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Some essential information on gut bacterial profiles and their unique contributions 
to food digestion in wood-feeding termites (WFT) and soil-feeding termites (SFT) 
is still inadequate. The feeding type of termites is hypothesized to influence their 
gut bacterial composition and its functionality in degrading lignocellulose or 
other organic chemicals. This could potentially provide alternative approaches 
for the degradation of some recalcitrant environmental chemicals. Therefore, 
metagenomic analysis can be employed to examine the composition and functional 
profiles of gut bacterial symbionts in WFT and SFT. Based on the metagenomic 
analysis of the 16S rRNA gene sequences of gut bacterial symbionts in the WFT, 
Microcerotermes sp., and the SFT, Pericapritermes nitobei, the findings revealed a total 
of 26 major bacterial phyla, with 18 phyla commonly represented in both termites, 
albeit in varying abundances. Spirochaetes dominated the bacterial symbionts in 
Microcerotermes sp. at 55%, followed by Fibrobacters, while Firmicutes dominated 
the gut bacteria symbionts in P. nitobei at 95%, with Actinobacteria coming in 
second at 2%. Furthermore, the Shannon and phylogenetic tree diversity indices, 
as well as the observed operational taxonomic units and Chao 1 richness indices, 
were all found to be higher in the WFT than in the SFT deduced from the alpha 
diversity analysis. Based on the principal coordinate analysis, exhibited a significant 
distance dissimilarity between the gut bacterial symbionts. The results showed 
that the gut bacterial composition differed significantly between the WFT and 
SFT. Furthermore, Tax4Fun analysis evaluated bacterial functions, revealing the 
predominance of carbohydrate metabolism, followed by amino acid metabolism 
and energy metabolism in both Microcerotermes sp. and P. nitobei termites. The 
results implicated that bacterial symbionts inhabiting the guts of both termites 
were actively involved in the degradation of lignocellulose and other recalcitrant 
compounds.
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Introduction

Termites are an extraordinarily effective group of lignocellulose-
degrading organisms worldwide that contribute to carbon and nitrogen 
cycling in the ecosystem (Al-Tohamy et al., 2021; Ali et al., 2021; Xie 
et al., 2024). They transitioned from an omnivore to a wood-feeding 
lifestyle over 150 million years ago. This was followed by significant 
modification of their digestive system, including the notable extension 
of the hindgut and the attainment of cellulolytic flagellates (Brune, 
2014). These flagellates are essential for symbiotic digestion in lower 
termites but disappeared in the most recent lineage, the Termitidae, or 
“higher” termites, which emerged over 50 million years and possessed 
an exclusively prokaryotic gut microbiota (Arora et al., 2022). Higher 
termites are the most varied of all termite families, accounting for nearly 
85% of all termite genera. Though higher termites have evolved in 
various ways, the most significant difference is their diet, which spans 
beyond “lower termites,” primarily consuming wood (Korb, 2021). 
Some higher termites ingest sound lignocellulose, such as wood or dried 
grass, while others consume leaf litter, herbivore dung, humus, and/or 
soil (Li and Greening, 2022; Xie et al., 2024). The disappearance of 
symbiotic flagellates in higher termites may be viewed as an evolutionary 
stride and infer the adoption of a new mechanism for decomposing and 
obtaining energy from lignocellulose feed (Chouvenc et  al., 2021). 
Although termites secrete endogenous enzymes, their capacity to 
decompose a lignocellulose diet largely depends on their mutualistic 
symbiosis with a variety of gut symbionts (Ali et al., 2017; Ali et al., 
2019; Ali et al., 2024; Ali et al., 2023). As a result, the study of termite 
gut symbionts has received much attention in recent years. This aligns 
with the practical aims of bioprospecting, focusing on industrial 
lignocellulose conversion and the production of biofuels and other 
biochemical products (Danso et al., 2022). Despite decades of research, 
uncovering the gut microbial diversity and its mechanism for 
lignocellulose degradation has merely been tackled on the surface. 
There is yet insufficient data to answer the broader ecological questions, 
including the effect of different feeding regimes on gut microbial 
community structure and the functional profile of bacterial populations 
to the hydrolysis of lignocellulose in termites. Noticeably, less molecular 
data exist for the majority of higher termite species (Marynowska 
et al., 2020).

More recent research based on culture-independent techniques 
has provided greater insights into the gut bacterial community 
structure in wood-feeding termites (WFT) and their potential roles in 
deconstructing wood (Xie et  al., 2024; Nawaz et  al., 2023; 
Santhoshkumar et al., 2024). Nonetheless, the majority of these studies 
are focused on the Nasutitermes species. To fully understand wood 
degradation in termites, gut microbial communities and their 
functional profiles in several other species of WFT must 
be investigated. In addition, soil-feeding termite (SFT) species are the 
least studied of all termite lineages, though they are the most abundant 
(Marynowska et al., 2020). Contrary to wood, which basically consists 
of lignin, cellulose, and hemicellulose, soil contains humus enriched 
in lignocellulosic polysaccharides as well as amino acids and peptides 
(Marynowska et al., 2023; Mao et al., 2019). The comprehension of 
termites to thrive on such a complex diet is still lacking owing to the 
less studied species of this feeding guild.

Besides, the question of whether termites have distinct microbial 
symbiotic populations with unique capabilities tailored to various 
feeding regimes is still completely unanswered. Hence, the purpose of 

this study was to describe the bacterial community structure inhabiting 
the gut of different feeding groups of termites and to ascertain if their 
bacterial symbionts employ different functional structures or 
mechanisms toward the hydrolysis of lignocellulose and other 
recalcitrant compounds. The gut bacteria community structure and 
functional profile of two understudied and most abundant termite 
species in the southern part of China, the WFT Microcerotermes sp., and 
the SFT Pericapritermes nitobei, were investigated in this study 
employing a culture-independent approach by deploying metagenomics 
analysis through next generation sequencing of the V3-V4 region of 16S 
rRNA genes.

Materials and methods

Termite collection, identification, and gut 
extraction

The termite samples used in this study were collected from 
Xishuangbanna Tropical Botanical Garden, China. Genomic DNA 
was extracted using a MiniBEST Universal Genomic DNA 
Extraction Kit (TaKaRa) as described previously (Danso et  al., 
2022). The cytochrome c oxidase polypeptide II (COII) gene 
sequencing PCR was performed using universal primers COIIF 
(5′CAGATAAGTGCATTGGATTT-3′) and COIIR (5′-GTTTAA 
GAGACCAGTACTTG-3′). The phylogenetic tree was constructed 
using molecular evolutionary genetics analysis version 7.0 software.

To extract the whole gut, 100 worker-caste of both termite species 
were placed in a petri dish and sterilized with 70% ethanol, followed 
by a quick rinse with sterile double-distilled water. The surface-
sterilized termites were dissected using sterile instruments under 
aseptic conditions in laminar airflow. The guts of sterile termites were 
gently pulled out using sterilized forceps and deposited in a 2 mL 
Eppendorf tube for metagenomic microbial DNA extraction. Three 
replicates were prepared for each termite species.

Amplicon high-throughput sequencing

The extraction of microbial DNA was performed using the HiPure 
Soil DNA Kits (Magen Guangzhou, China) following the 
manufacturer’s instructions. The PCR technique was used to amplify 
the 16S rDNA targeting the V3–V4 region of the ribosomal RNA 
gene. The amplification process involved subjecting the sample to a 
temperature of 94°C for 2 min, followed by 30 cycles at 98°C for 10 s, 
62°C for 30 s, and 68°C for 30 s. A final extension step was performed 
at 68°C for 5 min. Specific primers, 341F (5′-CCTACGGG 
NGGCWGCAG-3′) and 80R (5′-GGACTACHVGGGTATCTAAT-3′), 
were used for this amplification process according to the 
standard protocols.

Bioinformatic and statistical analysis

Raw data containing adapters or low-quality reads were filtered 
using FASTP to obtain high-quality reads (Chen et  al., 2018). 
Paired-end clean reads were merged as raw tags using FLSAH with a 
minimum overlap of 10 bp and mismatch error rates of 2% (Magoč 
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and Salzberg, 2011). Noisy sequences of raw tags were filtered to 
obtain high-quality clean tags by QIIME pipeline under specific 
filtering conditions (Caporaso et al., 2010). Firstly, the low-quality 
regions (minimum default quality ≤3; default minimum length ≥ 3) 
in the raw tags have been identified and split the raw tag at the first 
low-quality base in the region; secondly, the tag length of a continuous 
sequence of high-quality bases <75% were removed.

The reference database (version r20110519)1 was used to search 
for clean tags in order to perform reference-based chimaera checking 
using the UCHIME algorithm (Edgar et al., 2011). All hybrid tags 
were eliminated, and only efficient tags were retrieved for subsequent 
study. The efficient labels were grouped into operational taxonomic 
units (OTUs) with a similarity of at least 97% using the UPARSE 
pipeline (Edgar, 2013). A representative sequence was chosen from 
each cluster based on the tag sequence with the highest abundance. 
OTUs were taxonomically assigned at a confidence threshold of 80% 
based on the DictDb database (Schloss et al., 2009). Singleton OTUs 
and sequences identified as chloroplasts or mitochondria were 
removed from the analysis. OTUs abundance information was 
normalized with the least sequence number for sample comparison at 
the same surveying effort. The abundance statistics of each taxonomy 
were visualized using Krona (Ondov et al., 2011). The stacked bar plot 
of the community composition was visualized in the R project ggplot2 
package (Wickham and Chang, 2008). A heatmap of species 
abundance in the R project was plotted using the pheatmap package 
(Kolde and Vilo, 2015). Alpha diversity indices, such as Chao1, 
Shannon, observed OTUs, and PD-whole tree, were computed using 
QIIME (Caporaso et al., 2010). The R project ggplot2 package was 
used to create OTUs rarefaction and rank abundance curves. The 
alpha index comparison across groups was computed using Welch’s 
t-test in the R project Vegan package (Oksanen, 2010).

To determine the β diversity, sequence alignment was performed 
using Muscle version 3.8.31 (Edgar, 2004), and the phylogenetic tree was 
constructed using FastTree (Price et al., 2010), then a weighted unifrac 
distance matrix was generated by the GuniFrac package in the R project 
(Lozupone and Knight, 2005). The Bray-Curtis distance matrix was 
calculated in the R project Vegan package (Oksanen, 2010). Multivariate 
statistical techniques, including principal coordinates analysis (PCoA) of 
weighted unifrac and bray-Curtis distances, were generated in the R 
project Vegan package and plotted in the R project ggplot2 package 
(Wickham and Chang, 2008; Oksanen, 2010). The Kyoto encyclopedia of 
genes and genomes (KEGG) pathway analysis of the OTUs was inferred 
using Tax4Fun, which has been shown to provide a good correlation of 
functional profiles with metagenomic profiles derived from direct 
sequencing (Aßhauer et al., 2015).

Results and discussion

Termite identification and molecular 
phylogeny

A phylogenetic study based on COII gene sequencing was carried 
out to taxonomically identify the WFT and SFT used in this study. 

1 http://drive5.com/uchime/uchime_dowload.html

Searching the attained sequences to similar nucleotides in the Basic 
Local Alignment Search Tool (BLAST) indicated that the termites 
were affiliated with the most recent family of higher termites, 
Termitidae. WFT shared the highest similarity with Microcerotermes 
sp. MmPP5 (97.7%), while SFT shared a high similarity of 100% with 
Pericapritermes nitobei (GenBank accession number: MW073099.1). 
For maximum likelihood phylogeny (Figure 1), the bootstrap values 
strongly support the branches of the tree, indicating a close 
relationship between WFT and Microcerotermes sp. (with 98% 
bootstrap support), as well as SFT and Pericapritermes nitobei (100% 
bootstrap support).

Taxonomic composition of gut bacterial 
community

A total of 760,285 pair-end reads were obtained from the 
metagenomic libraries of Microcerotermes sp. and P. nitobei gut 
samples by sequencing the V3 and V4 regions of the bacterial 
communities. The high-quality cleaned reads were further binned and 
filtered into 547,686 effective tags after removing of chimera, which 
yielded about 77,438–105,870 effective tags per gut sample. Then, the 
read number in each sample was normalized to the minimum. A total 
of 2075 OTUs (at 97% sequence similarity) were identified. Reads 
were assigned to the phyla and genus taxa using the framework of 
DictDb. The adequacy of the sampling effort for the bacterial diversity 
in Microcerotermes sp. and P. nitobei was assessed by rarefaction 
analysis. The outcome of this analysis indicated that the rarefaction 
curves for each termite gut sample reached a plateau, signifying that 
the sample size was sufficient to accurately reflect the bacterial 
diversity community (Figure 2).

Following the taxonomic annotation of the resulting bacterial 
OTUs, 26 bacterial phyla were identified. Among these, 18 phyla were 
commonly shared between both termites, with relatively higher 
variations in their relative abundance. The gut system of 
Microcerotermes sp. was dominated by Spirochaetes (Figure  3A), 
accounting for 55%, followed by Fibrobacteres (10%). Firmicutes and 
Bacteroidetes were also found in moderate abundance, each 
representing 8%, followed by Candidate TG3 (4.8%), Proteobacteria 
(4.1%), and Actinobacteria (3.5%). At the genus distribution, 
Treponema_1c was the most prevalent and accounted for 28% 
(Figure 3B). The second most abundant genus was Treponema_1f 
(11%), followed by Treponema_1a (10.3%), sub-cluster 1a (9.8%), and 
sub-cluster 1b (4.8%).

In corroboration to the findings in this study, other researchers have 
reported similar patterns of bacterial community structure in the gut of 
several WFT, including Nasutitermes species, Globitermes brachycerastes, 
Microcerotermes strunckii, Mironasutitermes shangchengensis, and 
Microcerotermes species (Warnecke et  al., 2007; Liu et  al., 2019; 
Makonde et  al., 2015). Spirochetes are represented across several 
termites and have been observed to perform essential metabolic 
activities essential for termites (Manjula et  al., 2016). In addition, 
Spirochaetes were found in the guts of SFT Nasutitermes corniger and 
WFT Nasutitermes takasagoensis as part of the wood fiber-associated 
cellulolytic bacterial community (Mikaelyan et al., 2014). Consequently, 
the prevalence of Spirochaetes populated by clusters of Treponema in 
the WFT, Microcerotermes sp., may result from the carbohydrate-rich 
diet. Besides, recent metagenomic and metatranscriptomics analysis of 
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gut bacterial symbionts has identified Spirochaetes of the Treponema 
genus, Fibrobacters, and Firmicutes to encode several putative 
CAZymes (including cellulases and hemicellulases) for lignocellulose 
degradation (Marynowska et al., 2020; Liu et al., 2019). On the other 
hand, the phyla Firmicutes (95%) (Figure  3A) populated the gut 
bacterial community in the SFT, followed by Actinobacteria (2%). 

Proteobacteria and Candidate TG 3 accounted for 0.43% each, followed 
by Planctomycetes (0.19%), Chloroflex (0.13%), and Acidobacteria 
(0.11%). The genus representatives in P. nitobei were dominated by 
Bacillus_11 (73%) (Figure 3B). Incertae _sedis_3 (15%) accounted for 
the second most populous genus, followed by Sporosarcina_5 (1.23%) 
and Gut_cluster_13 (0.58%).

FIGURE 1

A maximum-likelihood (ML) tree based on the cytochrome oxidase II gene sequences of wood-feeding termites (WFT) and soil-feeding termites (SFT) 
utilized for this study. Cryptocercus relictus was used as an outgroup. The scale bar indicates 0.05 substitutions per nucleotide position. Bootstrap 
analysis with 1,000 replicates was performed to determine the statistical significance of the branching order. Values at nodes represent bootstrap 
support values.

FIGURE 2

Rarefaction curves of sequence depth of termite gut samples.
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The abundance of Firmicutes in P. nitobei is consistent with 
preliminary literature on SFT such as Cubitermes niokoloensis, 
Labiotermes labralis, and Syntermes sp., Cubitermes ugandensis, and 
Termes riograndensis (Marynowska et al., 2020; Liu et al., 2019; Fall 
et al., 2007). The presence of the Firmicutes phyla, namely the Bacillus 
species, in the digestive system of termites has been demonstrated to 
play a role in breaking down cellulose, obtaining nitrogen, and 
producing acetate (Manjula et al., 2016). This is due to their mutually 
beneficial interaction with the termites as endosymbionts. It has also 
been observed that several Bacillus species identified from insects and 
other environments could efficiently degrade lignin and other 
recalcitrant aromatic compounds (Mei et al., 2020); thus, they are 

considered to contribute to the degradation of lignin and recalcitrant 
compounds in termites. Additionally, metagenomic sequencing 
revealed that Firmicutes partake in the secretion of cellulases, 
hemicellulases, and peptidases in termites (Marynowska et al., 2020). 
The abundance of Firmicutes phyla in SFT may be influenced by the 
rich content of organic matter present in the soil diet as well as the 
high alkalinity of the gut system. Likewise, Mikaelyan et al. (2017) 
identified Firmicutes as the most prevalent phyla in the most alkaline 
compartment of several termites, such as Termes hospes, Cornitermes 
sp., Microcerotermes parvus, and Neocapritermes taracua. Several 
other phyla, including Proteobacteria, Actinobacteria, Planctomycetes, 
and Chlorobi, are also implicated in processing lignocellulose 

FIGURE 3

(A) Relative abundance of top 10 bacterial phyla and (B) heat map representation of top 10 genera in the gut of Microcerotermes sp. (M1, M2, M3) and 
P. nitobei (P1, P2, and P3).
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FIGURE 4

Bacterial α-diversity measures. (A) Number of observed OTUs, (B) Shannon, (C) Chao1, and (D) PD-tree of Microcerotermes sp. (M) and P. nitobei 
(P) termite species.

components in termites (Diouf et al., 2015). Moreover, Actinobacteria 
are noted to produce secondary metabolites that offer protection to 
the termites (Kurtböke et al., 2015).

A potential difference in the composition of the bacterial 
community related to diet has also been observed in WFT, including 
Microcerotermes strunckii and Nasutitermes corniger, where 
Spirochaetes dominated and SFT like Termes riograndensis populated 
by Firmicutes (Vikram et  al., 2021). Similarly, He et  al. (2013) 
identified Spirochaetes and Fibrobacters to dominate in the hindgut 
of WFT, Nasutitermes corniger, whereas Firmicutes were prevalent in 
the dung-feeding termite, Amitermes wheeleri. Although these studies 
depict diet as a primary determinant of gut composition in termites, 
certain studies have also related the difference in gut bacterial 
composition to the co-evolution of the termite and the host 
environment (Abdul Rahman et al., 2015). The variations in bacterial 
community structure observed in the present study could 
be associated with the shift in diet during the evolutionary process, 
such that dietary influences on gut microbiota were prominent by 
colonizing specific bacterial lineages to adjust to the new diet. Another 
co-factor is the difference in physiological conditions prevailing in 
their gut system. Previous studies have established that the gut system 
of SFT is morphologically elongated and possesses an elevated pH 
than wood-feeders; thus, it may be dominated by certain bacterial 
phylotypes like Firmicutes that can survive in the gut environment 

(Mikaelyan et al., 2017). The findings from this study corroborate with 
existing literature and implicate that microbial community structures 
differ in different feeding groups of termites.

Diversity of gut bacterial composition 
between Microcerotermes sp. and 
P. nitobei

The bacterial diversity and richness were analyzed employing alpha 
diversity based on observed OTUs, Shannon, Chao1, and PD tree 
indices. The observed OTUs (p = 0.001), Shannon 1 (p ≤ 0.001), Chao1 
(p = 0.001), and PD tree (p = 0.001) indices of Microcerotermes sp. were 
all significantly higher than those of P. nitobei (Figure 4), implicating 
that WFT, Microcerotermes sp., had the highest community diversity 
and community richness in contrast to SFT, P. nitobei. For P. nitobei, two 
OTUs (OTU000001 and OTU000002) assigned to Bacillaceae and 
Planococcaceae were the most abundant members, accounting for more 
than 85% of all sequence reads in each sample, while the same was 
represented by 133 OTUs for Microcerotermes sp. The lower bacterial 
diversity and richness detected in the SFT may result from the 
preservation of a more specialized microbiota required for the effective 
digestion of soil organic matter and other aromatic subunits for the 
survival of the host, as well as the high alkalinity of the gut system. 
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However, results from this study contradict previous studies, which 
reported higher microbial diversity and richness in the SFT contrary to 
the WFT and related it to the diverse range of carbon and nitrogen 
sources available in soil feeders’ diets compared to the limited 
carbohydrate-rich diet for the wood feeders (Vikram et  al., 2021). 
Nonetheless, the highest diversity observed in the WFT compared to 
the SFT in this study may be  influenced by host phylogeny and 
host habitat.

The distance between the bacterial community structure of the 
WFT and SFT species was assessed using the beta diversity analysis 
based on the weighted UniFrac and Bray-Curtis distances. The UniFrac 
distances of the triplicate samples of gut bacterial composition in SFT 
were found to be  similar but were significantly distance from the 
bacterial community structure in the WFT (Figure 5A). Furthermore, 
the Bray-Curtis distance analysis revealed that the triplicate gut samples 
from WFT shared high similarity in bacterial composition structure and 
clustered significantly away from the community in WFT (Figure 5B). 
A similar trend was also shown by the Bray-Curtis (R2 = 0.96, p < 0.01) 
and weighted UniFrac distance (R2 = 0.98, p < 0.01) based on the Adonis 
(PERMANOVA) analysis. Both analyses demonstrate the significant 
variation of β diversity between the WFT and SFT. Significant 
differences between the gut bacterial community structure in 
Microcerotermes sp. and Pericapritermes nitobei have been exhibited. 
This may be attributed to the evolutionary transition, which caused a 
change in the composition of gut symbiont to assist the host termite in 
adapting to their new habitat and feed type (Rossmassler et al., 2024).

Predicted functional profile of the bacterial 
communities in the gut of Microcerotermes 
sp. and P. nitobei

To predict a potential functional composition of the bacterial 
symbionts in termite guts, a Tax4Fun program was applied to each 
bacterial sample. The Tax4Fun analysis has been shown to provide a 

good correlation of predicted functional profiles with metagenomic 
profiles derived from direct sequencing (Aßhauer et al., 2015). So far, 
functional profiles using Tax4Fun have been predicted from 16S 
rRNA gene datasets derived from various environments (Li et al., 
2024; Pratama et al., 2019).

As depicted in Figure 6, the dominant metabolic pathways of gut 
bacterial symbionts in Microcerotermes sp. and P. nitobei were indeed 
characterized as carbohydrate, amino acid, and energy metabolisms, 
which suggested that the gut bacterial symbionts might play a vital role 
in host nutrition and energy supply (Shapira, 2016). A PCoA analysis 
was performed in terms of the obtained KEGG functional profiles, 
where the samples from Microcerotermes sp. formed an obvious and 
independent cluster separated from that of P. nitobei 
(Supplementary Figure S1). The taxonomic differentiation and the 
accordingly associated functional differentiation of the symbiotic 
bacterial community of WFT and SFT presented here suggest a possible 
type of ecological adaptation mechanism from termites. Statistical 
analysis employing the Welch’s t-test was carried out to determine the 
significant (p  ≤ 0.05) abundance of metabolic pathways between 
Microcerotermes sp. gut bacterial symbionts and that of Pericapritermes 
nitobei. Of all the metabolic functions detected, those associated with 
carbohydrate metabolism were the most abundant in both 
Microcerotermes sp. and Pericapritermes nitobei gut bacteria symbionts 
(Figure 6), reflecting their functional importance for the degradation of 
their lignocellulose diet. Further statistical analysis indicated that the 
carbohydrate metabolism pathway was significantly (p ≤ 0.05) enriched 
in the SFT, P. nitobei gut bacteria symbionts, compared to the WFT, 
Microcerotermes sp. (Supplementary Figure S2). This outcome is 
contrary to previous findings, which reported gut bacterial symbionts 
of several WFT to be enriched in carbohydrate metabolism and encode 
abundant carbohydrate-active enzymes (CAZymes) than SFT owing to 
the rich carbohydrate diet of WFT (Arora et al., 2022). The abundance 
of carbohydrate metabolism pathway from the gut symbionts of 
P. nitobei, contrary to Microcerotermes sp., is quite interesting and may 
result from the abundance of non-cellulosic polysaccharides such as 

FIGURE 5

Bacterial β diversity. Principal coordinate analysis (PCoA) of pairwise distances among bacterial communities based on (A) weighted Unifrac and 
(B) Bray-Curtis distances. The yellow color represents replicate samples from the wood feeding termite, Microcerotermes sp. (M), and the color blue 
reflects repeated samples from soil feeding termite, P. nitobei (P).
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chitin in the soil diet. This is further supported by the observation of 
Marynowska et  al. (2020), who reported the high diversity of 
carbohydrate-active enzymes in the SFT, Labiotermes labralis. In this 
study, the more abundant carbohydrate metabolic pathway in P. nitobei 
may be related to the dominant Bacillus (average abundant 73%) in this 
termite species, which has been demonstrated to play an important role 
in breaking down carbohydrate (Zhao et al., 2024; Malik and Javed, 
2021; Dar et  al., 2021; Bisht et  al., 2020). However, the significant 
(p ≤ 0.05) abundance of glycan biosynthesis and metabolism pathways 
detected in WFT is consistent with previous findings. Generally, wood 
has a higher content of stored polysaccharides than soil. Therefore, the 
enrichment of glycan biosynthesis and metabolism pathway from the 
gut bacteria community in Microcerotermes sp. than P. nitobei is 
consistent with their diet. In addition, the enrichment of cell motility in 
Microcerotermes sp. may be related to the dominant of Treponema Ic and 
If, which can move to wood fibers for cellulose hydrolysis (Mikaelyan 
et al., 2014).

In contrast to wood, soil contains a variety of recalcitrant and 
nitrogenous compounds originating from the humic components 
(peptides, aromatic subunits, amino acids, microbial excretions, and 
plant debris). Thus, several KEGG pathways, including amino acid 
metabolism, metabolism of terpenoids and polyketides, xenobiotic 

degradation and metabolism, lipid metabolism, and metabolism of 
other secondary metabolites, were significantly (p ≤ 0.05) enriched in 
the P. nitobei gut bacterial community. Similarly, the SFT Cubitermes 
orthognathus has been observed to metabolize peptidoglycan and other 
microbial excretion components at a higher rate than cellulose (Ji and 
Brune, 2001). In addition, recent findings by Rossmassler et al. identified 
gut symbionts of the P3 compartment of Cubitermes ugandensis, SFT to 
encode more peptidase genes than those in Nasutitermes corniger and 
Microcerotermes parvus WFT (Rossmassler et  al., 2024). Though 
bacteria composition and community structure significantly differed 
between the WFT and SFT in this study, the symbiotic gut bacteria 
communities demonstrated a similar functional structure toward the 
degradation of lignocellulose and recalcitrant compounds.

Conclusion

This study employed metagenomic analysis to investigate the 
bacterial communities and functional profiles of understudied termite 
species, Microcerotermes sp. and P. nitobei. In the gut of Microcerotermes 
sp., the bacteria phylum Spirochetes (mainly the genus Treponema 
clusters) were the most common. In the gut of P. nitobei, on the other 

FIGURE 6

Relative abundances (top 20) of the putative metabolic pathways in the gut bacteria of Microcerotermes sp. (M) and Pericapritermes nitobei (P). The 
Tax4Fun program was used to predict the functional capabilities of the microbial communities based on 16S rRNA gene amplicon sequencing data. 
The significantly varied metabolic pathways between wood feeding and soil-feeding termites are indicated by p  ≤  0.05. Values are presented as the 
mean (n  =  3).
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hand, Firmicutes (mainly the Bacillus genus) were the most common. 
Further analysis revealed that the diversity of bacteria was higher in the 
WFT than in the SFT. Furthermore, the β-diversity analysis revealed 
significant differences between the gut bacterial community structures of 
Microcerotermes sp. and P. nitobei. Furthermore, the functional metabolic 
pathways of gut bacteria from both termites were assessed. The bacterial 
communities were enriched in carbohydrate metabolism independent of 
feeding behavior. Ultimately, the outcome of this study depicts that the 
individual termite gut system contains unique bacterial flora yet exhibits 
a functional congruence toward lignocellulose degradation and other 
recalcitrant compounds. Although the metagenomic study provided an 
overview of the bacterial community structure and potential metabolic 
pathways associated with lignocellulosic biomass degradation, such an 
approach does not allow for estimating microbial physiology or ecology. 
Furthermore, cultivable microbes are suitable for studying symbiotic 
relationships within the host and exploring their potential applications. 
Thus, enrichment techniques are under investigation to ascertain the 
composition of culturable lignocellulolytic gut bacteria symbionts in 
Microcerotermes sp. and P. nitobei.
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