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Editorial on the Research Topic

Antimicrobial peptides and their druggability, bio-safety, stability,
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1 Introduction

The excessive and often indiscriminate use of antibiotics in many areas of human
activities has caused a widespread antibiotic resistance, which poses a major threat to
the public health worldwide (Carratalá et al., 2020; Murray et al., 2022; Bessa et al.,
2023; De la Fuente-Núñez et al., 2023). Even more worrying is the dearth of new
antimicrobial drugs (Durand et al., 2019; Li S. et al., 2021). Under these circumstances,
the development of new antimicrobial drugs is essential (Tacconelli et al., 2018; Hamad
et al., 2019). Antimicrobial peptides (AMPs) have attracted attention for their potent
antibacterial activities and unique antibacterial mechanisms, which are efficient against
many bacterial pathogens, including those that are multidrug-resistant (MDR) (Boaro
et al., 2023; Maasch et al., 2023; Wong et al., 2023; Xuan et al., 2023). However,
the entry of AMPs into clinical practice has encountered many challenges, including
peptide stability, bioavailability, and toxicity, all of which limit their clinical applicability
(Durand et al., 2019; Sarkar et al., 2021). Therefore, rational design, advanced drug
formulations and tailored routes of administration and delivery systems are crucial
for the development of AMPs as viable therapeutic options. The third volume of the
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Research Topic on AMPs targeted the above issues to bring AMPs
closer to clinical practice.

2 Challenges in the clinical translation
of AMPs

2.1 Low bioavailability in vivo

Despite the intrinsic properties of AMPs that make them
highly attractive for a potential use, relatively few of them have
been successfully translated into the clinical use or as food
preservatives (Mishra et al., 2017; Costa et al., 2019; Adaro
et al.; Koniuchovaitė et al.). One of the key constraints is the
mismatch between their in vivo and in vitro activities. Particularly
frustrating is the fact that highly anticipated peptides such as
pexiganan, iseganan, neuprex and omiganan have failed in phase III
clinical trials due to low in vivo efficacy (http://dramp.cpu-bioinfor.
org/). Many factors may contribute to the low bioavailability
in vivo. However, poor stability of these molecules in complex
microenvironments has been identified as the most significant
factor (Jiang et al., 2021; Fu et al.; Guevara-Lora et al.; Skłodowski
et al.).

2.2 Toxicity

One of the important prerequisites for clinical use is the
drug safety, and this is the second major obstacle on the way
of AMPs toward clinical translation (Payne et al., 2015). Toxicity
of AMPs includes cytotoxicity and systemic toxicity (Li et al.,
2017). Cytotoxicity is usually an inherent property of membrane-
active AMPs, the cationic and hydrophobic components of
which can directly interact with the membrane of host cells
(Agrillo et al.), This interaction is exhibited in a concentration-
dependent toxicity. Typical examples are melittin, CZS-1 and
alamethicin, which exhibit potent cytotoxicity, including hemolysis
(Askari et al., 2021; Farid et al., 2023; Bermúdez-Puga et al.;
Brakel et al.). Considering the potential cytotoxic mechanisms of
AMPs relative to their successful application, it can be generally
concluded that narrow-spectrum peptides are relatively safer
for clinical translation due to their lower cytotoxicity and the
lack of off-target effects against the beneficial microbiota (Xu
et al., 2020; Zong et al., 2020). Conversely, broad-spectrum
AMPs tend to display the increased cytotoxicity toward the
host and adverse effects on the microbiota, thereby limiting
their potential for clinical use (Hao et al., 2023). Systemic
toxicity may result from off-target effects, accumulation of
drug in kidneys, undesirable immune responses or chronic
inflammation (e.g., atopic dermatitis or hidradenitis suppurativa)
due to the increased drug concentrations (Takahashi et al., 2018).
Therefore, preclinical safety evaluation of AMPs should not be
limited to basic hemolysis and cytotoxicity but also requires the
evaluation of systemic toxicity. In fact, the antimicrobial and
immunomodulatory properties and toxicity of AMPs are often
compounded. Thus, a careful attention has to be paid to the
delicate balance of antimicrobial properties, immunomodulation,
and toxicity.

2.3 Pharmacokinetic assays

Although several papers in this Research Topic have discussed
the pharmacokinetic (PK) properties of AMPs, it has to be
emphasized here that PK is still a bottleneck for AMP translation.
It is known that the physicochemical properties of AMPs are
quite different from the traditional small-molecule chemical drugs.
Hence, the PK of traditional small-molecule drugs should be
further modified, improved and optimized for AMPs so that
the quantitative PK methodology can be successfully applied for
this class of antimicrobials (Wang et al., 2012). Therefore, the
development of suitable quantification methods for PK of AMPs,
which are different from small-molecule chemical drugs, is the
3rd key challenge for their entry into clinical applications (Ewles
and Goodwin, 2011; Mercer and O’Neil, 2013). Usually, linear
cationic AMPs are rapidly metabolized in vivo and degraded
into smaller fragments or amino acids and absorbed as nutrients.
This process interferes with the determination of the main four
PK parameters such as absorption, distribution, metabolism, and
excretion. Although the safety of AMP degradation products,
especially amino acids, in vivo is not of a major concern from
the nutrient metabolism point of view, it is difficult to determine
the concentration of these products with the use of regular
analytical tools. Therefore, there is an urgent need for updating
PK principles so that they suit to AMPs, especially protocols
for their clinical evaluation (Giguère et al., 2017). In brief, we
believe that the use of the latest material analysis methods
for exploratory pharmacokinetic detection combined with the
calculation of PK parameters based on non-compartmental model
is an important prerequisite for AMPs to resolve the bottleneck of
drug development and transition to clinical practice (Zheng et al.,
2022, 2024).

2.4 Resistance

The likelihood of resistance development toward AMPs is
generally much lower than that against conventional antibiotics.
Numerous parameters influence resistance development, including
the dose used, period of application, temperature, exposure/contact
with inhibitory substances, and others. Metabolic pathways and
genes within bacterial cells can be replaced or compensated over
time, as has been shown for defensins derived from plants and
polymyxin from microbes (Ouyang et al.); On the contrary,
molecules that have multiple targets in bacteria are less likely to
select for bacterial resistance. AMPs with the low probability of
resistance development include melittin, bombesin, venoms and
cecropins (Chen et al., 2022a). Additional attention has to be
paid to AMP-induced cross-resistance. Chen et al. (2022b) found
that Staphylococcus aureus acquired limited resistance to PIS-3,
with a concomitant resistance toward polymyxin B, vancomycin,
and tetracycline, but with no resistance development toward
PIS-1. Thus, it is important to gain a better understanding
of pharmacology, evolutionary effects and potential resistance
acquisition during the development and application of AMPs, the
above steps have been largely ignored in the past with traditional
antibiotics (Lazzaro et al., 2020).
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3 R&D directions of AMPs

3.1 AMP stabilization technology

The molecular stability of AMPs is another important
parameter to take into account. The stability of these agents needs
to be sufficient to exert their function, ideally without causing off-
target effects. At the same time, when assessing peptide stability,
it is necessary to focus on the route of administration as this may
substantially affect stability.

3.1.1 Chemical modification
Strategies for the improvement of stability of AMPs include two

complementary approaches. The first is chemical modification(s)
to improve the stability and bioavailability and reduce toxicity.
Currently effective chemical modifications include the following:

1. Replacement of L-amino acids in natural sequences with
proteinogenic amino acids (unnatural α-amino acids, unnatural
β-amino acids, unnatural γ-amino acids, and D-amino acids)
(De la Fuente-Núñez et al., 2015; Zhang et al., 2016; Sandín
et al., 2021; He et al., 2023). For example, Li T. et al. (2021)
usedD-amino acids (Val and Pro) to replace the natural L-amino
acids in N6 to improve the stability of the antibacterial N6NH2
against protease.

2. Cyclisation is an effective strategy to improve the metabolic
stability of AMPs. This notion is supported by the fact that some
of the successfully marketed AMPs are cyclic such as bacitracin
A, daptomycin, polymyxins B1 and B2 (Falanga et al., 2017;
Mishra et al., 2017; Costa et al., 2019; Liu et al.).

3. PEG modification is one of the effective methods to improve
the biocompatibility and bioavailability of peptides. The success
of this approach was proven in a number of studies, involving
AMPs such as OM19r-8, N6NH2 and SAMP-A4, the stability
of which was substantially improved by PEG modification (Lau
and Dunn, 2018; Manteghi et al., 2020; Li R. et al., 2021; Li et al.,
2022).

4. N-/C-terminal modification (C-terminal amidation, N-
terminal acylation or methylation modification) is the most
straightforward methods to improve the AMP stability (Teixeira
et al., 2010; Li D. et al., 2021). Although these AMPmodification
methods have been supported by several corresponding studies,
they are not universal and each peptide may require a set of
their own design strategies depending on the peptide scaffold
and the desired activity (Torres et al., 2018, 2019; Silva et al.,
2020; Cesaro et al., 2022).

3.1.2 Delivery systems
In addition to chemical modifications, improvements in

pharmacokinetics and pharmacodynamics of AMPs can be
achieved via the use of nanotechnology, which may increase the
stability of AMPs and thus facilitate their clinical translation
(Carratalá et al., 2020; Cesaro et al., 2023; Xuan et al., 2023).
Currently, various types of carriers are employed in AMP
delivery studies (Li et al., 2023):

1. These can be inorganic materials such as mesoporous
silica, metal nanoparticles, carbon nanotubes, and others.
Izquierdo-Barba et al. (2009), for instance, demonstrated that
incorporation of antimicrobial peptide LL-37 into mesoporous
silica significantly increased its half-life, with the maximum
release rate of LL-37 achieved after 200 h.

2. Organic polymers such as chitosan, polylactide-glycolide
(PLGA), liposomes and others can also serve as efficient
delivery systems for AMPs. For example, d’Angelo et al. (2015)
demonstrated that chitosan and PLGA-coated colistin could be
continuously released in biofilms, thereby eradicating biofilms
formed by Pseudomonas aeruginosa. In another study, Ma et al.
(2024) successfully increased the trypsin tolerance of AMP
NZ2114 by 4.24-fold using PLGA encapsulation.

3. Another approach to improve the pharmacokinetics and
pharmacodynamics of AMPs is the use of peptide self-
assembly properties. As comprehensively overviewed by Habibi
et al. (2016) and Zou et al. (2020), a variety of peptides
can self-assemble into nanoparticles, nanofibers or nanogels
according to their hydrophobicity, length, and structures to
achieve precisely controlled release rates. Self-assembly of
peptides can also overcome the problem of low encapsulation
efficiency and release rates of traditional coating strategies.
This approach, therefore, has attracted a great interest for
potential applications in drug delivery, functional materials,
and regenerative medicine. Recently, an increasing number of
studies have supported the view that self-assembly of AMPs
can effectively increase their stability, prolong the half-life and
improve biosafety, thus contributing to better pharmacokinetic
and pharmacodynamic properties of AMPs (Chen et al., 2019;
Tram et al., 2022).

3.2 AMP application strategy

After exploration toward clinical translation for over 50 years,
there is a huge number of publications and patents with innovative
results on AMPs, but also there is still room for improvement, and it
is expected that the original intentions could be realized as soon as
possible (Zasloff, 2015; Czaplewski et al., 2016; Arciola et al., 2018).

3.2.1 Topical applications
Among the 11 commercially available AMPs, daptomycin,

dalbavancin, telavancin and oritavancin were initially approved for
the treatment of skin infections, bacitracin and polymyxin B—for
conjunctivitis and keratitis, and tyrothricin—for acute pharyngitis.
Besides, the majority of AMP drugs currently in clinical
trials are intended for topical use (http://dramp.cpu-bioinfor.
org/). The emphasis of pharmaceutical companies on topical
AMP drugs is logical and economically feasible because topical
administration does not require the level of pharmacokinetic and
pharmacodynamic characterization required for the internal use.
An increasing number of studies have shown that AMPs play a
crucial role in promoting wound infection clearance and recovery
(Gao et al., 2023) and inmanaging local inflammation in pyoderma,
conjunctivitis, mastitis, and biofilms (Yang et al., 2022; Zhang et al.,
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FIGURE 1

Roadmap for AMP development.

2024; Fernández-Fernández et al.; Ji et al.; Jiang et al.). Thus the
topical use of AMPs asserts their promising prospects as a viable
treatment option.

3.2.2 Drug combinations
Antibiotic combinations became important therapeutic tools

to deal with multidrug-resistant or mixed infections. Other
advantages include synergetic effects between antibiotics that allow
the decrease of antibiotic concentration(s), especially of toxic ones,
and also a lower probability of resistance development. In this
regard, combination of AMPs with traditional antibiotics is also
a valuable approach (Reffuveille et al., 2014; Mishra et al., 2017;
Mhlongo et al., 2023; Chen X. et al.). AMPs, antibiotics and
vaccines could complement each other to maintain the health
of the organism (Hao et al., 2022; Yang et al., 2023), these
combination therapies can improve both the efficacy of treatment
and reduce the dose of each drug, thereby reducing excessive
toxicity and side effects, while maintaining a reasonable balance
between the therapeutic efficiency and drug resistance development
(Zakaryan et al., 2021). For example, the combination of AMP
OM19r with gentamicin increased the antibacterial activity of the
latter against MDR Escherichia coli B2 by 64-fold (Cui et al.).
Thus, AMPs can increase the permeability of the cytoplasmic
membrane, which facilitates the entry of antibiotics into bacterial
cells (Duong et al., 2021). The combination of cecropin D-
derived peptide and caspofungin showed the synergistic effects
against Candida albicans (Guevara-Lora et al.). The study of
Alencar-Silva et al. (2023) demonstrated the decreased cytotoxicity
of Synoeca MP through its combination with IDR-1018. The
combination also enhanced cell proliferation and migration and

accelerated wound re-epithelialization, which opens the possibility
for the development of new strategies in treatment of skin injuries
(Alencar-Silva et al., 2023).

Presently the Antimicrobial Peptide Database (APD) (https://
aps.unmc.edu) contains the information about 4231 peptides,
from which 3223 are natural AMPs. The use of the majority of
them is limited to topical and combination applications, including
the early or preventive treatments. Thus, there are decreasing
numbers of cases, where treatments involving AMPs include
emergency treatments at ICUs or treatment of serious infections
in modern husbandry.

3.3 Reduction of AMPs production costs

Two main AMPs production routes include chemical synthesis
and recombinant expression. Chemical synthesis can be executed
via solid and liquid phase synthesis methods or their combination.
The representative examples of peptide-based drug production at
multi-ton scale are HIV fusion inhibitory peptide T-20 (Fuzeon,
Roche), semaglutide and insulin (Walsh, 2005; Thayer, 2011;
Aggarwal et al., 2021).With technological advances, more andmore
AMPs including those longer than 30 amino acids, with complex
structures and modification processes, will be industrialized
utilizing chemical synthesis or transgenic expressions at acceptable
costs. Multiple studies have been published recently along this line.
For example, optimisation of culture conditions of recombinant
Pichia pastoris and induction process of cathelicidin BF expression
allowed to reach the product concentration of 0.5 g/L after 240 h
(Dong et al.). Li and Chen engineered synthetase to create a
synthetic pathway for the production of a novel fusaricidin and

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1425952
https://doi.org/10.3389/fmicb.2023.1144975
https://doi.org/10.3389/fmicb.2023.1258469
https://doi.org/10.3389/fmicb.2023.1267389
https://doi.org/10.3389/fmicb.2023.1239540
https://doi.org/10.3389/fmicb.2023.1144946
https://doi.org/10.3389/fmicb.2022.1045984
https://aps.unmc.edu
https://aps.unmc.edu
https://doi.org/10.3389/fmicb.2023.1153365
https://doi.org/10.3389/fmicb.2023.1239958
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fmicb.2024.1425952

constructed the recombinant M6 yielding a 55 mg/L of fusaricidin
LI-F07a. In addition, the codon use optimisation in heterologous
expression of AFP in E. coli allowed to reach its production at
780µg/ml (Chen Y.-P. et al.). Different strategies have been used to
optimize AMPs production and develop large-scale facilities, some
of which were successfully accomplished. For example, after nearly
two decades of efforts, Wang’s team has successfully established
a 20 and 30 cubic meter-scale production system for high-yield
preparation of plectasin analogs with an affordable cost comparable
to traditional antibiotics, a milestone for the translation of AMPs
(Zhang et al., 2014; Yang et al., 2022; Hao et al., 2023; Jin et al., 2023;
Li et al.).

4 Conclusions

Based on their antimicrobial activities and immunomodulatory
properties, AMPs can be used for disease prevention and treatment.
However, the development of AMPs as a viable therapeutic option
faces challenges such as cytotoxicity, stability, and bioavailability.
As discussed below, the strategies for the development of different
AMP classes may require their own specific challenges to
be addressed.

1. The category of microbial AMPs is very broad, covering
natural AMPs from four kingdoms of life (bacteria, archaea,
protists, and fungi) as annotated in APD (Wang et al., 2016;
Santos-Júnior et al., 2023; Wang, 2023; https://aps.unmc.
edu). Most of them share natural druggability properties
similar to traditional microbial antibiotics. Microbial AMPs
are made either ribosomally or non-ribosomally. Ribosomally
synthesized peptides are exemplified by nosiheptide, nisin,
plectasin and its derivatives, while non-ribosomally synthesized
peptides are represented by vancomycin, polymyxins and
daptomycin, all currently in medical use. Thus, these AMPs can
be easily developed by following the path of modern antibiotic
pharmaceutical industry, including genetic modification,
recombinant expression and chemical synthesis. These AMPs
are expected to have a wide range of therapeutic uses. A
potential drug resistance emergence, however, should be
carefully monitored during the drug development process as
well as during the use. At same time, need to keep in mind the
similarity and differences in their dual transmembrane entry
mechanisms and targets/paths, which should be separately
addressed in animals and pathogens (Figure 1).

2. After the recent refinement, the category of animal AMPs in
the APD include 2515 representatives from both invertebrates
and vertebrates. These include melittin, bombesin, venoms,
and cecropins with weak druggability, because their strong
antimicrobial activity is accompanied by high toxicity and
interference with immunological and metabolic processes.
Their development, therefore, has been more difficult and
complicated. There are possibilities that these peptides or
their derivatives could be developed as antiviral (Guo et al.)
or anti-cancer (Qu et al.) drugs. Nevertheless, some animal
AMPs such as small and cyclic θ-defensins possess a great
development potential as antibacterial agents (Schaal et al.,
2021), as demonstrated for cathelicidin-derived PAM-1

against ceftazidime-avibactam (CZA)-resistant E. coli. (Han
et al.). Additional mechanistic studies are necessary for better
understanding whether the impact of AMPs in vivo is a
consequence of immunological or other metabolic regulation or
brakue to the bona fide antimicrobial activity (Figure 1).

3. After the recent refinement, the category of plant AMPs in
the APD includes 258 plant peptides with known antimicrobial
activities. Compared to the first two categories, the number
of AMPs in this category is relatively less and include peptide
compounds such as plant defensins (for instance, Rs-AFP1),
thionins (for instance, Tu-AMP 1), soybean peptides and other
peptide products that can be developed into products with
antimicrobial and other activities (Shwaiki et al., 2021; Sharma
et al., 2022). Many traditional herbal medicines in China
and other countries have been used for millennia as anti-
infective agents. In the modern medicine, however, the active
antimicrobial compounds have to be purified, characterized,
and thus their mechanism(s) of action must be elucidated and
revealed. In this regard, traditional herbal medicines represent
a valuable source of potentially useful AMPs, which can be
explored further for our benefit (Figure 1).

The current structure-and-function and spatiotemporal
relationship of AMPs is the product of long-term evolution of
these molecules, with the selection of molecules that provided
the best protection of host organisms against the invasion of
other organisms, mainly microorganisms. The use of these
molecules by humans in medicine or in other applications not
necessarily coincides exactly with the functions that have been
selected during the previous natural evolutionary process. For
example, AMPs are continuously produced by living organisms
and act in situ, while humans need them in various acceptable
pharmaceutical formulations, with the concomitant problem of
stability or bioavailability. Thus, our task in this Research Topic
was to provide a framework for future development of AMPs
for the use in medicine and other applications (Figure 1). We
hope this Research Topic of 22 papers contributed to this goal
(Supplementary Table S1).
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