ramA were 
predominant in BRS-6 and genes sul1 and baeR were predominant in 
BRS-3. Supplementary Table S3 is provided regarding the information 
on the detection of potential ARGs (including contig name, start, end 
of hit, fasta sequences, similarity percentage, coverage percentage, 
etc.). Out of the different resistance microbes, six microbial species, 
namely, Escherichia coli, Enterobacter cloacae, Klebsiella pneumonia, 
Pseudomonas aeruginosa, Staphylococcus aureus, and S. enterica 
showed resistance against multiple drugs. The highest resistance 
microbes abundances were recorded for E. coli, followed by 
S. enterica  > P. aeruginosa > K. pneumonia  > Y. enterocolitica 
 > S. aureus > V fluvialis > Mycolicibacterium smegmatis and E. cloacae. 
Using the plasmid finder part of Abricate, we have identified fewer 
plasmid type-MGEs. The plasmid-related genes observed were Col 
(BS512), Col440II, Col8282, ColRNAI, ColpVC, and IncFII, 
respectively (Figure 9B). The plasmid-related genes were found to 
be  highest in BRS-2 and negligible in BRS-1 sampling sites. The 
virulence factor analysis showed the presence of a total of 185 
virulence factor genes (VFGs) mostly present in the BRS-2 sampling 
site (135 numbers), followed by BRS-5 (92 numbers), BRS-4 (68 
numbers), BRS-3 (56 numbers), BRS-6 (37 numbers) and BRS-1 (13 

FIGURE 6

The figure shows two stacked bar charts depicting the relative abundances of bacterial taxa at the phylum (A) and species (B) levels across different 
sample groups (labeled BRS-1 to BRS-6). In both charts, the percentage scale along the x-axis shows the relative abundance (%) of each taxon per 
sample.

https://doi.org/10.3389/fmicb.2024.1426463
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sharma et al. 10.3389/fmicb.2024.1426463

Frontiers in Microbiology 10 frontiersin.org

numbers), respectively (Figure 9C). A few of the VFGs present in all 
sampling sites were acpXl, algU, cheB, cheY, entB, flgC, flgG, fliA, pilG, 
and pilH, respectively. Detailed information about all the VFGs was 
provided in Supplementary Table S4.

Co-occurrence pattern between ARG 
subtypes

The pattern of co-occurrence among ARG subtypes was 
investigated using a network inference approach. The resulting 
network, depicted in Figure 10, comprises 25 nodes representing 
distinct ARG subtypes, connected by 66 edges indicating correlations. 
The average node degree, a measure of connectedness, is calculated 
at 5.28, suggesting that each ARG subtype is typically associated with 
around 5 other subtypes. Additionally, the average local clustering 
coefficient, indicating the prevalence of interconnected clusters, is 
found to be  0.653, signifying notable clustering within the  
network.

It was observed that ARG subtypes belonging to the same ARG 
type exhibit a tendency to co-occur. This phenomenon is 
exemplified by the correlation between emrA, emrB, mdtA, mdtG, 
mdtH, and mdtK, all associated with multidrug resistance. 
Furthermore, specific functional associations between ARGs 
become apparent; for instance, arnA, arnC, and ugd, conferring 
resistance to polymixin, are found to co-occur. Noteworthy 
interactions also involve baeS and baeR, which respond to envelope 
stress and activate various operons, including mdtABCD and 
potentially the CRISPR-Cas casABCDE-ygbT-ygbF operon. The 
ARGs’ subtypes revealed that the majority of them acted through 

multiple modes, such as antibiotic efflux, antibiotic inactivation, 
antibiotic target alteration, and replacement.

Discussion

Microbial communities play an important role in ecological 
processes and maintenance of the diverse environments of river 
ecosystems. The river system’s continuous anthropogenic activity 
may have an effect on the composition and dynamics of the 
microbiome as well as their biological roles. The present study 
evaluated the microbial diversity and its functional profiling in 
sediments of the Brahmaputra River using shotgun metagenomic 
sequencing. The study also identified ARGs in the river sediments. 
The sediments from the Brahmaputra River sampling sites revealed 
greater diversity and abundance of microbial communities. The 
Shannon diversity indices were higher than the average value of 4, 
showing greater diversity. Similarly, Rout et al. (2022) found a higher 
diversity Shannon index value of up to 4 for microbial communities 
in the sediment of River Ganga, and Feng et al. (2022) also observed 
a greater Shannon index of the Bahe River Basin, China, than the 
average value of 6, indicating that the microbial community diversity 
in the sediments of the Bahe River Basin to be  high. Bacterial 
populations are the most dominating among microbial communities 
in the sediments of the Brahmaputra River, contributing about 99%. 
Similarly, Behera et al. (2021) observed the occurrence of bacteria to 
be higher than other groups of microbes in River Ganga sediment. 
Using paired-end Illumina HiSeq, Malakar et al. (2021) sequenced 
the V3–V4 region of the 16S rRNA gene amplicon, identifying 631 
genera of bacteria from 22 phyla found in the gills of Brahmaputra 

FIGURE 7

Functional genes from metagenome data enriched using KO terms from the stretches of the Brahmaputra River through KEGG orthologous pathways.
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River fish, including both pathogenic and non-harmful species. 
Taxonomic profiling of bacteria in the study revealed the presence 
of phyla Pseudomonadota, Actinobacteria, Bacteroidetes, 

Firmicutes, Cyanobacteria, and Planctomycetes. The microbial 
taxonomic profile obtained in this study was consistent with other 
studies of microbial distribution in freshwater rivers, where bacterial 

FIGURE 8

(A) Functional classification of microbes from Brahmaputra River through SEED tool. Circle size is based on the number of assigned values for 
particular functions; (B) Functional classification of microbes from Brahmaputra River through COG subsystem.
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population dominates the river sediment (Wang et al., 2017; Abia 
et al., 2018; Behera et al., 2021; Rout et al., 2022).

The most prevalent phyla across all sampling sites were 
Pseudomonadota and Actinobacteria, which is consistent with 
findings from several previous studies on river ecosystems (Reddy 
et al., 2019; Behera et al., 2020a,b; Feng et al., 2022). Pseudomonadota 
is commonly the abundant phylum in sediments, having a wide range 
of functions in nitrogen, carbon, and sulfur metabolism and 
degradation of organic and inorganic compounds (Spain et al., 2009; 
Bai et  al., 2012; Zainun and Simarani, 2018). Among the 
Pseudomonadota classes, β-proteobacteria, Gammaproteobacteria, 
α-proteobacteria, and Deltaproteobacteria are the most dominating 
categories in all the sampling sites. A higher abundance of these 
classes of bacteria was also reported from lakes and rivers (Medeiros 
et al., 2016; Tsagaraki et al., 2018; Samson et al., 2019; Parida et al., 
2022). α-Proteobacteria and β-proteobacteria abundance have been 
related to pH and nutrients of the aquatic environment (Newton et al., 
2011). The nitrogen and sulfur cycles are significantly influenced by 
deltaproteobacteria and gammaproteobacteria (Mori et  al., 2019; 
Masuda et al., 2022). The high abundance of gammaproteobacteria 
and deltaproteobacteria may also be linked to anthropogenic activities, 
primarily from domestic and industrial waste (Parida et al., 2022). 

Freshwater actinobacteria plays an important ecological role in 
degrading complex polymers, producing bioactive molecules, and 
recycling compounds (Trujillo et  al., 2015; Lewin et  al., 2016; 
Zothanpuia et  al., 2018; Mawang et  al., 2021). Additionally, 
Bacteroidetes and Firmicutes play a significant part in organic 
decomposition and fermentation (Oni et al., 2015; Yi et al., 2021). In 
Archaean phyla, Euryarchaeota, a common group of 
Methanomicrobiales found in freshwater environments, are abundant 
and help in the anaerobic degradation of organic matter (Koizumi 
et al., 2003; Bomberg et al., 2008). Similar observations were reported 
by Parida et al., 2022 in the Yamuna River and by Rathour et al. (2020) 
in Pangong Lake.

The presence of genera Bradyrhizobium, Pseudomonas, and 
Variovorax, in the sediments of the Brahmaputra River indicates their 
role in denitrification and organic matter degradation (Lalucat et al., 
2006; Horel et  al., 2015; Liao et  al., 2013). Burkholderia, 
Hydrogenophaga, and Cupriavidus have a role in biodegrading many 
kinds of environmental chemicals (Lambo and Patel, 2007; Han et al., 
2015; Morya et al., 2020). At the species level, T. denitrificans was 
found to be abundant in all the sites, which has the capability for 
oxidation of sulfur, ferrous iron, and iron sulfides (Beller, 2005; Beller 
et al., 2006). T. denitrificans plays a key role in the nitrate-dependent 
oxidation of iron sulfide minerals in natural freshwater systems 
(Haaijer et al., 2006). The presence of Salmonella enterica, a foodborne 
pathogen, in all the sites except in BRS-1 (start of the river), indicates 
anthropogenic activities or polluted sites of the river as the river passes 
through the urban areas. Other abundant species, Rhodocyclaceae 
bacterium_PG1-Ca6 and P. frederiksbergensis degrade polycyclic 
aromatic hydrocarbons (Singleton et  al., 2015; Ruiz et  al., 2021), 
Polaromonas_sp_JS666 degrades cis-1,2-dichloroethene in subsurface 
and aerobic environments (Giddings et al., 2010).

The α-diversity assessment, such as Simpson index, Fisher’s 
α-index, Shannon index, and Chao1 index, did not differ significantly 
in all the samples, with its highest richness at the upstream and 
downstream side of the river, and least at midstream. The maximum 
number of taxa was also observed at the start of the upstream and end 
of downstream of the river, forming one cluster, and the river sites 
passing through the urban areas formed one cluster. The undisturbed 
water with rich nutrients flows into the river contributing to the 
enrichment of microbial communities. Furthermore, unique and 
shared microbes among the sites show that the upstream contributed 
higher microbial species to downstream and midstream. A similar 
observation was reported in the Danube River, where upstream 
contributes more microbial diversity due to the passive transportation 
of microbial communities in lotic water and large contact of small 
headwaters facilitates the contribution of allochthonous bacteria to the 
river community (Savio et al., 2015). Chen et al. (2018) observed 
α-diversity increased gradually from upstream to downstream than 
the midstream, as microbial dispersal or drift limitations are 
influenced mainly by spatial distance between the sites.

Exploiting the functional potential of the genes expressed by the 
microbes helps to gain insight into the metabolic contribution of 
microbes to the river ecosystem. The present study’s functional 
profiling through the KEGG database revealed that the majority of the 
microbes were involved in metabolism and environmental 
information processing, degradation, and disease pathways. Similar 
findings were reported in the Apies River, South Africa (Abia et al., 
2018), where bacteria were involved in metabolic and environmental 

TABLE 3 Major antibiotic groups, along with the potential resistance 
genes.

Antibiotic group Potential-resistant genes

Aminocoumarin cpxA, baeR, tolC, mdtA, MexB, baeS, 

MuxB, MuxC

Aminoglycoside cpxA, baeR, tolC, KpnF, kdpE, baeS, 

AAC(6′)-Iy, AAC(6′)-Iaa, aadA2

Carbapenem MexB, ramA, marA, tolC, OmpK37, 

golS, mdsA, mdsC, mdsB

Cephalosporin tolC, KpnF, acrE, MexB, sdiA, ramA, 

acrA, marA, KpnF, ampH, OmpK37, 

golS, mdsA, mdsC, mdsB, acrS, acrA, 

Tem-116, H-NS, mexY

Penam CRP, tolC, acrE, MexB, sdiA, ramA, 

mdsA, mdsC, mdsB, acrA, H-NS, 

marA, OmpK37, MexB, golS, acrS, 

Tem-116, ampC1, H-NS, mexY

Fluoroquinolone CRP, tolC, mdtH, acrE, sdiA, ramA, 

acrA, H-NS, MexB, marA, emrA, 

emrB, emrR, mdtK, mdtM, H-NS, 

mexY

Monobactam mdsC, mdsB, mdsA, golS, OmpK37, 

marA, Tem-116, MexB, MuxB, ramA, 

MuxC

Macrolide CRP, tolC, KpnF, MexB, MuxB, mexY, 

MuxC

Rifamycin arr-1, arr-4, acrS, acrA, sdiA, ramA

Tetracycline acrA, acrS, sdiA, mdfA, H-NS, MuxB, 

mexY, ramA, MuxC, mdfA

Sulfonamide sul1

Streptogramin vatB
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information pathways, and some were related to human diseases 
involving infectious diseases. According to Raiyani and Singh (2020) 
the metabolic capabilities of microbial communities in Arabian 
seawater revealed several functions such as metabolism, genetic 
information processing, cellular processes, and deeper analysis 
revealed amino acid, carbohydrate, nucleotide metabolism, etc. 
Srivastava and Verma (2023) also identified significant genes that play 
roles in metabolism, degradation, and certain human diseases in the 
Ganga River. Several studies on functional profiles of environmental 
bacteria have been linked to human diseases, as discussed by Sandifer 
et al. (2015). The transmission of infectious diseases and antimicrobial 
resistance spread across the environment via wind, agricultural and 
urban runoff, and biological agents such as humans and animals 
(Allen et  al., 2010). Based on the SEED and COG analysis, the 
microbiomes of the Brahmaputra River exhibited considerable 
enrichment in major pathways, including metabolism, secondary 
metabolism, information storage, and processing, which can 
be correlated with the prevalence of Pseudomonadota, Actinobacter, 

and Bacteroidetes in the river and its lakes (Koo et al., 2017; Ahmad 
et al., 2021; Parida et al., 2022).

The development of antibiotic resistance bacteria in aquatic 
ecosystems is caused by the direct discharge of hospital and 
domestic sewage, agricultural runoffs, and wastewater into open 
water bodies without adequate pre-treatment (Chandy, 2008; Prado 
et al., 2018). The development of multidrug-resistant strains, which 
enable the bacteria to adapt and survive, is a major health concern 
(Marathe et  al., 2013). In the present study, through heatmap 
analysis, 50 numbers of ARGs’ subtypes were observed, and the 
majority of microbial groups are associated with multidrug 
resistance, aminoglycoside resistance, β-lactam resistance, 
fluoroquinolone resistance, phenicol resistance, sulfonamide 
resistance, rifampicin resistance, and tetracycline resistance. Similar 
observations were also reported by Das et al. (2020) where a high 
amount of ARGs were obtained from the Yamuna River, India. 
ARGs families in sediments of an urban river (Chen et al., 2019) 
and the European river (Kneis et al., 2022) reported resistance to 

FIGURE 9

Abundance of ARGs, plasmid types, and virulence factors in all the six selected sites of Brahmaputra River, India. (A) The heatmap shows variability in 
antibiotic resistance genes (ARGs) profiles across samples, with some samples showing more pronounced resistance patterns. The color scale on the 
left indicates the presence of ARGs based on percentage identity, ranging from green (lower identity) to red (higher identity). The y-axis lists the 
resistance genes. The x-axis represents the sample groups (BRS-1 to BRS-6), with a dendrogram at the top, indicating clustering based on similarity in 
resistance gene profiles. The dark red coloring indicates samples showing a high abundance of specific genes are indicated by; (B) The diversity in 
plasmid types, with different plasmids dominating in different samples, indicating potential plasmid-mediated gene transfer; (C) The distribution of 
virulence factors (VFs), with some samples (BRS-2 and BRS-5) having significantly higher counts, suggesting a greater virulence potential.
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aminoglycosides, macrolides, sulfonamide, or tetracyclines, 
possibly indicating the spread of ARGs in river environment 
because of selective pressure resulting from antibiotic use. In this 
study, six groups of plasmid-type MGEs were identified in the river 
sediment metagenome. Nguyen et al. (2022) also observed ARGs 
and MGEs in both Day River water samples and shrimp ponds in 
Vietnam, where 11 ARGs have a significant correlation with both 
total MGEs and individual MGE types. The Col plasmid groups are 
often found to be associated with E. coli and K. pneumonia, having 
been found to disseminate AMR genes, which confers resistance to 
quinolones (Rozwandowicz et al., 2018; Khezri et al., 2021). The 
IncF plasmid types have been reported to harbor a wide range of 

resistance genes to aminoglycosides, tetracyclines, β-lactams, 
quinolones, and macrolides, reported from various systems such as 
riverine systems, wastewater treatment plants, drinking water 
sources. The IncF plasmids often carry multiple replicons and 
harbor-reliant systems, which enable them to remain stable in 
bacterial host cells even under changing environmental conditions 
(Yang et al., 2015; Kesamang and Rahube, 2019; Ajayi et al., 2021). 
Additionally, the present study also identified 185 virulence factor 
genes (VFGs) from the river sediment metagenome, mostly from 
the BRS-2 sampling site. The metagenomic analysis uncovered 
ARGs along VFGs from different environments, such as river 
sediment, soil, animal fecal, etc. (Kim et al., 2022; Zou et al., 2023; 

FIGURE 10

Protein–protein interaction (PPI) network of various antibiotic resistance genes (ARGs) and their co-occurrence patterns. The network was generated 
using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, which predicts functional associations based on evidence 
from different sources. The nodes represent different microbial genes that are associated with antibiotic resistance mechanisms. The edges indicate 
different types of interactions. The color coding for the lines provides information about the nature of these interactions: Known interactions (blue) or 
experimentally determined (pink). Predicted interactions such as gene neighborhood (green), gene fusions (red), and gene co-occurrence (blue). Other 
interactions include text mining, co-expression, and protein homology (yellow, black, and cyan).
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Rout et al., 2024; Bai et al., 2024). Similar to the present study, Rout 
et al. (2024) investigated the prevalence of ARGs and VFGs within 
the sediment environment of the river Ganga, where a high diversity 
of VFGs includes mshM associated with adherence mechanisms; 
pilH, pilT, pilU, and pilZ, involved in twitching motility; such as 
cheY, fliJ, fliQ, and PA1464 genes were associated with chemotaxis 
and flagellar biosynthesis and acpXL, related to immune 
modulation. Bai et al. (2024) observed a total of 731 ARGs and 400 
VFs common among humans, chickens, pigs, and soil environments, 
where a greater number of specific ARGs and VFGs were present in 
soil and chicken samples. The VFGs and plasmid-related genes were 
found to be  highest in BRS-2  in sampling sites, which may 
be responsible for the observed higher ARG abundance (Jiang et al., 
2022). Environmental variables, along with ARGs host influence the 
abundance of ARGs and VFGs by directly regulating MGEs and 
microbial community structure (Zou et al., 2023; Liu et al., 2024). 
The sites having high ARGs, MGEs-plasmid type, and VFGs are the 
sites along the Brahmaputra River passing through the major city 
areas, where human activities are involved, such as domestic waste, 
municipal waste, nearby hospital waste, transportation, etc.

In the network analysis, the co-occurrence pattern of ARGs was 
explored to illustrate the intricate relationships between various ARG 
subtypes. ARG subtypes assigned to the same ARG category (i.e., 
intratypes) usually co-occur. Li et al. (2015) noted the co-occurrence 
of environmental ARGs’ subtypes consisting of 46 nodes and 98 edges 
and highlighted the high prevalence of tetM and aminoglycoside 
resistance protein in different environments facilitating their 
applicability as ARG indicators. Gu et  al. (2022) found a strong 
positive correlation among ARG subtypes, bacterial taxa, and mobile 
genetic elements, revealing a high ARG dissemination risk in drinking 
water treatment systems. Sang et  al. (2023) described that the 
environmental factors greatly influenced the distribution of ARGs in 
the mangrove ecosystem, and the high abundance of ARGs was 
distributed in a modular manner. The presence of multidrug resistance 
genes in abundance and 100% occupancy of aminoglycoside-ARGs 
and β-lactam-ARGs in some of the sampling sites provides an 
overview of the role of human activities in accelerating spreading and 
proliferation of ARGs/VFGs in the urban river environment. It draws 
attention to the control of antibiotic use and emissions to protect 
public health. The presence of co-occurring ARGs suggests that these 
genes might be part of the same or closely related pathways, or they 
may be co-selected under antibiotic pressure. The co-occurrence of 
ARGs in environmental samples suggests that bacteria in these 
environments may be exposed to multiple selective pressures (e.g., 
antibiotic contamination, heavy metals, etc.). Co-occurrence patterns 
can enhance the horizontal gene transfer (HGT) potential among 
bacteria, increasing the spread of antibiotic resistance in the 
environment. These patterns are also of public health concern, as the 
spread of multidrug resistance could complicate the treatment of 
bacterial infections. This highlights the importance of monitoring and 
managing antibiotic usage and contamination in river environmental 
settings to mitigate the risk of resistance gene dissemination.

Conclusion

By employing a metagenomic approach, the present study 
provides insights into microbiome community structure, its 

function, and the abundance of antimicrobial resistance genes in 
the sediments of selected stretches of the Brahmaputra River, India. 
The microbial diversity reveals a high abundance of 
Pseudomonadota at the phylum level, with Bradyrhizobium, 
Pseudomonas, and Variovorax dominating at the genera level, while 
T. denitrificans emerges as the most abundant bacterial species 
across all sampling sites highlighting its crucial role in organic 
matter degradation and denitrification processes. The highest 
bacterial diversity and abundance were recorded upstream of the 
river, particularly at the initial point, in comparison to middle and 
downstream areas. Functional analysis revealed that the identified 
microbes exhibited diverse functional capabilities and adaptive 
strategies, with a significant portion involved in energy and amino 
acid metabolism, central carbon metabolism, stress response 
pathways, and degradation pathways. The presence of ARGs in the 
river indicated multiple drug-resistance genes linked to 
anthropogenic activities. The growing number of reports 
concerning antimicrobial resistance is alarming and posing 
challenges to global health initiatives. Since rivers such as the 
Brahmaputra are principal water sources for household, drinking, 
and personal hygiene, individuals using this water without prior 
treatment may experience serious health risks. To our knowledge, 
this is the first study to report the whole genome metagenomic 
sequencing of sediments in the Himalayan Brahmaputra River. 
Thus, it is essential to properly regulate the discharge of untreated 
sewage into the river. Consequently, the study emphasizes the need 
for further research on the important microbes and ARGs to better 
understand their interaction with the aquatic ecosystem and 
promote sustainable river health management.
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