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CHAMP delivers accurate 
taxonomic profiles of the 
prokaryotes, eukaryotes, and 
bacteriophages in the human 
microbiome
Sara Pita 1,2, Pernille Neve Myers 1, Joachim Johansen 1, 
Jakob Russel 1, Mads Cort Nielsen 1, Aron C. Eklund 1 and 
Henrik Bjørn Nielsen 1*
1 Clinical Microbiomics, Copenhagen, Denmark, 2 Technical University of Denmark, Kongens Lyngby, 
Denmark

Introduction: Accurate taxonomic profiling of the human microbiome 
composition is crucial for linking microbial species to health outcomes. 
Therefore, we created the Clinical Microbiomics Human Microbiome Profiler 
(CHAMP), a comprehensive tool designed for the profiling of prokaryotes, 
eukaryotes, and viruses across all body sites.

Methods: CHAMP uses a reference database derived from 30,382 human 
microbiome samples, covering 6,567 prokaryotic and 244 eukaryotic species, 
as well as 64,003 viruses. We benchmarked CHAMP against established profiling 
tools (MetaPhlAn 4, Bracken 2, mOTUs 3, and Phanta) using a diverse set of in 
silico metagenomes and DNA mock communities.

Results: CHAMP demonstrated unparalleled species recall, F1 score, and significantly 
reduced false positives compared to all other tools benchmarked. The false positive 
relative abundance (FPRA) for CHAMP was, on average, 50-fold lower than the 
second-best performing profiler. CHAMP also proved to be more robust than other 
tools at low sequencing depths, highlighting its application for low biomass samples.

Discussion: Taken together, this establishes CHAMP as a best-in-class human 
microbiome profiler of prokaryotes, eukaryotes, and viruses in diverse and 
complex communities across low and high biomass samples. CHAMP profiling 
is offered as a service by Clinical Microbiomics A/S and is available for a fee at 
https://cosmosidhub.com.
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Introduction

Understanding the role of the human microbiome in health and disease hinges on accurate 
species-level taxonomic profiling. This requires an accurate representation of the diverse 
consortium of bacteria, archaea, eukaryotes, and viruses across various human body sites 
(Huttenhower et al., 2012; Liang and Bushman, 2021). Hence, taxonomic profiling tools must 
accurately represent the true sample composition, even in samples with variable biomass and 
sequencing depths, while minimizing false detections.
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The landscape of known human microbiome microorganisms has 
expanded significantly, largely due to the generation of bacterial and 
archaeal genome assemblies from metagenomic data, also known as 
metagenome-assembled genomes (MAGs). This has allowed the 
creation of comprehensive MAG databases such as the Unified Human 
Gastrointestinal Genome (UHGC) collection (Almeida et al., 2020) 
and the Early-Life Gut Genomes (ELGG) catalog (Zeng et al., 2022). 
Similarly, bacteriophage identification from metagenomic and 
metavirome data has led to the discovery of 1,000 of novel phages 
(Johansen et  al., 2022). Binning of eukaryotic contigs from 
metagenomic samples, albeit less developed, has also yielded some 
MAGs, although nowhere near the number found for prokaryotes 
(Olm et al., 2019; Saraiva et al., 2023). Consequently, most profiling 
databases combine known and novel prokaryotic and viral species 
from isolates and metagenomes, whilst eukaryote genomes are 
primarily represented by sequenced isolates (Parks et al., 2021; Blanco-
Míguez et al., 2023).

Multiple strategies for taxonomic profiling exist, among which the 
most used are marker-gene and k-mer based methods (Wright et al., 
2023). Marker-gene based methods such as MetaPhlAn 4 (Blanco-
Míguez et al., 2023) and MOTUs 3 (Ruscheweyh et al., 2022) align 
entire sequencing reads to specific gene catalogs, whereas k-mer based 
methods, such as Bracken 2, compare short subsequences of reads 
against extensive reference databases (Wood et al., 2019). Marker-gene 
and k-mer based strategies have both performed well in profiling 
benchmarks (Wright et al., 2023). Standardization of benchmarking 
practices in human microbiome research including convergence of the 
datasets (both in silico and DNA mock communities), performance 
metrics and reporting systems is crucial for the impartial evaluation 
of accuracy and precision across taxonomic profilers (Sczyrba et al., 
2017; Amos et al., 2020).

Here we introduce CHAMP, a comprehensive human microbiome 
profiler, which synergizes sensitive marker gene identification with the 
potential of MAGs to profile prokaryotes and eukaryotes, and a 
specialized k-mer method for low-abundance phage detection. 
CHAMP was designed exclusively for the taxonomic profiling of 
short-read (>100 bp), paired-end and human microbiome data. 
CHAMP focuses on accurately capturing the diversity across the 
human microbiome, covering a total of nine body sites and 6,546 
bacterial species, 21 archaeal species, and 244 eukaryotic species, and 
64,003 viruses. Our profiler shows improved performance across all 
domains of life and viruses, and is robust across sequencing depths, as 
validated by both in silico and sequenced DNA mock communities.

Materials and methods

Human microbiome reference gene 
catalog for prokaryote and eukaryote 
profiling

The Clinical Microbiomics Human Microbiome Reference 
(HMR05) gene catalog was derived primarily from high-quality (HQ) 
prokaryotic MAGs identified de novo. These were complemented with 
MAGs from public repositories UHGC (82,834 MAGs and 6,428 
isolates; Almeida et al., 2020) and ELGG (25,303 MAGs; Zeng et al., 
2022). The de novo MAGs were generated from 30,382 human 
microbiome samples collected across nine distinct human body sites, 

including: gut (n = 19,296), small intestinal biopsies (n = 780), oral 
(n = 4,994), skin (n = 4,306), urine (n = 934), nasopharyngeal (n = 422), 
vaginal (n = 422), airway (n = 108), and milk (n = 100). 11% (n = 3,317) 
of the samples were not publicly available. DNA from these samples 
were extracted using the NucleoSpin 96 Soil kit (Macherey-Nagel) 
apart from the urine samples that were extracted using the DNeasy 96 
Blood & Tissue kit (Qiagen). Sequencing was carried out on the 
Illumina platform yielding 2 × 150 bp paired-end sequencing reads. In 
addition, isolate genome assemblies from NCBI (Sayers et al., 2022) 
and PATRIC (Wattam et al., 2017) were added to capture otherwise 
missing species of interest, including human-associated pathogens 
and probiotics. Human-relevant eukaryotic species were manually 
collected from various sources, including an analysis of gut fungal 
species (Nash et al., 2017), publicly available lists of pathogens from 
the World Health Organization (WHO), and the eukaryotes profiled 
by MetaPhlAn 4 (Blanco-Míguez et  al., 2023), resulting in 2740 
genomes representing 244 species. In addition, genomes from 
prokaryotic and eukaryotic species relevant for benchmarking and 
absolute abundance estimation by spike-in were also included.

For MAGs not obtained from publicly available MAG repositories, 
reads were trimmed, host-filtered, and assembled into contigs with 
MEGAHIT (v. 1.2.9, Li et al., 2015) or metaSPAdes (v. 3.15.5, Nurk 
et al., 2017), and then binned using VAMB (v. 3.0.6, Nissen et al., 
2021). MAGs were considered high-quality if they had >90% 
completeness and < 5% contamination based on CheckM2 (v. 2022-
07-19; Chklovski et al., 2023) and passed the GUNC chimerism test 
(v. 1.0.5, Orakov et al., 2021). Redundant MAGs were removed by 
clustering MAGs within a species cluster using a 99.5% ANI cutoff. 
All MAGs were taxonomically annotated using GTDB-Tk (v. 2.3.0, 
Chaumeil et al., 2022) with Genome Taxonomy Database (GTDB) 
release 214 (Parks et al., 2022). To combine MAGs from multiple 
VAMB batches and MAG repositories, MAGs annotated to the same 
species were merged. MAGs without GTDB-Tk species-level 
annotations were clustered into species clusters based on 95% average 
nucleotide identity (ANI) (dRep, Olm et al., 2017; FastANI, Jain et al., 
2018). This resulted in 6,567 prokaryotic species clusters, 11% of 
which were unannotated at a species level according to GTDB.

Identification of pan-genomes and 
signature genes

To derive a pan-genome catalog for each species, we called genes 
using Pyrodigal (v 2.0.2, Larralde, 2022) and then used a three-step 
clustering approach. First, nucleotide sequences of the genes were 
clustered with MMseqs2 (v. 14, Steinegger and Söding, 2018) with 
98% identity and 90% bi-directional coverage. Second, the 
representatives from the first iteration were clustered with MMseqs2 
to 95% identity and 90% bi-directional coverage. Representatives of 
the second iteration were chosen as the ones with highest cardinality 
from the first iteration. Third, the second iteration representatives 
were clustered with CD-HIT (cd-hit-est, v. 4.8.1, Fu et al., 2012) to 
95% identity and 90% coverage of the shorter sequence. For the third 
iteration clusters, genes were discarded if they were overlapping with 
>20% of their length with another gene of higher cardinality, such that 
only non-overlapping (<20% of shorter sequence) genes with the 
highest cardinality were left. Genes shorter than 100 bp or with a 
species prevalence <1% were discarded.
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For prokaryotes and eukaryotes separately, the complete set of 
pangenomes were then clustered with MMseqs2 to 97% identity 
and 90% bi-directional coverage to obtain between-species clusters. 
The pan-genomes from prokaryotic (n = 6,567) and eukaryotic 
(n = 244) species were merged into a final gene catalog of 
25,761,278 genes.

To enable quantification of each species in the database, up to 250 
signature (also called marker) genes were selected for each species 
based on core genes (≥ 60% prevalence in species MAGs) with a 
length ≥ 200 bp and ≤ 20 kbp. To ensure specificity, a potential 
signature gene was removed if it aligned to another gene in the catalog 
with >97% identity over 100 bp. However, if fewer than 20 genes met 
these criteria for a species, then genes with segments >200 bp without 
alignments to other genes were used, and non-unique segments of 
these genes were masked.

Preprocessing of sequencing reads

Raw reads were trimmed to remove adapters and low-quality 
bases (Phred score < 30) using AdapterRemoval (v. 2.3.1, Schubert 
et al., 2016). Then, host contamination was removed by discarding 
read pairs where either read mapped to the human reference genome 
GRCh38 with Bowtie2 (v. 2.4.2, Langmead and Salzberg, 2012). 
Resulting read pairs were retained if both reads had a length of at least 
100 bp; these were classified as high-quality non-host (HQNH) reads.

Abundance profiling of prokaryotes and 
eukaryotes

HQNH reads were mapped to the HMR05 pan-genome catalog 
using BWA mem (v. 0.7.17, Li and Durbin, 2009). An individual read 
was considered uniquely mapped to a gene if the MAPQ was ≥20 and 
the read aligned with ≥95 % identity over ≥100 bp.

However, if >10 bases of the read did not align to the gene or 
extend beyond the gene, the read was considered unmapped. The 
expected read counts for signature genes in each species in each 
sample were modelled with a negative binomial distribution as 
follows. First, if (1) ≥50 of the signature genes for a species had 
non-zero read counts and (2) ≥99% of genes were expected to have 
non-zero read counts given the total read count for that species 
(1-(((n_genes-1)/n_genes)^n_reads) ≥0.99), then signature genes 
with zero reads were ignored in that sample. Second, the expected 99% 
quantile (between 0.5 and 99.5%) of read counts was calculated for 
each gene based on a negative binomial distribution with a mean 
proportional to the effective gene length and dispersion defined as 
log2 (effective gene length). The abundance of each species was then 
calculated, using only the signature genes with observed read counts 
within the expected 99% quantile, as the mean read count normalized 
by effective gene length. Species abundances were set to zero if fewer 
than 5 genes with non-zero read counts were within the 99% quantile. 
Furthermore, species with <66% of genes with non-zero read counts 
within the 99% quantile were set to zero, unless the median abundance 
of signature genes was non-zero, in which case the median gene-
length-corrected abundance of non-zero genes was used. Abundances 
were then normalized sample-wise such that the total abundance of 
all species sums to 100%.

Human phage and viral genome database 
for bacteriophage profiling

The Human Virome Reference v. 1 (HVR01) was constructed by 
combining viral genomes identified de novo with the public viral 
databases: MGV (n = 54,118, Nayfach, Páez-Espino, et al., 2021), IMG/
VR (n = 250,970, v. 4, downloaded 2022-12-19) using the subset of 
human-associated virus genomes, a database of infant viruses from 
the COPSAC consortium (n = 10,021, Shah et al., 2023), and NCBI 
RefSeq viruses (n = 15,247, downloaded 2023-03-02, Brister et  al., 
2015). Putative viral contigs from HMR05 MAGs were determined by 
running geNomad (v. 1.3.3, Camargo and Kyrpides, 2023) and 
accepting only hits with a geNomad viral score of ≥0.7. Putative viral 
contigs were retained if they had either (1) direct-terminal-repeats 
(DTR) and a minimum size of 2,000 bp, or (2) at least one viral 
hallmark gene and a minimum size of 4,000 bp. For datasets processed 
using VAMB metagenomic binning, multiple viral contigs were 
combined into a viral MAG if found in the same VAMB bin. 
Altogether, de novo discovery of viruses resulted in 547,573 putative 
viral genomes.

Each of the putative viral genomes were scored with a viral 
confidence score as described in the IMG/VR v4 (Camargo et al., 
2023). First, viral genomes were annotated with CheckV (v.1.0.1, 
default settings, Nayfach et al., 2021a). Second, viral genomes were 
clustered with RefSeq viral genomes into viral operational taxonomic 
units (vOTU) based on all-vs-all genome alignment using Blastn (v 
2.10.1+, -task megablast-evalue 1e-5-max_target_seqs  10,000, 
McGinnis and Madden, 2004). Genomes were clustered into a vOTU 
if they had a 95% ANI across at least 85% of the genome. Subsequently, 
viral genomes were scored accordingly:

3 points: Viral genome clustered with a RefSeq viral genome into 
a vOTU, and three or more geNomad viral hallmark markers.

2 points: High-confidence CheckV average amino acid identity 
(AAI) completeness estimate, and at least two geNomad viral 
hallmark markers.

1 point: Medium-confidence CheckV AAI completeness estimate, 
and one geNomad viral hallmark marker; direct or inverted terminal 
repeats; two or more matches to CRISPR spacers.

Viral genomes with at least 2 points (n = 231,587 genomes) were 
retained for downstream analysis. These genomes were combined 
with viral genomes from the public viral databases and clustered into 
vOTUs (95% ANI across 85% aligned genome fraction [AF]) to form 
a non-redundant viral genome database. To optimize the 
non-redundant database for viral profiling, we minimized the degree 
of shared nucleotide sequences between representatives by filtering 
out vOTUs as follows: (1) viral genomes in a vOTU (n > 1) with any 
edges to genomes of other vOTUs were removed from that cluster; 
(2) satellite vOTUs (n = 1, one genome in cluster) with edges to 
multiple vOTUs were removed entirely; (3) satellite vOTUs (n = 1) 
with edges to members of only a single other vOTU were reassigned 
to that vOTU; (4) entire vOTUs were removed if genome members 
had borderline similarity to other clusters (ANI > 93 and 30 < AF < 85) 
or (93 < ANI < 95 and AF > 85 AF). The longest genome within each 
of the refined vOTUs was chosen as the representative genome, 
resulting in a final representative viral database containing 
64,003 genomes.

Genomes acquired from RefSeq and the COPSAC consortium 
were assigned their preexisting taxonomy. The remaining 
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uncultivated viral genomes without taxonomic annotation were 
assigned to viral taxa as defined in the International Committee 
on Taxonomy of Viruses (ICTV) Release #38 (Nayfach et  al., 
2021b). The following taxonomic classification methods were used 
in order of priority: (1) clustering with RefSeq viral genomes; (2) 
clustering with COPSAC viral genomes; (3) geNomad marker-
based taxonomic assignment. For the marker-based assignment, 
geNomad was employed to classify sequences using taxonomically 
informative protein profiles. The first taxonomic annotation 
steps (1-3) yielded class and family annotation for 94.7 and 
12.8% of viruses, respectively, of which 49,997 out of 64,003 
genomes belonged to the class Caudoviricetes, i.e., 
tailed bacteriophages.

Prediction of vOTU host taxonomy

The bacterial and archaeal-host taxonomy for each vOTU was 
predicted at each taxonomic level based on CRISPR spacer 
alignment and k-mer matching between vOTUs and 
prokaryotic genomes.

For the CRISPR spacers, a non-redundant database (100% identity 
and 100% coverage) of 4,793,298 CRISPR spacers, originally derived 
from approximately 1.6 million genomes from the NCBI and MAG 
study (Camargo et  al., 2023) were merged with a non-redundant 
database (100% identity and 100% coverage) of 1,049,986 CRISPR 
spacers extracted using minced (v 0.4.2, Bland et al., 2007) from the 
HMR05 HQ MAGs. The spacers of the combined database were 
mapped with blastn (v.2.10.1+, -max_target_seqs = 1,000-word_
size = 8-dust = no) against all representative vOTU genomes. Confident 
virus-host connections were considered if spacer-alignments had a 
length of at least 25 bp and 95% spacer coverage with a maximum of 
1 mismatch.

K-mer matching was performed using PHIST (v. 1.0.0, default 
settings, Zielezinski et  al., 2022) between representative vOTU 
genomes and bacterial and archaeal MAGs from HMR05 HQ MAGs. 
To prevent spurious matches, only virus-host connections where at 
least 20% of the viral k-mers were found in a prokaryotic genome 
were accepted.

The prokaryotic host taxon was then assigned to each vOTU at the 
lowest taxonomic rank, having at least two connections (either spacers 
or k-mers) and representing >50% of all connections. We chose the 
method that was supported by the greatest number of host 
assignments, prioritizing CRISPR-spacers over k-mer 
matching annotations.

Abundance profiling of bacteriophages

Read pairs mapping to each vOTU genome were counted using 
KMA (v. 1.4.7, Clausen et  al., 2018) with the settings: “-mrs 
0.01-apm p.” A vOTU was considered detected if it had ≥5 aligned 
paired-end reads and either (1) the percentage of identical 
nucleotides between genome and consensus sequence assembled 
from mapped reads was ≥99%, and ≥ 5% of the genome was covered 
by reads, or (2) the percentage of identical nucleotides between 
genome and consensus sequence of mapped reads was ≥95%, 
and ≥ 30% of the genome was covered by reads. vOTU abundance 

was estimated based on number of mapped read pairs divided by 
genome length.

Benchmarking of prokaryotic profiling

For prokaryotic benchmarking, 10 body site-representative 
prokaryotic metagenomes were simulated for each of the following 
five body sites: adult gut, infant gut, oral, skin, and vagina. 
Genome accession ids for prokaryotic species found in each 
human body site were identified from published literature to avoid 
biasing the benchmark to our own database (Bäckhed et al., 2015; 
Proctor, 2019; Saheb Kashaf et al., 2021). For the adult gut, oral 
and vagina, GCA/GCF identifiers were extracted from the 
publications and used for simulation if present in GTDB metadata. 
For the skin and infant gut, MAGs from the publications were 
classified with GTDB-Tk and the GCA/GCF references of 
classified MAGs were used for simulation (Supplementary Table S1). 
100 (80 for vaginal) randomly sampled prokaryotic species specific 
to each body site were provided for each community. Metagenomes 
were generated using CAMISIM (Fritz et  al., 2019), which 
simulates 2.1 Gb of Illumina 2 × 150 bp paired end reads with the 
default HiSeq 2,500 error profile and a mean insert size of 200 bp. 
To assess profiling performance for a range of sequencing depths, 
the 50 in silico metagenomes were also downsampled with seqtk 
(-s100) to sequencing depths of 20, 5, 2, 1, 0.5, 0.25 and 0.1 million 
read pairs.

Prokaryotic profiling was also benchmarked with DNA reference 
reagents. NIBSC sequencing data for 10 DNA mock communities 
comprising 19 common gut bacterial species was downloaded from 
the NCBI Sequence Read Archive (NCBI Bioproject ID PRJNA622674, 
Amos et al., 2020).

CHAMP performance was compared against popular and third-
party benchmarked top-ranking (Meyer et al., 2022; Poussin et al., 
2022) open-source taxonomic profilers: marker-gene based profilers 
MetaPhlAn 4 (v 4.0.6, database from 2022 to 12, Blanco-Míguez et al., 
2023) and mOTUs 3 (Ruscheweyh et al., 2022), and Bracken 2 (Lu 
et  al., 2017), which uses the k-mer based method KRAKEN for 
mapping (Wood et al., 2019). Two iterations of Bracken 2 profiling 
were conducted: the first, using the standard Bracken 2 database based 
on the RefSeq database (O’Leary et al., 2016) and a second instance, 
using the GTDB release 214 (r214).

MetaPhlAn 4, mOTUs 3 and Bracken 2 were run on default 
settings. A long tail of incorrectly predicted low abundance species 
leading to low precision estimates has been previously shown for 
kmer-based profilers (Sun et al., 2021). To assess the veracity of low 
abundance species predictions, taxonomic profiles for the 50 in silico 
human body site metagenomes were filtered to relative abundance 
cutoffs of 0.0005, 0.0001, 0.0005, 0.001, 0.005, and 0.01 
(Supplementary Figure S1) across profilers. Based on these results, 
we chose to filter relative abundances <0.001 from Bracken 2 profiling 
output to maximize F1 scores for the prokaryotic benchmark. We did 
not filter low abundant species detections from any of the 
other profilers.

We also tested Bracken 2 built with GTDB r214 database to 
harmonize species annotations between Bracken 2 and CHAMP. NCBI 
genome accession numbers were matched to GTDB species using the 
“bac120_taxonomy_r214” file from GTDB r214 (Parks et al., 2022). 
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However, Bracken 2 performed better on RefSeq than GTDB 
(Supplementary Figure S2). Hence, all other Bracken 2 benchmarks 
use the RefSeq database.

Benchmarking of eukaryotic profiling

30 eukaryotic in silico metagenomes comprising up to 200 
randomly sampled genomes were generated using CAMISIM. Species 
genomes were selected from a set of 113 eukaryotic species 
(Supplementary Table S2) corresponding to the eukaryotic species 
within both CHAMP (244 species) and MetaPhlAn 4 (122 species) 
databases. Eukaryotic taxonomy was based on NCBI annotations 
(Schoch et al., 2020). CHAMP eukaryotic profiling was compared 
against MetaPhlAn 4 using these 30 in silico eukaryotic 
metagenomes. mOTUs 3 and Bracken 2 were excluded from the 
eukaryotic benchmark, as their default databases do not 
include eukaryotes.

Benchmarking of phage profiling using in 
silico mixed prokaryotic and phage 
communities

The phage-inclusive profiling of CHAMP was benchmarked 
against Phanta (Pinto et al., 2023) using 10 synthetic metagenomic 
mixed community datasets constructed using CAMISIM (Fritz et al., 
2019). Each community consisted of 200 randomly selected bacterial 
genomes from GTDB with species-level annotation and 200 viral 
genomes from the Gut Phage Database (GPD) (Camarillo-Guerrero 
et al., 2021). GPD genomes were sourced to avoid simulating reads 
from genomes corresponding to genomes present in HVR01 or 
Phanta (matched using genome-index). GPD genomes were clustered 
with genomes in MGV vOTUs using ANI ≥ 95% and coverage ≥ 85% 
to identify the subset of genomes covered by both databases (MGV 
vOTUs were part of both HVR01 and Phanta). One GPD genome was 
sourced for each vOTU (Supplementary Table S3). ART Illumina 
HiSeq 2,500 error profile with an insert size of 200 ± 25 bp was used to 
simulate a total of 50 million paired reads (2 × 150 bp) for each 
community with 95% of the reads originating from bacteria and 5% 
of the reads originating from viruses. Reads were subsampled for each 
community using seqtk (parameters: -s100) to generate metagenomes 
at 25, 20, and 10 million reads for each of the 10 communities, thereby 
bringing the total number of metagenomes in the benchmarking 
dataset to 40.

To investigate the robustness of CHAMP to lower sequencing 
depths, the 10 metagenomes were rarefied to 5, 2, 1, 0.5, 0.25, and 0.1 
million reads.

Benchmarking of phage profiling and 
removal of false-positives proviruses

Phanta (v.0.3.0) was run using default settings but changing 
bacterial and viral coverage threshold according to the sequencing 
depth of the profiled metagenome. The threshold between bacterial 
and viral coverage was set to 0.05/0.35 for in-silico samples with a 
depth of 50 million reads, 0.02/0.2 for samples with a depth between 

20 and 25 million reads, and 0.01/0.05 for samples with a depth equal 
to 10 million reads.

In silico read simulations from whole bacterial genomes can 
introduce the presence of “false-positive” (FP) viruses, due to reads 
from prophages integrated in bacterial chromosomes mapping to 
viruses in the profiling database. As these prophages are not part of 
the expected true set of viruses in each benchmark community, 
we  introduced a filtering criterion to detect these false positives 
(although they are true prophages) to allow a fair benchmark between 
profilers, in line with the methodology applied previously (Pinto 
et al., 2023). Viruses detected by either CHAMP or Phanta which 
attracted 10 or more reads from a bacterial chromosome were 
classified as FP viruses and removed from the set of viruses detected 
in each sample.

Classification performance metrics

Binary performance metrics were calculated using correctly (TP) 
and incorrectly (FP) detected species by a profiler along with the 
number of undetected species present in each sample (FN). 
Precision = TP/(TP + FP), describes the fraction of species detected by 
a classifier correctly, while recall = TP/(TP + FN), is the fraction of 
correctly detected species within a sample. The F1 score is the 
harmonic mean of recall and precision and was calculated as 
F1 = (2 × precision × recall)/(precision + recall). We also report false 
positive relative abundance (FPRA) = FP abundance/total species 
abundance; sensitivity = TP/(TP + FN); and Bray–Curtis similarity = 

1
−

−
−

∑
∑

ij ikjk

ij ikjk

x x

x x

| |
, where xij and xik refer to the observed and 

ground truth abundance of a species as defined by NIBSC (Amos 
et al., 2020). We also calculated additional benchmarking metrics as 
described in (Meyer et al., 2019; Supplementary Table S4).

Results

Development of the human microbiome 
reference and the human virome reference 
databases

Large-scale efforts to build human microbiome references have 
predominantly focused on cataloging prokaryotic genomes from 
human stool samples (Almeida et al., 2019; Nayfach et al., 2019), with 
lesser emphasis on other body sites (Pasolli et al., 2019) and even less 
on identifying viral genomes (Benler et al., 2021; Shah et al., 2023). To 
broaden the spectrum of species and viral genomes represented, 
we  compiled 4,994 oral, 4,306 skin, 422 vaginal, 934 urine, 422 
nasopharyngeal, 108 airways, and 100 human milk samples. Notably, 
30% of these samples were sourced from non-public domains. 
Furthermore, we included 780 samples from intestinal biopsies to 
capture the distinct microbiome of the gastrointestinal tract compared 
to stool (Zmora et  al., 2018), 2,158 stool samples from countries 
unrepresented in the public repositories, and 1,000 stool samples from 
the SCAPIS cohort (Dekkers et al., 2022). These samples were batch 
processed using VAMB (Nissen et al., 2021) to bin contigs, resulting 
in 147,427 MAGs from prokaryotic species of which 79,796 were 
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high-quality (HQ) and non-chimeric, along with, 547,573 putative 
viral genomes (Supplementary Figure S3, see Materials and Methods).

We supplemented these 79,796 HQ, non-chimeric prokaryotic 
MAGs with MAGs from public repositories—UHGC (82,834 MAGs 
and 6,428 isolates, Almeida et al., 2020) and ELGG (25,303 MAGs, 
Zeng et al., 2022)—and with 27,492 genome assemblies from NCBI 
(Sayers et al., 2022) and PATRIC (Wattam et al., 2017). This inclusion 
aimed to encompass missing species of interest such as human-
associated pathogens, gut fungal species, probiotics, and species found 
in DNA mock communities or utilized as spike-ins for absolute 
abundance estimation. All prokaryotic MAGs and reference genomes 
were organized into species clusters based on GTDB annotations. 
MAGs without species-level annotation were clustered with a 95% 
ANI threshold to each other and to the representative MAGs with a 
species level annotation. Redundant MAGs within each cluster were 
pruned using a 99.5% ANI cutoff yielding a total of 102,445 
prokaryotic MAGs. The 547,573 putative viral genomes from our 
human metagenomic data were merged with 330,356 viral genomes 
from four public viral repositories, clustered with a 95% ANI threshold 
and scored based on presence of viral features to form a 
comprehensive, non-redundant database with 64,003 viral genomes.

Altogether, the Human Microbiome Reference (HMR05) and the 
Human Virome Reference version 1 (HVR01) encompass 6,546 
bacterial species, 21 archaeal species, 244 eukaryotic species, and 
64,003 viruses.

Benchmarking of prokaryotic profiling 
using CAMI in silico datasets

CHAMP employs signature genes for profiling prokaryotic and 
eukaryotic species. These are selected genes that are ubiquitous among 
strains of the species while not similar to genes of other species. 
Nevertheless, there may exist rare genetic elements that result in 
irregular mapping to signature genes. For example, from rare species 
or rare conspecific genetic diversity. To counteract this, CHAMP 
models the abundance of each signature gene in every sample using a 
negative binominal distribution and subsequently filter out genes that 
fall outside the 99% percentile expected mapping, assuming that a 
given set of signature genes have the same abundance in a sample. The 
performance of CHAMP was evaluated by benchmarking it against 
three prominent metagenomic profilers: MetaPhlAn 4, mOTUs 3 and 
Bracken 2, across a variety of sample types using standardized 
benchmarking metrics (Meyer et al., 2019).

We first assessed the performance of CHAMP on simulated mock 
communities, designed to mirror the diversity of prokaryotic species 
within the human microbiome. These communities, representing five 
key human body sites: the adult gut, infant gut, oral cavity, skin, and 
vagina, and were generated using the CAMISIM tool (Fritz et al., 
2019). We simulated 10 communities for each of the five body sites.

CHAMP excelled over all other profilers in recall (the fraction of 
actual species that were detected correctly), across all body sites, 
indicating its superior ability to detect species. Both CHAMP and 
MetaPhlAn 4 demonstrated exceptional precision (the fraction of 
correctly detected species) across these community types, with average 
precisions of 0.95 ± 0.03 and 0.93 ± 0.03, respectively, significantly 
surpassing Bracken 2 and mOTUs 3 (Figure 1). CHAMP showed 
superior precision in the adult and infant gut, as well as oral 

communities, while MetaPhlAn 4 performed marginally better in skin 
and vaginal communities. Importantly, CHAMP struck the best 
precision-recall tradeoff with the highest F1 scores across all body 
sites. For similarity estimates (Bray–Curtis similarity a measure of 
abundance differences from the ground truth), CHAMP and 
MetaPhlAn 4 again achieved the highest averages (avg. 0.9 ± 0.08 vs. 
avg. 0.9 ± 0.08) across body site communities. Finally, CHAMP 
excelled with an FPRA (avg. 0.008 ± 0.02) that is more than six times 
less than the second-best profiler MetaPhlAn 4 (0.05 ± 0.08). Overall, 
CHAMP performed exceptionally well, outperforming all other 
profilers across key metrics and body sites. We found similar results 
in benchmarks at genus-level (Supplementary Figure S4).

Given the significant variability in sequencing depth across 
studies and its known impact on taxonomic profiling, we evaluated 
the performance of CHAMP compared to the other profilers by 
generating in-silico metagenomes at seven different sequencing 
depths, ranging from 20 million to 100,000 reads (Figure 2). Precision 
was found to be  consistent across all sequencing depths for each 
profiler. However, recall and, to some extent, F1 scores, declined with 
reduced sequencing depths. Notably, CHAMP exhibited enhanced 
robustness at lower sequencing depths, particularly between 1 million 
and 100,000 paired reads. At the threshold of 500,000 paired reads, 
CHAMP had an average F1 score 1.5 times higher than that of the 
next-best profiler for the F1 score, MetaPhlAn 4, across all body site 
communities. This supports the utility of shallow shotgun sequencing 
as a cost-effective yet accurate approach for taxonomic profiling, 
where CHAMP at 500,000 reads, on average, had a 17-fold lower 
FPRA compared to the second-best profiler.

Benchmarking prokaryotic profiling using 
NIBSC reference reagents

We assessed the performance of CHAMP against MetaPhlAn 4, 
Bracken 2, and mOTUs 3 on two DNA reference reagents provided by 
NIBSC: Gut-Hi-Low-RR, featuring even compositions, and Gut-Mix-RR, 
with staggered compositions of 19 common gut microbial species. Each 
reagent included five samples. For both DNA reference reagents, 
CHAMP showed the lowest average FPRA (Table  1), significantly 
outperforming the next-best profiler in terms of FPRA, by 55 times in 
Gut-Mix-RR and 110 times in Gut-Hi-Low-RR. CHAMP demonstrated 
superior sensitivity compared to MetaPhlAn 4 and mOTUs 3 on both 
reagents and outperformed Bracken 2 on Gut-Hi-Low-RR. For 
Gut-Mix-RR, Bracken 2 achieved perfect sensitivity, although it 
consistently detected more species than those that were in the reagents. 
Overall, CHAMP excelled in benchmarking metrics and showed 
unparalleled FPRA performance against current state-of-the-art profilers.

Benchmarking of eukaryotic profiling using 
CAMI in silico datasets

Eukaryotes, integral components of the human microbiome, have 
only recently been incorporated into many microbiome profilers 
(Blanco-Míguez et al., 2023). In assessing eukaryotic species-level 
profiling, we  compared CHAMP with MetaPhlAn 4, excluding 
mOTUs 3 and Bracken 2 due to their lack of eukaryotic coverage. 
Using 113 eukaryotic species common between CHAMP and 
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MetaPhlAn 4 databases, we  generated 30 simulated mock 
communities for benchmarking. Both CHAMP and MetaPhlAn 4 
exhibited high precision on these communities (avg. 0.97 ± 0.02 and 

0.95 ± 0.03, respectively, Figure 3). CHAMP demonstrated superior 
recall compared to MetaPhlAn 4 (avg. 0.90 ± 0.05 vs. 0.53 ± 0.08), 
resulting in a higher F1 score average of 0.93 ± 0.03 compared to 

FIGURE 1

Evaluating the taxonomic profilers CHAMP, MetaPhlAn 4, mOTUs 3, and Bracken 2 on key benchmarking metrics: precision, recall, F1 score, similarity, and 
FPRA across five human body communities. A total of 50 metagenomes (10 per body site) each with 100 prokaryotic species were simulated using CAMISIM.
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0.67 ± 0.07 for MetaPhlAn 4. Additionally, CHAMP surpassed 
MetaPhlAn 4 in the similarity of predicted profiles to the ground 
truth composition and had lower abundance of false positives (FPRA 

avg. 0.02 ± 0.06 vs. 0.03 ± 0.03). Altogether, CHAMP displayed 
superior performance at eukaryotic profiling compared to MetaPhlAn 
4 across all benchmarking metrics.

FIGURE 2

Evaluating performance across the sampled sequencing depths: 20, 5, 2, 1, 0.5, 0.25 and 0.1 million reads for the four taxonomic profilers: CHAMP, 
MetaPhlAn 4, mOTUs 3, and Bracken 2. The following benchmarking metrics were compared: precision, recall, F1 score, similarity, and FPRA. Each of 50 
(10 per body site) metagenomes comprising 100 species were randomly sampled at seven sequencing depths resulting in 350 metagenomic samples.
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Benchmarking of phage profiling using 
CAMI in silico datasets

Phage profiling has emerged as an underexplored domain, crucial 
for delineating bacteria-phage interactions within the microbiome. 
The field has few extensively validated tools for accurate phage 
detection. To address this gap, the capabilities of CHAMP for phage 
profiling were rigorously evaluated against the current state-of-the-art 
phage profiler, Phanta (Pinto et  al., 2023), which, like CHAMP, 
leverages k-mer matching for virus identification. The benchmarking 
dataset (n = 10) was simulated to reflect a realistic composition of 95% 
bacteria and 5% bacteriophages, with sequencing depths between 10 
and 50 million reads, corresponding to the benchmarking framework 
previously proposed by Pinto et  al., 2023. To ensure a balanced 
comparison, only genomes with species-level annotations shared 
between the databases were included. Phanta showed good precision 
(avg. 0.95 ± 0.02); however it was surpassed by CHAMP, which 

demonstrated near-perfect precision (avg. 0.99 ± 0.01, Figure  4A). 
CHAMP also outperformed Phanta in recall (avg. 0.95 ± 0.02 vs. 
0.84 ± 0.05), F1 scores (avg. 0.97 ± 0.01 vs. 0.87 ± 0.03), and similarity 
(0.98 ± 0.01 vs. 0.90 ± 0.07), while maintaining a lower FPRA (avg. 
0.07% ± 0.13% vs. 5.08% ± 3.34%, Figure  4B). CHAMP therefore 
exhibited superior performance across all benchmarking metrics, 
demonstrating both high precision and substantial recall, thereby 
establishing its precedence in phage profiling accuracy.

Phanta does not recommend phage profiling in samples below 10 
million reads. Nonetheless, CHAMP maintained exceptional 
precision (>0.98) across a broad range of sequencing depths, of which 
the lowest depth had only 100,000 reads (Figure 4C). Recall rates 
decreased with reduced sequencing depth, mirroring observations in 
prokaryotic community benchmarks. Recall remained high (>0.75) 
even at a depth of only 100,000 reads, underscoring the superior 
performance of CHAMP in profiling phage communities across deep 
and shallow samples.

TABLE 1 Evaluation of CHAMP against other profilers using the NIBSC DNA reference reagents Gut-Hi-Low-RR and Gut-Mix-RR.

Profiler Sensitivity FPRA Diversity Similarity

A

Gut-Hi-Low-RR

CHAMP 94 0.01 19 0.62

Bracken 2 91.6 4.26 21.4 0.76

MetaPhlAn 4 89 1.1 18.8 0.65

mOTUs 3 70 18.1 20.6 0.53

B

Gut-Mix-RR

Bracken 2 100 4.96 22.2 0.76

CHAMP 96 0.09 19.8 0.72

MetaPhlAn 4 90 5.55 19 0.72

mOTUs 3 70 26.2 24.2 0.63

FIGURE 3

Comparison of eukaryotic taxonomic profiling by CHAMP and MetaPhlAn 4 using in silico metagenomes. 30 metagenomes were simulated 
encompassing 113 eukaryotic species found both in CHAMP and MetaPhlAn 4 databases. Benchmarking metrics included: precision, recall, F1 score, 
similarity, and FPRA.
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Discussion

CHAMP was developed to accurately profile all types of microbes 
including eukaryotes, archaea, bacteria, and viruses found in human 
microbiome samples. Despite the existence of multi-domain and 
phage-inclusive profilers (Parks et  al., 2021; Zolfo et  al., 2024), 
CHAMP is the first to systematically evaluate the performance across 
prokaryotes, eukaryotes, and phages, thereby providing a broad 
evaluation and comparison of current profilers. When compared 
against MetaPhlAn 4, mOTUs 3, Bracken 2, and Phanta, CHAMP 
achieved the highest recall and F1 scores of all tools across all 
benchmark datasets (Figures  1, 3, 4). CHAMP also consistently 
achieved the lowest FPRA that was up to 110 times lower than the 
second-best tool, emphasizing its superior accuracy in the taxonomic 

profiling of diverse and complex microbiome samples. Accounting 
for differences in database comprehensiveness is crucial to ensure 
fairness in the comparison of profiling tools. The prokaryote profiling 
accuracy of CHAMP was assessed against MetaPhlAn 4, mOTUs 3, 
and Bracken 2, and based on two reference datasets from NIBSC 
with common gut microbiome species and 50 in silico metagenomes. 
The in silico metagenomes were designed to reflect the diversity 
across different body sites, including human adult gut, infant gut, 
oral, and skin samples. The species included in each body sites were 
selected from relevant publications to ensure fairness in the 
benchmark. For the eukaryotic and phage benchmarks, where 
CHAMP was compared against MetaPhlAn 4 and Phanta, 
respectively, the communities were simulated using the subset of 
species or genome sequences shared between the databases. As 

FIGURE 4

(A,B) Benchmark of phage profiling on in silico dataset with 10 simulated metagenomes containing 95% prokaryotic and 5% phage reads across the 
sequencing depths: 10, 20, 25, and 50 million reads. The performance of phage profiling with CHAMP and Phanta was assessed by F1 score, precision, 
recall, similarity, and FPRA. (C) Precision and recall of CHAMP after rarefying the 10 in silico communities with 50 million to 25, 20, 10, 5, 2, 1, 0.5, 0.25, 
and 0.1 million reads.
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CHAMP was developed specifically for profiling the human 
microbiome, it should not be used to profile metagenomes from 
non-human origin.

A disadvantage to limiting the species in the benchmark to 
cultured species shared across databases is that unknown members 
of the microbiome are not included. Other benchmarks have focused 
on covering primarily unknown species (Parks et al., 2021). CHAMP 
was built with the intention of profiling rare and/or uncultured 
species as evident from our large efforts in collecting and building 
MAGs from 15,224 samples from under-sampled body sites and 
countries. However, we did not include unknown species for two 
reasons: first, to make the benchmark fair across different tools and 
databases as some databases may not include uncultured species and 
second, because we designed body-site specific communities using 
published relative abundance matrices where only cultured species 
were profiled.

Accounting for differences in species present in different databases 
does not mean the comprehensiveness and quality of the database 
does not affect profiling accuracy. For example, Bracken 2 showed 
promising results on DNA reference reagents, presumably because the 
reagents consisted of well-characterized species. Nonetheless, Bracken 
2 underperformed on the in-silico communities using its suggested 
database, RefSeq (2023-09-10). Still, the performance of Bracken 2 did 
not improve when we sought to create a more comprehensive k-mer 
database based on GTDB (Supplementary Figure S1). Bracken 2 using 
GTDB as a database also resulted in lower sensitivity on the DNA 
reagents, Gut-Hi-Low-RR and Gut-Mix-RR, which was 35 for both, 
compared to 100 and 91.6 for Bracken 2 built with the standard RefSeq 
database (data not shown). Some authors have noted parameters used 
and database choice in Bracken 2 influences predicted profiles (Wright 
et al., 2023). Although we tinkered with the Bracken 2 database for 
benchmarking purposes, optimizing Bracken 2 run parameters would 
be unfair to the other profilers evaluated as they were all run using 
recommended settings.

Runtime and memory usage often affect the choice of profilers 
used (Meyer et al., 2022). In this regard, k-mer based methods (e.g., 
Bracken 2) are typically faster but use more memory compared to 
alignment-dependent methods, such as CHAMP, as can be seen in 
Supplementary Tables S5, S6.

As CHAMP uses a different profiling methodology for 
bacteriophage profiling, we also evaluated bacteriophage profiling 
resource use compared to Phanta on a single viral metagenome. 
CHAMP bacteriophage profiling was also significantly slower than 
Phanta (2 h 16 min vs. 36 min 40 s) but displayed significantly less peak 
memory usage (0.09 Gb vs. 33.27 Gb). CHAMP was designed for 
parallelization, so just enabling profiling on 4 threads would bring 
total runtime under an hour, whilst bringing total maximum memory 
to around 14Gb. In this scenario, its runtime and maximum memory 
usage becomes very similar to MetaPhlAn 4. All in all, the time and 
memory available needed to run CHAMP does not significantly differ 
from the other considered profilers, as there is a clear tradeoff between 
runtime and maximum memory use. CHAMP can be run on the 
Cosmos-ID hub1 and by default, takes about an hour to process a 
sample of 20 million reads. 10 samples can be run in parallel.

1 https://cosmosidhub.com/

CHAMP is solely intended for profiling the human microbiome, 
whilst the microbiome profilers we  benchmarked against are 
designed to profile human, host-associated, and environmental 
microbiomes. As such, the background noise of these profilers when 
performing human microbiome profiling will be  higher than 
CHAMP, as they must distinguish among more species increasing 
the likelihood of species misclassification. Another key to CHAMP 
performance is the number of human specific references and the 
curation of the reference database. The database was constructed 
using strict quality filtering of MAGs and (completeness > = 90%, 
contamination <0.05 and multiple tests for chimerism, for details 
see Materials and Methods), to improve the quality of the signature 
genes (Orakov et al., 2021). MetaPhlAn 4 and mOTUs 3 include 
assemblies with completeness values > = 50% and contamination 
values <5 and 10% into their databases, respectively. These 
differences likely explain the consistently higher recall and lower 
FPRA that CHAMP displays across benchmarks. Moreover, 
CHAMP employs a dynamic sample-specific signal filtering (for 
details see Materials and Methods) that handles spurious mapping, 
further reduces false signal, and improves precision and 
abundance estimates.

Signature or marker gene-based profiling strategies, such as 
those employed by MetaPhlAn 4 and CHAMP for prokaryotic and 
eukaryotic profiling come with its challenges. At times, signature 
genes may be non-specific to a species or absent in a given sample. 
Hence, CHAMP implements a dynamic sample-specific signature 
gene filtering approach to reduce FPs as well as improve abundance 
estimates. CHAMP maps all reads of a given sample to the entire 
HMR05 gene catalogue (pan genomes) to obtain the total species 
read count. Then, it models the expected read counts mapping to 
signature genes using a negative binomial distribution. The 
expectation is that as the number of reads for that species increases, 
the number of reads mapped to its signature genes also increases 
until all signature genes are captured. Signature genes outside the 
99% quantile distribution representing non-specific genes at the top 
or missing genes at the bottom of the distribution are removed. 
We believe the thorough profiling strategy of CHAMP explains its 
lower FPRA estimates compared to the next-best profiler 
MetaPhlAn 4, which adopts a more rigid cutoff-based approach. It 
estimates abundance by removing the upper and lower 20% of 
marker gene coverage estimates to tackle non-specific marker genes 
and the random absence of marker genes, respectively. The quality 
of the HMR05 database coupled with its unique signature gene 
approach may help explain why CHAMP sees the lowest impact of 
FPs across profilers while still achieving high precision and 
similarity scores.

Overall, CHAMP performed better than other tools in terms of 
precision and similarity, and in specific benchmarks at least at par with 
other profilers. For the prokaryotic and eukaryotic in silico 
benchmarks, CHAMP and MetaPhlan 4 both performed extremely 
well with CHAMP outperforming MetaPhlAn 4 across 3 out of 5 body 
sites for prokaryotic profiling as well as for eukaryotic profiling. 
Likewise, CHAMP and MetaPhlAn 4 had the highest similarity values 
for the in silico prokaryotic communities as well as comparable 
similarity scores on the DNA reference reagents, where Bracken 2 
achieved marginally better scores. Eukaryotic and viral profiling are 
less mature than prokaryotic profiling with a lower number of 
methodologies published. The fact that CHAMP consistently 
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outperformed MetaPhlAn 4 and Phanta across all benchmarking 
metrics when it came to profiling eukaryotes (MetaPhlAn 4) and 
viruses (Phanta) shows that CHAMP paves the way for a new 
generation of taxonomic profilers that are also able to capture viral and 
eukaryotic members of the microbiome.

The exploration of sensitivity thresholds in taxonomic profiling 
rarely occurs in benchmarking studies, yet it is crucial, especially as 
profiling accuracy is lower for low abundant species or samples with 
low microbial biomass. An example of such is the suboptimal profiling 
of tumor biopsies where inaccurate detection of species led to the 
conclusion that different cancer types had their own unique 
microbiome (Gihawi et  al., 2023). We  explored the sensitivity of 
CHAMP along with MetaPhlan 4, mOTUs 3, and Bracken 2 by 
comparing their accuracy to diminishing sequencing depths. CHAMP 
proved to be more robust at lower sequencing depths than all other 
profilers (Figures 2, 4C), with very high recall and low false discovery 
rates even at very shallow sequencing depths. Taken together, 
benchmarks show that CHAMP sets a new standard for the accuracy 
of multi-domain and phage-inclusive human microbiome profiling 
across sample types and body sites. CHAMP software and code is 
proprietary, but it is now available online for a fee; (see text footnote 1).
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