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Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic fungus, 
which has a wide host range and can cause a variety of diseases, leading to 
serious loss of agricultural production around the world. It is difficult to control 
and completely eliminate the characteristics, chemical control methods is 
not ideal. Therefore, it is very important to know the pathogenic mechanism 
of S. sclerotiorum for improving host living environment, relieving agricultural 
pressure and promoting economic development. In this paper, the life cycle 
of S. sclerotiorum is introduced to understand the whole process of S. 
sclerotiorum infection. Through the analysis of the pathogenic mechanism, 
this paper summarized the reported content, mainly focused on the oxalic acid, 
cell wall degrading enzyme and effector protein in the process of infection 
and its mechanism. Besides, recent studies reported virulence-related genes 
in S. sclerotiorum have been summarized in the paper. According to analysis, 
those genes were related to the growth and development of the hypha and 
appressorium, the signaling and regulatory factors of S. sclerotiorum and so 
on, to further influence the ability to infect the host critically. The application 
of host-induced gene silencing (HIGS)is considered as a potential effective tool 
to control various fungi in crops, which provides an important reference for the 
study of pathogenesis and green control of S. sclerotiorum.
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1 Introduction

Sclerotinia sclerotiorum is a typical necrotrophic nutrient fungus that belongs in taxonomic 
status to the Fungi, Ascomycota, Discomycetes, Helotiales, Sclerotiniaceae, Sclerotinia. An 
early study determined that Dictyostelium can infect more than 450 plant species in 75 
families, posing a threat primarily to dicotyledonous crops such as sunflowers, soybeans, 
canola, edible dry beans, chickpeas, peanuts, dry beans, lentils, and a variety of vegetables, but 
also to monocotyledonous plants such as onions and tulips (Boland and Hall, 1994). Recent 
research has found that it can grow in rice, wheat, barley, oat, and corn (Tian et al., 2020).

The disease caused by S. sclerotiorum is called Sclerotinia. More than 60 names have been 
used to refer to diseases caused by this fungal pathogen (Purdy, 1979), including cotton rot, 
water soft rot, stem rot, abscission, crown rot, flower wilt, and the most common white mold. 
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S. sclerotiorum is a representative vegetative plant pathogenic fungus 
with complex pathogenic mechanism. The role and mechanism of 
oxalic acid, cell wall degrading enzymes, and secretory proteins 
secreted by S. sclerotiorum in the process of infection have been the 
focus of reports previously. However, the molecular basis of the 
pathogenesis of S. sclerotiorum is imprecise and remains a subject of 
ongoing research. In this paper, the recent advancements in the 
virulence of S. sclerotiorum have been reviewed, which can serve as an 
important source of information for molecular research of 
this organism.

2 The infection process of Sclerotinia 
Sclerotiorum

Sclerotinia sclerotiorum (Lib.) de Bary is one of the most dangerous 
and common plant-killing organisms in the world. This fungus may 
be found all across temperate, tropical, and dry environment (Lehner 
et al., 2017). Sclerotia consists of three distinct layers, the thick-walled 
pigmented cortex, the thin-walled cortex and the white medulla 
(Clarkson et al., 2004). As its name indicates, the fungus produces 
sclerotia, which are long-lived melanized resting structures. Sclerotia 
can germinate in two ways, carpogenically to form apothecia from 
which ascospores are liberated or myceliogenically to produce hyphae. 
The fungus is homothallic and no asexual spores are produced 
(Hegedus and Rimmer, 2005). S. sclerotiorum generally exists in the 
form of sclerotia, and the existence of ascospores and mycelium form 
maintains a shorter time (Bolton et al., 2006). When environmental 
conditions are fit for germination, sclerotia may germinate 
myceliogenically to produce hyphae that infect the lower parts of 
plants, or germinate carpogenically to produce apothecia and release 
ascospores into the air (Behnam et al., 2007; Fernando et al., 2007; 
Zhang M. et al., 2021). When infected in the form of ascospores, only 
combined with multiple infection sites, can the successful infection 
feature be formed. For example, flowers or flower parts provide an 
appropriate nutritional basis for the initial colonization of ascospore 
inoculants. The undamaged host surface is infected by hyphae 
extending from the matrix (Sutton and Deverall, 1983). Once infection 
has been established, watery lesions with distinct edges may first 
appear on stems, leaves, petioles, and reproductive organs. These 
lesions are then followed by wilting, bleaching, and shredding. 
Typically on the surface of the infected tissue as well as in soft host 
tissue or lumen, cotton hyphae build up into pea-sized aggregates that 
eventually develop into hard, black sclerotia (Heffer and Johnson, 
2007). When the stem is completely girdled and covered by the 
whitish mycelial growth all over, the plant wilts and dries. The fungus 
produces symptoms on all the aerial plant parts but the most 
destructive one is produced on the stem. Usually, the plants are 
attacked at flowering stage and once the pathogen is established in the 
field, it is very difficult to eliminate it due to the stubborn soil-borne 
sclerotia and wide host range (Bolton et al., 2006).

Strong pathogenicity enable S. sclerotiorum to virtually completely 
invade all plant tissues with its mycelium. Importantly, the fungus 
affects hundreds of monocotyledons and dicotyledones and is not 
restricted to any one host (Jahan et al., 2022). Infection can potentially 
begin with mycelial development from sclerotia on the soil’s surface. 
After colonizing dead organic debris, the germinated hyphae infect 
nearby living plants (Hegedus and Rimmer, 2005). Plant pathogen 

S. sclerotiorum is extremely destructive, and its infection can result in 
substantial yield loss, the drop in the quantity and quality of affected 
crops, and other negative economic effects (Fernando et al., 2007).

3 Pathogenicity factors

Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic 
fungus with complex pathogenic mechanism. At present, the main 
pathogenic factors are classified as plant cell-wall-degrading 
enzymes(CWDEs), oxalic acid and effector protein secreted by 
S. sclerotiorum. Firstly, S.sclerotiorum increases its colonization by 
secreting CWDEs, which plays an important role in the early stage of 
infection. Oxalic acid, a key pathogenic factor, is secreted in large 
quantities in the early stage and plays an important role in 
pathogenicity. In addition, S. Sclerotiorum also secretes some effector 
proteins to promote infection in its fight against plants.

3.1 Oxalic acid, a key factor in the early 
pathogenesis of Sclerotinia Sclerotiorum

Oxalic acid is considered to be  a key factor in the early 
pathogenesis of many necrotrophic fungi. S. sclerotiorum involves the 
production and accumulation of oxalic acid at the early stage of plant 
susceptibility (Figure 1). Godoy et al. (1990) studied the role of oxalic 
acid in the pathogenicity of S. sclerotiorum in 1990, the oxalic acid-
deficient mutants were obtained by UV mutagenesis and lost their 
pathogenicity. Moreover, the pathogenicity of the mutants was 
restored after the addition of sodium succinate.

More studies revealed the role of oxalic acid in the pathogenesis 
of S. sclerotiorum. Oxalic acid can produce reactive oxygen species 
(ROS) and induce programmed cell death (PCD). In contrast, during 
the initial stage of S. sclerotiorum infection of host plants, 
S. sclerotiorum produces a reducing environment in host cells through 
oxalic acid inhibiting host defense responses, including suppression 
of ROS bursts and callose deposition, similar to compatible bionutrient 
pathogens. However, once an infection is established, oxalic acid 
induces ROS production in the plants, resulting PCD in the host tissue 
(Williams and Stelfox, 1980). Oxalic acid can regulate the PH of the 
environment to facilitate the infection of S. sclerotiorum. Sclerotinia 
sclerotiorum can cause infection and disease at least in some plants as 
long as the environmental pH is low enough (Bateman and Beer, 
1965). Oxalic acid prevents stomatal closure in the host plant. The 
results showed that when the leaves of Vicia faba were infected with 
S. sclerotiorum mutants lacking oxalic acid, the stomata were partially 
closed (Guimarães and Stotz, 2004). Besides, Oxalate prevents 
stomatal closure caused by abscisic acid (ABA). In Arabidopsis, 
compared to wild type plants, mutants abi1, abi3, abi4, and aba2 are 
more vulnerable to oxalate-deficient S. sclerotiorum, indicating that 
ABA is necessary for Sclerotinia resistance (Guimarães and Stotz, 
2004). Oxalic acid may be able to quench calcium ions generated 
during cell wall collapse to shield developing hyphae from the harmful 
calcium concentrations in the infection region. Heller and Witt-
Geiges (2013) suggest that calcium was transferred to the older parts 
of the mycelium and detoxified by forming nontoxic, stable oxalate 
crystals and they proposed an infection model in which oxalic acid 
plays a detoxifying role in the late stage of infection.
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3.2 Cell wall degrading enzymes play a vital 
role in pathogenic fungi invading host

Plant cell wall is an important place for interaction between host 
and pathogenic fungi, and plays a vital role in the process of plant 
pathogenic fungi invading host. The pathogenic fungi secrete a series 
of cell wall degrading enzymes during the process of infecting host 
plants. They can not only take up nutrition, but also degrade host 
tissue during the pathogenic process of pathogenic fungi. Sclerotinia 
sclerotiorum releases hydrolases, which degrade the cuticle, the middle 
layer, and the primary and secondary cell walls in turn. It was found 
that the cuticle-stripped leaves infected more quickly, so the cuticle 
could act as a barrier against Sclerotinia infection.

Sclerotinia sclerotiorum can secrete different cell wall degrading 
enzymes, especially Polygalacturonases (PGs), when it infects host 
plants. According to reports, four endo-polygalacturonase (PG) genes 
(SsPG1, SsPG3, SsPG5 and SsPG6) and two exo-PGs genes (SsXPG1 
and SsXPG2) were identified in B. napus during S. Sclerotiorum 
infection (Li et al., 2004). The factors affecting the regulation of genes 
encoding polygalacturonase 1(SsPG1) and a newly identified 
keratinase (SsCUTA) were studied. In vitro, SsCUTA transcripts were 
detected within 1 h after leaf inoculation, and their expression was 
mainly controlled by the contact of mycelium with solid surface. The 
expression level of the keratinase-encoding gene SsCUTA of 
S. sclerotiorum was significantly up-regulated at 1 h after infection. 
Expression of SsPG1 was moderately induced by contact with solid 
surfaces, including leaves, and as infection progresses, expression of 
SsPG1 was limited to the extended margins of the lesion (Dallal Bashi 
et al., 2012). Both SsPG3 and SsPG6 induced light-dependent necrosis 
in Arabidopsis thaliana leaves (Dallal Bashi et al., 2012).

3.3 Effector proteins, critical components 
in the effective pathogenesis of Sclerotinia 
Sclerotiorum

In the process of antagonism between plant and pathogen, the 
pathogen will secrete some proteins into plant cells. These proteins are 
called “Effector proteins,” which can make the pathogen successfully 
infect the plant. These “Effector proteins,” have been found in a variety 
of plant pathogenic fungi and exhibit many different functions 
according to the life style of the fungi.

SsITL encodes a protein containing 302 amino acid residues, 
which belongs to the integrin-terminal domain superfamily. The 
expression of SsITL gene increased sharply during the early stage of 
infection and after the gene silencing, the pathogenicity of 
S. sclerotiorum decreased. The host plants overexpressing SsITL gene 
were more susceptible. Further studies showed that SsITL protein was 
involved in the inhibition of JA/ET signaling pathway-mediated local 
and systemic disease resistance in S. sclerotiorum. Therefore, SsITL 
played a similar role as an effector in S. Sclerotiorum pathogenesis 
(Wang et  al., 2009). Two genes, SsNEP1 and SsNEP2, encoding 
necrotic and ethylene-induced polypeptides (NEPs), were identified 
in S. sclerotiorum. During infection, the expression of SsNEP1 was 
increased. The expression of SsNEP2 was induced by contact with 
solid surfaces and occurs in necrotic areas and the leading edge of 
infection. Expression of SsNEP2 was dependent on calcium and cyclic 
AMP signaling, instead, compounds that affected these pathways 
reduced or eliminated SsNEP1 expression with partial or complete loss 
of virulence (Dallal Bashi et al., 2010). A small cysteine-rich protein, 
SsCVNH, has been shown to be crucial for virulence and sclerotium 
development (Lyu et al., 2015a). Another small cysteine-rich protein 

FIGURE 1

A model of oxalic acid (OA)-induced infection. S. sclerotiorum secretes large amounts of oxalic acid during infection. In the early stage of infection, 
oxalic acid blocks the closure of the plant stomata to promote infection, and then breaks down the plant barrier, at which point the host secretes ABA 
to shut down the plant stomata to resist infection. Oxalic acid can inhibit plant autophagy, through the outbreak of producing reactive oxygen species 
(ROS) in the later stage to inhibit the host defense response, and finally cause the programmed cell death (PCD) of plants. In addition, oxalic acid can 
preserve ca2+ generated by cell wall collapsing in the form of calcium oxalate in the vacuole, playing a detoxification role.
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SsSSVP1 in S. sclerotiorum has been identified as a secreted protein 
and its targeted silencing resulted in reduced virulence (Lyu 
et al., 2016).

4 Reported genes regulating virulence 
in Sclerotinia Sclerotiorum

The virulence of S. Sclerotiorum is related to the growth and 
development of its appressorium and its ability to infect plants. Studies 
on the virulence of S. sclerotiorum to date have been shown as follows 
(Table 1). In the regulation of pathogenicity in S. sclerotiorum, several 
genes play pivotal roles. SsTrx1 contributes to enhancing the 
pathogenicity of the fungus and its tolerance to oxidative stress (Rana 
et al., 2021), while overexpression of SsYCP1 promotes S. sclerotiorum 
infection and enhances its pathogenicity (Fan et al., 2021a). SsNACα 
regulates the expression of polygalacturonase, thus impacting the 
pathogenicity of S. sclerotiorum (Li et al., 2015). Additionally, SsERP1 
modulates the virulence of S. sclerotiorum by regulating the ethylene 
pathway (Fan et  al., 2021b). Moreover, SsSte12 influences fungal 
hyphal growth, adhesion structure formation, and virulence regulation 
(Xu et  al., 2018). SsPDE2 plays a regulatory role in oxalate 
accumulation, adhesion structure formation, and virulence (Xu et al., 
2023). Furthermore, SsXyl1, encoding endo-β-1,4-xylanase, plays a 
crucial role in sclerotium formation and infection processes (Yu et al., 
2016). SsNsd1 regulates the morphology of S. sclerotiorum hyphae, 
appressorium structures, sclerotium, and pathogenicity (Li 
et al., 2018).

The signaling and regulatory factors of S. sclerotiorum involve the 
regulation of multiple genes. SsTOR is responsible for controlling cell 
wall integrity and virulence, and it participates in the rapamycin target 
signaling pathway (Jiao et al., 2023). SsCat2 regulates catalase activity, 
affecting aspects such as cell membrane dryness and pathogenicity 
(Huang et  al., 2021). SsPKA2 and SsPKAR are involved in cAMP 
signaling, playing roles in growth and virulence (Yu and Rollins, 
2022). Moreover, SsAMS2 contains a GATA-box domain, regulating 
hyphal growth, adhesion structure formation, and virulence (Liu et al., 
2018). Lastly, SsSm1 participates in the MAPK signaling pathway, 
influencing aspects such as hyphal growth and pathogenicity (Pan 
et al., 2018).

These genes play critical roles in the metabolic regulation of 
S. sclerotiorum. Ssoah1 regulates oxalic acid content, affecting the 
toxicity of S. sclerotiorum (Liang et al., 2015a; Rana et al., 2022). Next, 
SsSOD1 is responsible for regulating the clearance capacity of ROS, 
directly impacting the pathogenicity of S. sclerotiorum. Additionally, 
SsODC1 and SsODC2 are involved in oxalic acid metabolism 
regulation, playing crucial regulatory roles in forming infection 
cushions and virulence during the infection process (Xu and 
Chen, 2013).

In the regulation of cellular structure and function in 
S. sclerotiorum, SsAGM1 participates in chitin synthesis, influencing 
cell wall structure and sclerotia formation (Zhang et  al., 2022). 
Subsequently, SsGSR1 encodes glutathione sulfurtransferase, 
regulating cell wall integrity and the pathogenicity of S. sclerotiorum 
(Hu et al., 2023). SsCP1 encodes the Cerato-platanin protein, affecting 
cell death and invasion ability during infection (Yang et al., 2018). 
Furthermore, as a small secreted protein, SsSSVP1 influences plant 
cell death and the infection of S. sclerotiorum (Lyu et al., 2016).

In the adaptation to environmental changes and stress responses 
in S. sclerotiorum, SsNE2, as a novel necrosis-inducing protein, 
influences the fungal growth, pathogenicity, and ability to respond to 
environmental stress (Seifbarghi et al., 2020). As we know, thioredoxin 
reductases play crucial roles in maintaining cellular redox homeostasis. 
SsTrr1, encoding thioredoxin reductase, participates in oxidative stress 
responses, thereby affecting the pathogenicity of S. sclerotiorum 
(Zhang et al., 2019). Additionally, SsEmp24 and SsErv25, as early 
secretory pathway-related proteins, regulate the protein secretion 
process, playing important roles in the pathogenicity of S. sclerotiorum. 
Their absence leads to abnormal fungal growth, sclerotium formation, 
formation of appressorium, and lower virulence in host plants (Xie 
et al., 2021).

5 Host-induced gene silencing of 
virulence-related genes of Sclerotinia 
Sclerotiorum

Most eukaryotic organisms possess the RNA interference (RNAi) 
pathway. In this process, double-stranded RNA (dsRNA) can 
be processed into small interfering RNA (siRNA), which can induce 
gene silencing. As RNA can be transferred from plant hosts to related 
eukaryotic pathogens, the RNAi pathway has been utilized for HIGS 
to control pathogens. In this scenario, hosts are engineered to express 
dsRNAs targeting crucial pathogen genes, thus disrupting their 
successful lifecycle. It is considered to be a potentially effective tool for 
controlling various fungi in crops (Chen et al., 2016; Zhu et al., 2017; 
Qi et al., 2018).

With the discovery of more and more virulence-related genes of 
S. sclerotiorum, many genes can be used to control S. sclerotiorum 
through HIGS. In tobacco, the authors tested whether the MAPK 
cascade consisting of SsSte50-SsSte11-SsSte7-Smk1 could serve as a 
target for disease control in HIGS. SsSte50 is used to make hairpin 
RNAi constructs. Compared with no-load, the lesion area was 
significantly reduced. The data showed that the HIGS of SsSte50 was 
heritable and could be  used as a good target for controlling 
S. sclerotiorum (Tian et al., 2024). Besides, a gene was found to encode 
a cAMP phosphodiesterase (SsPDE2). The author introduced the 
construction of HIGS targeting SsPDE2 into N.benthamiana, 
observing a significant reduction in virulence against S. sclerotiorum. 
In summary, SsPDE2 may serve as a HIGS target to control stem rot 
in the field (Xu et al., 2023). Transient silencing of Sscnd1 gene by 
HIGS mediated by tobacco rattle virus (TRV) can significantly reduce 
the occurrence of tobacco diseases. Three transgenic Arabidopsis lines 
with HIGS gene showed a high level of resistance to S. sclerotiorum 
and reduced the expression of Sscnd1 (Ding et al., 2021). Similarly, a 
putative protein kinase SsCak1, silencing by TRV-HIGS can reduce 
virulence and enhance host resistance to S. sclerotiorum (Qin et al., 
2023). In rapeseed, three disease-causing genes, the endo-
polygalacturonase gene (SsPG1), cellobiohydrolase gene (SsCBH), and 
oxaloacetate acetylhydrolase gene (SsOAH1), were selected as the 
targets of HIGS, which significantly reduced the transcript levels of 
the target genes (Wu et al., 2022). A RAS-GTPase activating protein 
SsGAP1, which plays an important role in sclerotia formation, showed 
complex appressorium production and virulence. The author observed 
reduced virulence when they introduced HIGS constructs targeting 
SsGAP1, SsRAS1, and SsRAS2 in Arabidopsis, as well as in tobacco (Xu 
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TABLE 1 Virulence-related genes of S. sclerotiorum.

Gene name Mutant type Mutant 
virulence

Tested host Gene function Reference

pac1 (AY005467)
knockout, site-

directed mutagenesis
Reduced A.thaliana, tomato Zinc finger transcription factor

Rollins (2003) and Kim 

et al. (2007)

Sssac1 (SS1G_07715) Knockout Reduced Tomato Adenylate cyclase
Jurick and Rollins 

(2007)

rgb1 RNA-silencing Abolished A.thaliana, tomato
Type 2A phosphoprotein 

phosphatase
Erental et al. (2007)

Ssaxp (SS1G_02462) Knockout Reduced Rapeseed
Arabinofuranosidase/β-xylosidase 

precursor
Yajima et al., 2009

Ss-ggt1 (SS1G_14127) Knockout Reduced Tomato γ-glutamyl transpeptidase Li et al. (2012)

Ss-pth2 (SSIG_13339) Knockout Reduced Soybean
Peroxysomal carnitine acetyl 

transferase
Liberti et al. (2013)

SsSOD1 (SS1G_00699) T-DNA insertional Reduced Pea Cu/Zn superoxide dismutase Xu and Chen (2013)

SsMADS (FJ869956) RNA-silencing Reduced Tomato MADS-box transcription factor Qu et al. (2014)

Ss-caf1 (SS1G_02486) T-DNA insertional Reduced A.thaliana, rapeseed
Encoding a secretory protein with a 

putative Ca2+ binding EF-hand motif
Xiao et al. (2014)

Ssoah1 (SS1G_08218) Knockout Reduced
A.thaliana, soybean, 

tomato

oxaloacetate acetylhydrolase gene, 

key enzyme of oxalic acid
Liang et al. (2015a)

Ss-odc2 (SS1G_10796) Knockout Reduced Soybean Oxalate decarboxylase Liang et al. (2015b)

SsNACα (SS1G_05284) RNA-silencing Increased
N.benthamiana, 

rapeseed

The nascent polypeptide-associated 

complex α subunit gene
Li et al. (2015)

SsXyl1 (SS1G_07749) Knockout Reduced A.thaliana, rapeseed Endo-β-1, 4-xylanase Yu et al. (2016)

sop1 (SS1G_01614) RNA-silencing Reduced Rapeseed Microbial opsin homolog gene Lyu et al. (2015b)

SsSSVP1 (SS1G_02068) RNA-silencing Reduced Rapeseed
Encoding a cysteine-rich, small 

protein
Lyu et al. (2016)

Sscp1 (SS1G_10096) Knockout Reduced A.thaliana Encoding a cerato-platanin protein Yang et al. (2018)

Ssnsd1 (Sscle16g109570) Knockout Reduced Tomato, celery
GATA-type IVb zinc-finger 

transcription factor
Li et al. (2018)

SsSm1 (SS1G_10096) RNA-silencing Reduced Rapeseed, soybean
Encoding a cerato-platanin family 

protein
Pan et al. (2018)

Ssams2 (SS1G_03252) RNA-silencing Reduced Soybean

Cell-cycle-regulated GATA 

transcription factor in eukaryotic 

organisms

Liu et al. (2018)

SsSte12 (SS1G_07136) RNA-silencing Reduced Tomato, bush bean
Downstream transcription factor of 

MAPK pathway
Xu et al. (2018)

SsC6TF1 (Sscle04g036970) RNA-silencing Reduced Pea C6 transcription factor Sang et al. (2019)

SsTrr1 (SS1G_05899) RNA-silencing Reduced
A.thaliana, 

N.benthamiana
Thioredoxin reductase Zhang et al. (2019)

SsSvf1 (SS1G_01919) RNA-silencing Reduced A.thaliana, rapeseed
Survival factor1, mediated cell 

survival under oxidative stress
Yu et al. (2019)

Sshk RNA-silencing Increased Rapeseed, cucumber Histidine kinases Li et al. (2019)

SsSaxA (SS1G_12040) Knockout Reduced A.thaliana Isothiocyanate hydrolase Chen et al. (2020)

SsATG8 (SsATG8), 

SsNBR1 

(XP_001594039.1)

Knockout Reduced A.thaliana, tomato Mediated autophagic degradation Zhang H. et al., 2021

SsERP1 (SS1G_11468) Knockout Reduced N.benthamiana Ethylene pathway repressor protein 1 Fan et al. (2021b)

SsCat2 (SS1G_00547) Knockout Reduced
N.benthamiana, 

rapeseed
Catalase Huang et al. (2021)

(Continued)
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TABLE 1 (Continued)

Gene name Mutant type Mutant 
virulence

Tested host Gene function Reference

Ssos4 (SS1G_06598) Knockout Reduced Rapeseed
Encoding a phosphotransferase in 

the MAPK cascade
Li et al. (2021)

SsEmp24, SsErv25 Knockout Reduced Rapeseed, soybean
Early secretory pathway-related P24 

protein
Xie et al. (2021)

SsYCP1 (SS1G_06230)
overexpression 

(transient)
Increased N.benthamiana Yml079-like Cupin protein Fan et al. (2021a)

SsTrx1 (SS1G_08534) RNA-silencing Reduced

A.thaliana, 

N.benthamiana, 

rapeseed

Thioredoxin 1, associated with redox 

regulation and antioxidant defense
Rana et al. (2021)

Sscnd1 (SS1G_11468) RNA-silencing Reduced Rapeseed

Homologous to MAS protein and 

participates in the formation of 

appressorium

Ding et al. (2021)

Sscle_10g079050 Knockout Reduced A.thaliana, lettuce Amidase-encoding gene Li et al. (2022)

SsNep2 (SS1G_11912) Knockout Reduced
A.thaliana, 

N.benthamiana

Encoding necrosis and ethylene-

inducing peptides
Yang et al. (2022)

SsCut1 (SS1G_08104) Knockout Reduced A.thaliana, rapeseed
Encoding a cutinase modulated 

virulence and cutinase activity
Gong et al. (2022)

SsAtg1 (Sscle_12g087380) Knockout Reduced
N.benthamiana, 

soybean
Activating autophagy Jiao et al. (2022a)

Sspka2 (Sscle14g098350), 

SspkaR (Sscle09g071910)
Knockout Reduced

N.benthamiana, 

soybean, Vicia faba
Two components of cAMP signaling Yu and Rollins (2022)

SsFoxE3 Knockout Reduced
Soybean, tomato, 

pepper

Forkhead-box family transcription 

factor
Jiao et al. (2022b)

SsFkh1 (SS1G_07360),

SsMkk1 (SS1G_00059),

SsBck1 (SS1G_10983),

SsSmk3 (SS1G_05445),

SsPkc1 (SS1G_14026)

RNA-silencing, 

knockout

Knockout

Knockout

Knockout

Knockout

Reduced

Reduced

Reduced

Reduced

Reduced

Tomato, cowpea

Forkhead-containing proteins 

(Fkh1), MAPK signaling pathway 

components (Mkk1, Bck1, Smk3, 

Pck1)

Fan et al. (2017) and 

Cong et al. (2022)

SsAGM1 (SS1G_01582) RNA-silencing Reduced
A.thaliana, soybean, 

tomato

N-acetylglucosamine-phosphate 

mutase
Zhang et al. (2022)

SsCox17 

(sscle_01g006600)
RNA-silencing Reduced A.thaliana, rapeseed

A copper chaperone shuttled copper 

ions from the cytosol to the 

mitochondria for the cytochrome c 

oxidase assembly

Ding et al. (2022)

SsMrt4 (SS1G_11436) Knockout Abolished A.thaliana, 

N.benthamiana

Ribosome assembly factor Yang et al. (2023)

SSA (sscle_01g001830) Knockout Increased Rapeseed Encoding agglutinin protein Wang et al. (2023)

SsGSR1 (SS1G_11413) Knockout Reduced N.benthamiana, 

rapeseed

Glycosylphosphatidylinositol-

anchored protein

Hu et al. (2023)

SsNR (SS1G_01885) RNA-silencing Reduced Rapeseed, soybean Nitrate reductase Wei et al. (2023)

SsTOR (Sscle_02g011660) RNA-silencing Reduced Tomato, cowpea, 

pepper

Key components of the TOR 

signaling pathway

Jiao et al. (2023)

SsCak1 (Sscle_11g085070) UV-mutagenized Abolished A.thaliana, 

N.benthamiana

Protein kinase has a conserved 

eukaryotic kinase domain

Qin et al. (2023)

Sspde2 (Sscle06g053640) UV-mutagenized Reduced A.thaliana, 

N.benthamiana

Encoding a cAMP phosphodiesterase Xu et al. (2023)

(Continued)
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et al., 2024). Likewise, S. sclerotiorum thioredoxin 1 gene (SsTrx1) has 
also been identified as a potential HIGS target through the disease 
resistance analysis in above two plants (Rana et al., 2021).

6 Conclusion

The extremely dangerous soil-borne pathogen S. sclerotiorum poses 
a serious risk to crops used in agricultural production. S. sclerotiorum can 
not be eradicated in the field due to the lack of resistant breeding and the 
resistance of S. sclerotiorum strains to fungicides. On the other hand, the 
negative effects of pesticide residues and environmental pollution are 
also readily apparent, as they can result in the emergence of drug-
resistant strains in the field and the death of beneficial organisms. Thus, 
it will be  helpful to regulate S. sclerotiorum to comprehend the 
pathophysiology of the organism as well as to create and employ disease-
resistant genes in plants. For instance, oxalic acid is a pathogenic 
component of S. sclerotiorum. Hence, lowering the pathogenicity of 
S. sclerotiorum can be achieved by reducing oxalic acid production. 
Moreover, targeting silencing of some proteins, such as Ss-Rhs1, can lead 
to aberrant colony formation and decreased pathogenicity to the host 
plant, hence improving host plant resistance to S. sclerotiorum. However, 
for all control methods, a successful strategy should be based on an 
in-depth understanding of the pathogenesis of S.sclerotiorum. The 
application of HIGS targets of known virulence-related genes can 
effectively provide host resistance to S. sclerotiorum. This may be an 
effective way to control sclerotinia in the future, providing a new idea for 
the green control of this broad host range plant pathogen.
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