
TYPE Original Research

PUBLISHED 24 July 2024

DOI 10.3389/fmicb.2024.1422132

OPEN ACCESS

EDITED BY

Kaijian Hou,

Shantou University, China

REVIEWED BY

Georgia Damoraki,

National and Kapodistrian University of

Athens, Greece

Davide Gnocchi,

University of Bari Medical School, Italy

*CORRESPONDENCE

Zexin Zhu

zhuzexinmd@163.com

RECEIVED 23 April 2024

ACCEPTED 03 July 2024

PUBLISHED 24 July 2024

CITATION

Wang X and Zhu Z (2024) A Mendelian

randomization analysis reveals the

multifaceted role of the skin microbiota in

liver cancer. Front. Microbiol. 15:1422132.

doi: 10.3389/fmicb.2024.1422132

COPYRIGHT

© 2024 Wang and Zhu. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

A Mendelian randomization
analysis reveals the multifaceted
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Background: Hepatocellular carcinoma (HCC, or hepatic cancer, HC) and

cholangiocarcinoma (CCA, or hepatic bile duct cancer, HBDC) are two major

types of primary liver cancer (PLC). Previous studies have suggested that

microbiota can either act as risk factors or preventive factors in PLC. However, no

study has reported the relationship between skin microbiota and PLC. Therefore,

we conducted a two-sample Mendelian randomization (MR) study to assess the

causality between skin microbiota and PLC.

Methods: Data from the genome-wide association study (GWAS) on skin

microbiota were collected. The GWAS summary data of GCST90018803 (HBDC)

and GCST90018858 (HC) were utilized in the discovery and verification phases,

respectively. The inverse variance weighted (IVW) method was utilized as the

principal method in our MR study. The MR-Egger intercept test, Cochran’s Q-

test, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and leave-one-out

analysis were conducted to identify the heterogeneity and pleiotropy.

Results: The results showed that Veillonella (unc.) plays a protective role

in HBDC, while the family Neisseriaceae has a positive association with

HBDC risk. The class Betaproteobacteria, Veillonella (unc.), and the phylum

Bacillota (Firmicutes) play a protective role in HC. Staphylococcus epidermidis,

Corynebacterium (unc.), the family Neisseriaceae, and Pasteurellaceae sp. were

associated with an increased risk of HC.

Conclusion: This study provided new evidence regarding the association

between skin microbiota and PLC, suggesting that skin microbiota plays a role

in PLC progression. Skin microbiota could be a novel and e�ective way for PLC

diagnosis and treatment.

KEYWORDS

causal impact, European descent, liver cancer, Mendelian randomization, skin

microbiota

Introduction

Hepatocellular carcinoma (HCC, or hepatic cancer, HC) and cholangiocarcinoma
(CCA, or hepatic bile duct cancer, HBDC) are the two major types of primary liver cancer
(PLC). It can be noted statistically that the incidence of PLC (both HC and HBDC) has
continued to increase over the past several years (Rahib et al., 2014; Petrick et al., 2016).
The diagnosis and treatment strategies for HC and HBDC are, in some respects, similar
based on their baseline clinical features. The diagnosis of PLC is primarily based on
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radiologic, serologic, and/or pathologic methods
(Chaisaingmongkol et al., 2017). Over the past few years, a
growing number of therapeutic interventions have been approved
for the treatment of PLC, but most of them only provide limited
survival benefits. For example, resection or transplantation is
a conventional treatment of choice for PLC; however, surgical
management is challenging because of the complex hepatobiliary
anatomy and chronic liver damage (Gunasekaran et al., 2021;
Sapisochin et al., 2022). Chemotherapy or treatment with
multikinase inhibitors (for example, sorafenib and lenvatinib
for HC or dabrafenib and trametinib for HBDC) provides
only a minor prolongation of overall survival and a marginal
increase in quality of life (Subbiah et al., 2020; Li et al., 2021).
Although research on the genetic landscape of PLC has grown
substantially over the past few years, various questions remain
unexplored (Li et al., 2021). Given the complex histology
and biology of PLC, it is essential to explore new biomarkers
and potential intervention measures to delay the progression
of PLC.

The microbiome affects the function of several organs in
the body. Increasing research has highlighted the complex link
between the microbiome and a number of human diseases
(Gopalakrishnan et al., 2018). Accordingly, the microbiome plays
an important role in a host of metabolic disorders, such as
diabetes, obesity, hypertension, and non-alcoholic fatty liver disease
(NAFLD; Michels et al., 2022). Recently, emerging studies have
indicated that the microbiome is closely related to different
types of cancer. Tumor-coating enterotoxigenic Bacteroides fragilis
recruits other bacteria and immune cells to the tumor site
and boosts colorectal cancer progression (Dejea et al., 2018).
Malassezia globose contributes to tumorigenesis, tumor growth,
and gemcitabine resistance in pancreatic ductal adenocarcinoma
(Aykut et al., 2019). Fusobacterium nucleatum is related to
tumor infiltration of Treg lymphocytes in a chemokine-dependent
fashion, promoting aggressive tumor behaviors (Yamamura et al.,
2016).

Mendelian randomization (MR) utilizes one or more genetic
variants as instrumental variables (IVs) based on genome-wide
association studies (GWAS). MR studies can infer the causal effects
of exposure on an outcome. Several studies based on MR analysis
showed a causal association between gut microbiota and illnesses.
For instance, recent findings have shown a significant association
between gut microbiota and diabetes, celiac disease (Xu et al.,
2022), and various types of cancer (Long et al., 2023). Generally,
the gut is the primary habitat of human microbiota; meanwhile,
thriving microbial populations exist throughout most of the body,
including the skin, genital tracts, and oral and respiratory organs
(The Human Microbiome Project Consortium, 2012). Unlike gut
microbiota, the role of the skin microbiota in cancer progression

Abbreviations: HCC, hepatocellular carcinoma; HC, hepatic cancer; CCA,

cholangiocarcinoma; HBDC, hepatic bile duct cancer; PLC, primary

liver cancer; NAFLD, non-alcoholic fatty liver disease; MR, Mendelian

randomization; IVs, instrumental variables; SNPs, single nucleotide

polymorphisms; GWAS, genome-wide association studies; MR-PRESSO,

MR-Pleiotropy RESidual Sum and Outlier; IVW, inverse variance weighted;

OR, odds ratio; CI, confidence interval.

is largely unknown. To the best of our knowledge, no study
has yet investigated the causal effect of the skin microbiota on
PLC risk using MR. Our investigation aimed to utilize MR to
explore the role of risk variants of the skin microbiota as IVs
for PLC.

Materials and methods

Study design

According to the MR framework (Figure 1), three key
assumptions were included in the study. (1) Relevance
assumption: single nucleotide polymorphisms (SNPs) that
were substantially linked to exposures were used as IVs. (2)
Independence assumption: these SNPs (IVs) did not show any
correlation with the relevant confounding factors. (3) Exclusivity
assumption: These SNPs (IVs) affect outcomes only through
their effects on exposure (Boef et al., 2015; Bowden et al.,
2017).

Data sources

The skin microbiota GWAS data were obtained from two
German cohorts, KORA FF4 (n = 324, Holle et al., 2005) and
PopGen (n = 273, Nöthlings and Krawczak, 2012), as summarized
by Moitinho-Silva et al. (2022). Participants for the KORA FF4
cohort were selected from the youngest age group ranging from
39 to 48 years. They were previously genotyped as part of the
KORA S4 Survey and were recruited from the southern German
city of Augsburg and its two surrounding counties (Holle et al.,
2005; Moitinho-Silva et al., 2022). PopGen cohort participants
were randomly recruited via the local population registry in Kiel,
Germany, and from blood donors of the University Hospital
Schleswig-Holstein, Campus Kiel (Nöthlings and Krawczak, 2012;
Moitinho-Silva et al., 2022). More detailed descriptions can be
found in the source publication. A total of 1,656 skin samples were
analyzed. The skin samples were taken from dry, moist, sebaceous,
and forehead skin microenvironments. High-throughput gene
sequencing technologies were used to analyze the skin microbiota
of a large cohort of individuals; microbial community profiles
were obtained from the sequencing of the V1-V2 regions in
the 16S ribosomal RNA (rRNA) gene. Genome-wide association
analyses were conducted on the univariate relative abundances
of individual bacteria (amplicon sequence variants; ASVs) and
non-redundant taxonomic groups ranging from genus to phylum
levels. The GWAS data related to PLC were obtained from
the IEU OpenGWAS project, based on research by Sakaue
et al. (2021), with GWAS ID: ebi-a-GCST90018803 for HBDC
and ebi-a-GCST90018858 for HC. The dataset included 476,091
individuals, comprising 832 cases and 475,259 controls, and
encompassed 24,196,592 SNPs. The study population consisted
of individuals of European descent. All participants provided
informed written consent, and all studies were reviewed and
approved by the institutional ethics review committees of the
institutions involved.
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FIGURE 1

Flowchart schematic diagram illustrating the principles of MR analysis in this study.

The selection of instrumental variables

Related IVs for the MR analysis followed particular
principles. SNPs should be associated with exposures at the
locus-wide significance level, p < 5e-06. In addition, the linkage
disequilibrium (LD) coefficient r2 should be<0.001 and not closely
related (clumping window more than 10,000 kb) to ensure the
independence of exposure instruments. We used the F-statistics
to measure the strength of the IVs, the values of which were more
than 10 (Bowden et al., 2015).

MR analysis

Causal associations between skin microbiota and PLC were
determined by conducting MR and reverse causality analyses. In
the exposure-outcome analysis, we employed MR with more than
two SNPs serving as IVs. In our MR analysis, five methods, namely,
the inverse variance weighted (IVW)method, the weighted median
method, the MR-Egger method, the simple mode, and the weighted
mode, were utilized. The IVW method was used as the primary
statistical analysis method in our MR analysis for evaluating causal
effects (Boef et al., 2015; Bowden et al., 2015, 2017).

The heterogeneity of the chosen SNPs was evaluated by
conducting Cochran’s Q-test, where a p-value of more than 0.05
suggested a lack of heterogeneity. The random effects model
was used once significant heterogeneity had been identified. We
evaluated the possible bias from horizontal pleiotropy using the
weighted median and MR-Egger regression models in order to
gauge the robustness of the IVW method. The MR-Pleiotropy
RESidual Sum and Outlier (MR-PRESSO) test was conducted
to assess outliers that might have been influenced by horizontal

pleiotropy. The causal effect estimates for individual variants were
displayed using a scatter plot. Thereafter, we performed a leave-
one-out analysis to examine the stability of the results in the context
of a single SNP’s influence and presented the findings in a forest plot
(Boef et al., 2015; Bowden et al., 2015, 2017).

All statistical analyses were conducted using R software
(Version 4.3.2) with the TwoSampleMR package (Version 0.5.8).
The statistical significance level was set at a p-value of <0.05.
Pooled odds ratios (ORs) with a 95% confidence interval (CI)
were calculated.

Results

MR analysis

Following the MR framework, we obtained a total of 595 SNPs
linked with 113 bacterial genera in the KORA FF4 cohort and a
total of 622 SNPs linked with 118 bacterial genera in the PopGen
cohort (details provided in Supplementary Tables 1, 2). Figures 2,
3 demonstrate the correlation between skin microbiota species
and PLC (Figure 2 for HBDC, Figure 3 for HC). As previously
mentioned, the IVW method was chosen as the primary statistical
analysis method, and after excluding genera with unknown
bacterial names, a significant association was observed between
nine genera and the outcome variable of PLC (Figure 4 for HBDC
and Figure 5 for HC). Specifically, the family Neisseriaceae (OR
= 1.13, 95% CI = 1.05–1.22, p = 0.0007) was found to be a risk
factor for HBDC, and ASV070 [Veillonella (unc.)] (OR= 0.92, 95%
CI = 0.87–0.99, p = 0.02) was found to be a protective factor for
HBDC (details provided in Table 1). The class Betaproteobacteria
(OR = 0.93, 95% CI = 0.86–0.99, p = 0.04), the phylum Bacillota
(Firmicutes; OR = 0.90, 95% CI = 0.83–0.98, p = 0.02), and
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FIGURE 2

Skin microbiota and their causal association with HBDC. (A) KORA FFA cohort; (B) PopGen cohort.

FIGURE 3

Skin microbiota and their causal association with HC. (A) KORA FFA cohort; (B) PopGen cohort.

ASV070 [Veillonella (unc.)] (OR = 0.93, 95% CI = 0.88–0.99, p
= 0.01) were found to be protective factors for HC. ASV013 [S.
epidermidis] (OR = 1.16, 95% CI = 1.03–1.32, p = 0.02), ASV004
[Corynebacterium (unc.)] (OR = 1.10, 95% CI = 1.02–1.18, p =

0.01), the family Neisseriaceae (OR = 1.08, 95% CI = 1.01–1.18, p
= 0.04), and ASV019 [(Pasteurellaceae sp.)] (OR = 1.11, 95% CI
= 1.02–1.22, p = 0.02) showed a significant positive association

with HC risk (details provided in Table 2). It is worth noting
that after false discovery rate (FDR) correction, no results showed
a significant association. A p-value above the FDR correction
threshold but lower than 0.05 was considered suggestive evidence
for a potential causal association. The scatter plots for the causal
relationship between skin microbiota and PLC are presented in
Figures 6, 7.
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FIGURE 4

Forest plot of Mendelian randomization analysis for skin microbiota and their causal association with HBDC. (A) KORA FFA cohort, Id for exposure,

GCST90133256: ASV011 unknown; GCST90133274: ASV070 [Veillonella (unc.)]; (B) PopGen cohort, Id for exposure, GCST90133296: the family:

Neisseriaceae; GCST90133189: ASV011 unknown.

Sensitivity analysis

According to Cochran’s Q-test, our IVW-MR analysis results
demonstrated no evidence of heterogeneity in our findings. TheMR
result for ASV013 [S. epidermidis] on HC showed heterogeneity (p
= 0.02). Furthermore, the MR-Egger regression analysis and MR-
PRESSO analysis results provided evidence suggesting that there
was no other significant horizontal pleiotropy (Tables 3, 4). We also
conducted a leave-one-out analysis to identify and delete abnormal
instrumental variables. The results showed the robustness of our
study (Supplementary Figures 1, 2) and also suggested that the MR
analysis results were relatively stable.

Discussion

We conducted an MR analysis to investigate the causal
association between skin microbiota and PLC (HBDC and
HC) using GWAS summary-level data. Our results showed

that Veillonella (unc.) plays a protective role in HBDC, and
the family Neisseriaceae has a causal risk impact on HBDC.

The class Betaproteobacteria, the phylum Bacillota (Firmicutes),
and Veillonella (unc.) play a protective role against HC. S.

epidermidis, Corynebacterium (unc.), the family Neisseriaceae,

and Pasteurellaceae sp. are associated with an increased risk
of HC. Our MR analysis revealed a genetic causal association
between skin microbiota and PLC, indicating that the skin
microbiome may take part in the progression of PLC. To the

best of our knowledge, our study is the first MR analysis to
investigate the potential causal association between skinmicrobiota
and PLC.

Our MR analysis demonstrated a causal association between
nine bacterial genera and PLC, while some of these bacterial
genera have previously been reported to be associated with cancer.
For example, Veillonella is reportedly associated with radiology-
proven objective responses in patients with unresectable HCC (Lee
et al., 2022). In addition, Zheng et al. (2023) also reported that
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FIGURE 5

Forest plot of Mendelian randomization analysis for skin microbiota and their causal association with HC. (A) KORA FFA cohort: Id for exposure,

GCST90133169: ASV013 [S. epidermidis]; GCST90133175: ASV004 [Corynebacterium (unc.)]; GCST90133200: the family: Neisseriaceae;

GCST90133204: ASV005 unknown; GCST90133246: ASV019 [Pasteurellaceae sp.]; GCST90133292: ASV070 [Veillonella (unc.)]. (B) PopGen cohort. Id

for exposure, GCST90133193: the phylum: Bacillota (Firmicutes); GCST90133263: ASV039 unknown; GCST90133288: the class: Betaproteobacteria.

TABLE 1 Causal association of skin microbiota with HBDC.

Exposure Methods OR Low 95% CI High 95% CI p-value

Veillonella (unc.) Inverse variance weighted 0.925 0.867 0.987 0.019

Weighted median 0.941 0.864 1.025 0.161

MR-Egger 0.778 0.536 1.131 0.259

Family: Neisseriaceae Inverse variance weighted 1.132 1.053 1.217 0.001

Weighted median 1.126 1.020 1.243 0.018

MR-Egger 1.497 1.045 2.144 0.092

OR, odds ratio; CI, confidence interval.

Veillonella was associated with an early recurrence of hepatitis B
virus (HBV)-related HC. S. epidermidis, which is the bacterium
present on the skin, could boost tumor-specific T cells and exert
cytotoxic activity (Chen et al., 2023). Additionally, Bernardo
et al. (2023) also reported that S. epidermidis exhibits potent
inflammatory activity and increases Tregs in breast cancer. Oral
Corynebacterium is associated with a decreased risk of head and

neck squamous cell carcinoma (HNSCC; Hayes et al., 2018).
Furthermore, the combination of Corynebacterium parvum and
heterologous tumor antisera reportedly extended survival longer
than either modality alone in murine ovarian cancer (Knapp
and Berkowitz, 1977). Pasteurellaceae act as salivary microbiome
biomarkers in patients with oral squamous cell carcinoma (SCC;
Medeiros et al., 2023).
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TABLE 2 Causal association of skin microbiota with HC.

Exposure Methods OR Low 95% CI High 95% CI p-value

S. epidermidis Inverse variance weighted 1.171 1.003 1.367 0.046

Weighted median 1.165 1.028 1.320 0.017

MR-Egger 0.710 0.092 5.480 0.798

Corynebacterium (unc.) Inverse variance weighted 1.100 1.022 1.185 0.011

Weighted median 1.086 0.987 1.195 0.090

MR-Egger 1.381 0.909 2.097 0.269

Family: Neisseriaceae Inverse variance weighted 1.085 1.020 1.155 0.010

Weighted median 1.088 1.005 1.177 0.037

MR-Egger 1.152 0.707 1.877 0.627

Pasteurellaceae sp. Inverse variance weighted 1.099 1.018 1.187 0.016

Weighted median 1.115 1.016 1.222 0.021

MR-Egger 0.878 0.433 1.778 0.752

Veillonella (unc.) Inverse variance weighted 0.933 0.883 0.986 0.014

Weighted median 0.932 0.867 1.002 0.058

MR-Egger 0.519 0.266 1.011 0.150

Phylum: Bacillota
(Firmicutes)

Inverse variance weighted 0.905 0.833 0.983 0.019

Weighted median 0.909 0.816 1.013 0.085

MR-Egger 1.362 0.807 2.299 0.331

Class: Betaproteobacteria Inverse variance weighted 0.931 0.868 1.000 0.048

Weighted median 0.937 0.856 1.026 0.161

MR-Egger 1.220 0.827 1.800 0.373

OR, odds ratio; CI, confidence interval.

Compared to studies on gut microbiota, there are limited
studies focusing on the influence of the skin microbiota on
other organs. The host genetic factors modulating the interactions
between the skin and the microbiome are still largely unclear.
Studies have reported the influence of the skin microbiota on skin
diseases. For instance, MR results have indicated the influence
of staphylococci in dermatitis/eczema; Flavobacteriaceae plays a
role in microenvironment-specific effects in allergies. Additionally,
Staphylococcus ASVs are associated with psoriasis, seborrheic
keratosis, and vitiligo (Moitinho-Silva et al., 2022). In contrast,
staphylococci showed a potential protective effect on allergic rhinitis
(Moitinho-Silva et al., 2022). Skinmicrobiota is also associated with
skin cancer (non-melanoma skin cancer, melanoma, and cutaneous
T-cell lymphoma, Woo et al., 2022).

Studies have demonstrated that the microbiome plays an
active role in various functions of the host, such as circadian
rhythms (CRs), metabolism, and immunity, rather than simply
being a passive observer. Skin microbiota is also involved in
the development of the innate immune system. For example, S.
epidermidis, a common skin commensal, has several immunity
effects on the skin. It produces lipoteichoic acids that prevent
inflammation caused by skin injuries (Lai et al., 2009). Additionally,
S. epidermidis promotes the expression of antimicrobial peptides,

such as human β-defensins (hBDs), and enhances the function of
skin lymphocytes, thereby contributing to increased skin immunity
(Naik et al., 2012; Hou et al., 2022). Zheng et al. (2020) indicated
that the CD8+ T-cell response specific to S. epidermidis is mediated
by non-classical MHC class I molecules and plays a role in tissue
repair. There is growing evidence suggesting that skin damage and
sensitization can have an impact on other barrier sites in the body,
such as the intestines and lungs. Accordingly, when exposed to
S. aureus, keratinocytes are stimulated to produce IL-36, which
leads to an increase in serum immunoglobulin E (IgE) levels.
These findings support the idea that skin exposure to microbial
pathogens can trigger systemic inflammation (Harris-Tryon and
Grice, 2022).

CRs are central to almost every biological process. The
interconnections between CRs and metabolic syndrome contribute
to the development of certain diseases (Gnocchi and Bruscalupi,
2017). Metabolic syndrome directly impacts health and increases
the risk of cancer (Bishehsari et al., 2020). For instance, NAFLD
is a common metabolic syndrome, as well as the most frequent
chronic liver disease. Although NAFLD is considered quite benign,
it can eventually progress to PLC (Gnocchi et al., 2019). Studies
have indicated that CRs are involved in the regulation of hormonal
and metabolic homeostases playing a role in the development
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FIGURE 6

Scatter plots showing significant causal e�ects between skin microbiota and HBDC. (A) ASV070 [Veillonella (unc.)]; (B) the family: Neisseriaceae.

FIGURE 7

Scatter plots showing significant causal e�ects between skin microbiota and HC. (A) ASV013 [S. epidermidis]; (B) ASV004 [Corynebacterium (unc.)];

(C) the family: Neisseriaceae; (D) ASV019 [Pasteurellaceae sp.]; (E) ASV070 [Veillonella (unc.)]; (F) the phylum: Bacillota (Firmicutes); (G) the class:

Betaproteobacteria.

and progression of NAFLD and eventually in the onset of PLC
(Gnocchi et al., 2019). Recent findings have also revealed a link
between CRs and microbiota, suggesting that human CRs have a
deep interconnection with their microbiomes (Matenchuk et al.,

2020), which potentially promotes NAFLD (Gnocchi et al., 2019;
Michels et al., 2022). These findings indicate that skin microbiota
may also take part in metabolic syndrome (e.g., NAFLD) and lead
to PLC.
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TABLE 3 Sensitivity analysis of skin microbiota in HBDC.

Exposure Q p-value for Cochran’s Q-test Egger-intercept p-value for MR-Egger intercept

Veillonella (unc.) 5.722 0.334 0.124 0.409

Family: Neisseriaceae 1.360 0.851 −0.185 0.195

TABLE 4 Sensitivity analysis of skin microbiota in HC.

Exposure Q p-value for Cochran’s Q-test Egger-intercept p-value for MR-Egger intercept

S. epidermidis 5.464 0.019 0.266 0.714

Corynebacterium (unc.) 0.419 0.811 −0.132 0.392

Family: Neisseriaceae 2.258 0.323 −0.030 0.831

Pasteurellaceae sp. 0.241 0.887 0.149 0.594

Veillonella (unc.) 0.956 0.812 0.384 0.182

Phylum: Bacillota (Firmicutes) 0.392 0.942 −0.182 0.219

Class: Betaproteobacteria 2.248 0.690 −0.138 0.239

This is the first study to investigate the causal relationship
between human skin microbiota and PLC using MR analysis.
Our results indicated that skin microbiota could act as new
biomarkers for various types of cancer. Given the easy and
convenient methods for acquiring and extracting skin microbiota,
our results can offer more possibilities for future cancer diagnosis
and treatment.

There are several limitations to our study. First, due to
the original GWAS statistics, we were unable to divide the
cohorts or perform subgroup analyses. Second, our analyses
only included individuals of European descent. Although using
a single European population to investigate causal relationships
can minimize population stratification bias, it is important to
interpret these findings with caution regarding their applicability
to other populations. Finally, our MR analysis reported that skin
microbiota has a causal influence on PLC, but the underlying
mechanism remains to be elucidated. Moreover, although our
findings indicated that skin microbiota has nominal causal
associations with PLC, these correlations disappeared after FDR
correction was applied. However, it is important to note that FDR
correction can result in false negatives (Larsson et al., 2017).

Conclusion

In conclusion, our study has provided novel evidence
that skin microbiota has a causal impact on PLC. The family
Neisseriaceae is associated with an increased risk of HBDC,
and Veillonella (unc.) is associated with a decreased risk of
HBDC. The class Betaproteobacteria, the phylum Bacillota
(Firmicutes), and Veillonella (unc.) are associated with a reduced
risk of HC. S. epidermidis, Corynebacterium (unc.), the family
Neisseriaceae, and Pasteurellaceae sp. show a significant
positive association with HC. These skin microbiota can
serve as new biomarkers for PLC and offer novel therapeutic
targets and clinical strategies for the diagnosis and treatment
of PLC.
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SUPPLEMENTARY FIGURE 1

The results of leave-one-out sensitivity analysis for skin microbiota in

HBDC. (A) ASV070 [Veillonella (unc.)]; (B) the family: Neisseriaceae.

SUPPLEMENTARY FIGURE 2

The results of Leave-one-out sensitivity analysis for skin microbiota in HC.

(A) ASV013 [S. epidermidis]; (B) ASV004 [Corynebacterium (unc.)]; (C) the

family: Neisseriaceae; (D) ASV019 [Pasteurellaceae sp.]; (E) ASV070

[Veillonella (unc.)]; (F) the phylum: Bacillota (Firmicutes); (G) the class:

Betaproteobacteria.
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