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Food-producing animals such as dairy cattle are potential reservoirs of 
antimicrobial resistance (AMR), with multidrug-resistant (MDR) organisms such 
as Escherichia coli observed in higher frequency in young calves compared 
to older cattle. In this study, we  characterized the genomes of enteric MDR 
E. coli from pre-weaned dairy calves with and without diarrhea and evaluated 
the influence of host-level factors on genomic composition. Whole genome 
sequence comparative analysis of E. coli (n  =  43) revealed substantial genomic 
diversity that primarily clustered by sequence type and was minimally driven 
by calf diarrheal disease status (healthy, diarrheic, or recovered), antimicrobial 
exposure, and dietary zinc supplementation. Diverse AMR genes (ARGs)—
including extended-spectrum beta-lactamase genes and quinolone resistance 
determinants—were identified (n  =  40), with unique sets of ARGs co-occurring 
in gene clusters with large AMR plasmids IncA/C2 and IncFIB(AP001918). 
Zinc supplementation was not significantly associated with the selection of 
individual ARGs in E. coli, however analysis of ARG and metal resistance gene 
pairs identified positive associations between certain aminoglycoside, beta-
lactam, sulfonamide, and trimethoprim ARGs with acid, tellurium and mercury 
resistance genes. Although E. coli in this study lacked the typical virulence 
factors of diarrheagenic strains, virulence genes overlapping with those in 
major pathotypes were identified. Among the 103 virulence genes detected, 
the highest abundance and diversity of genes corresponded to iron acquisition 
(siderophores and heme uptake). Our findings indicate that the host-level factors 
evaluated in this study were not key drivers of genomic variability, but that 
certain accessory genes in enteric MDR E. coli may be enriched. Collectively, 
this work provides insight into the genomic diversity and host-microbe interface 
of MDR E. coli from pre-weaned dairy calves.
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1 Introduction

Escherichia coli is a diverse and ubiquitous organism present in the 
healthy enteric microbiome of humans and animals and as a pathogen 
responsible for various diarrheagenic and extraintestinal diseases 
(Jackson et al., 2011; Braz et al., 2020). The occurrence of antimicrobial 
resistant (AMR) E. coli in food-producing animals, such as dairy 
cattle, has been identified across various cattle groups in farm 
environmental matrices, feces, food products (e.g., milk and cheese), 
and clinical samples (e.g., diarrhea and clinical mastitis) (Ombarak 
et al., 2018; Formenti et al., 2021; Jeamsripong et al., 2021; Majumder 
et al., 2021; Imre et al., 2022). The prevalence and persistence of drug-
resistant E. coli is both a veterinary and human medicine concern, 
with pathogenic strains compromising animal health and safety of 
food products, and commensals serving as important reservoirs for 
the dissemination of AMR.

Multidrug-resistant (MDR) E. coli have been observed in higher 
frequency in younger cattle, particularly in calves around 2 weeks in age 
(Berge et al., 2005, 2010). This age-dependent and transient increase in 
AMR of dairy calves is thought to be driven by the early developing gut 
microbiome, in which initial exposure to the environment, antibiotic 
therapy, dietary changes, and other factors collectively contribute to the 
rapid establishment of the bovine resistome (Khachatryan et al., 2004; 
Noyes et al., 2016; Liu et al., 2019; Springer et al., 2019; Oh et al., 2020). 
Previous studies have demonstrated the dynamic nature of AMR 
selection and enrichment in calves, with the acquisition of AMR 
occurring beyond influences of antibiotic exposure (Liu et al., 2019; 
Haley and Van Kessel, 2022) and calves harboring greater diversity in 
AMR than the potential sources (e.g., dam) seeding their resistome 
(Haley et  al., 2020; Massé et  al., 2021). Additionally, studies have 
suggested that biocides used as disinfectants and heavy metal additives 
in feed may contribute to the co-selection of AMR with biocide and 
metal resistance (Wales and Davies, 2015; Cheng et al., 2019).

In pre-weaned dairy calves, diarrhea is the leading cause of morbidity 
and mortality, which frequently results in antimicrobial treatment 
(Berchtold and Constable, 2009; Habing et al., 2017). To reduce AMR 
without compromising animal health, antimicrobial alternatives such as 
dietary zinc supplementation have been explored and shown to 
be effective in preventing diarrhea and expediting diarrheal recovery 
(Glover et al., 2013; Feldmann et al., 2019; Chang et al., 2020; Ma et al., 
2020; Wo et al., 2022). In this work, we evaluated fecal MDR E. coli 
isolates from pre-weaned dairy calves in a zinc supplementation clinical 
trial using whole genome sequencing (WGS) comparative analysis. The 
objective of this study was to characterize AMR and virulence genes and 
to evaluate calf diarrheal disease status, dietary zinc supplementation, 
and antimicrobial treatment as potential drivers of genomic variability 
in MDR E. coli. We  hypothesize that these host-level factors will 
contribute to differences in genomic AMR, virulence, and metal 
resistance profiles, and that the presence of certain genes will provide 
insight into the persistence of enteric MDR E. coli in calves.

2 Materials and methods

2.1 Isolate source

Fecal E. coli isolates in this study were obtained from 
pre-weaned dairy calves enrolled in a double-blind, 

block-randomized, placebo-controlled zinc supplementation 
clinical trial assessing dietary zinc supplementation on diarrhea 
prevention and calf health. Details on the original trial procedures 
were previously described (Feldmann et al., 2019). Briefly, all calves 
were under the same management practices (e.g., housing and diet) 
and standard on-farm treatment protocols. The repository of 43 
E. coli isolates correspond to pre-weaned dairy calves 2 weeks in age 
(range: 14–16 days). One representative fecal E. coli isolate per calf 
was used for analysis, with each isolate corresponding to a calf after 
14 consecutive days of dietary zinc sulfate or placebo treatment. 
Treatments were administered during morning milk feeding with 
calves in the zinc group receiving 0.22 g zinc sulfate monohydrate 
(80 mg of elemental zinc) (Sigma-Aldrich Company, St. Louis, MO, 
United States) with 0.44 g milk replacer powder, and calves in the 
placebo group receiving only 0.44 g milk replacer powder 
(Feldmann et al., 2019). At the time of isolate collection, calves were 
in various stages of diarrheal disease (pre-diarrheic/healthy, 
diarrheic, or recovered) and exposure to antimicrobial treatment 
for diarrhea (0, 1, or 2 doses of 31.5 mL (1,575 mg) spectinomycin 
administered once daily, SpectoGard, Bimeda, Inc., Le Sueur, MN, 
United States). Other antimicrobial exposures included tetracycline 
and neomycin administered through daily milk, which were 
consistent in dosage and duration over time for all calves 
throughout the study. Calf-level data corresponding to isolates were 
collected from daily assessment records for individual calves. All 
isolates were confirmed as E. coli using conventional PCR and 
underwent antimicrobial susceptibility testing (AST) using broth 
microdilution and the NARMS Gram Negative panel 
(YCMV3AGNF) as previously described (Lee et al., 2024).

2.2 DNA extraction and whole genome 
sequencing (WGS)

Genomic DNA was extracted from pure overnight E. coli 
cultures per manufacturer’s protocol using the Qiagen’s DNeasy 
Blood and Tissue kit (Qiagen, Valencia, CA, United States). WGS 
was conducted using methods from the 100 K Pathogen Genome 
Project as previously described (Weis et al., 2017; Bandoy and 
Weimer, 2020; Aguilar-Zamora et al., 2022; Hurtado et al., 2022; 
Woerde et  al., 2023; Hernández-Juárez et  al., 2021). Briefly, 
genomic DNA purity and integrity were assessed using the 
Nanodrop and the Agilent 2200 TapeStation with the Genomic 
DNA ScreenTape Assay (Agilent Technologies, Inc., Santa Clara, 
CA, United  States), respectively. Sequencing libraries were 
constructed using the KAPA HyperPlus library preparation kit 
(Roche Sequencing Solutions, Pleasanton, CA, United  States). 
Double-stranded genomic DNA was fragmented and indexed 
using Weimer 384 TS-LT DNA barcodes (Integrated DNA 
Technologies, Coralville, IA, United  States), followed by dual-
SPRI size selection and PCR amplification. Final library sizes were 
confirmed on the LabChip GX using the HT DNA 1 K kit 
(PerkinElmer, Waltham, MA, United  States). Library 
quantification was conducted using the KAPA Library 
Quantification Kit (Roche Sequencing Solutions, Pleasanton, CA, 
United States) to ensure normalized concentrations for sequencing 
pooling. Final libraries were sequenced using the Illumina HiSeq 
X Ten with PE150.
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2.3 Whole genome assembly and 
comparison

Genomic sequence data was processed as previously described 
(Bandoy and Weimer, 2020; Higdon et al., 2020; Flores-Valdez et al., 
2021; Miller et  al., 2021; Depenbrock et  al., 2024). Briefly, 
Trimmomatic was used to remove low-quality sequence and adapters, 
and FastQC was used to review sequence quality. Paired-end reads 
from WGS were assembled using Shovill with the SPAdes assembler 
and a Kmer size of 31. Quality of assemblies was then evaluated using 
CheckM. Genome similarity was measured using Sourmash with 
Minhash signatures with a Kmer length of 31 and scaled sketch size of 
100,000 per megabase (Brown and Irber, 2016). The matrix output 
from Sourmash was visualized in R using the pheatmap package 
(RDocumentation, 2024).

2.4 Multilocus sequence typing (MLST) and 
pangenome analysis

The sequence type (ST) for each genome was determined based 
on the Achtman seven-locus scheme (adk, fumC, gyrB, icd, mdh, 
purA, and recA) using the PubMLST database (Kaas et  al., 2012; 
PubMLST, 2024). Pangenome analysis was conducted using Roary as 
described previously (Page et al., 2015; Bandoy and Weimer, 2020; 
Miller et  al., 2021). Pangenome composition and gene diversity 
estimation were then visualized using open source python script 
‘roary_plots.py’ and native Rscript (create_pan_genome_plots.R), 
respectively (Higdon et al., 2020).

2.5 Identification of antimicrobial 
resistance genes (ARGs), virulence genes, 
metal resistance genes, and plasmid 
replicons

Genetic determinants for antimicrobial resistance (ARGs), 
virulence, metal resistance, and plasmid replicons were determined 
using Abricate and the ResFinder, VFDB, BacMet, and PlasmidFinder 
databases, respectively (Zankari et al., 2012; Carattoli et al., 2014; Pal 
et al., 2014; Chen et al., 2016; Seemann, 2024). Additionally, SNP 
based resistance for quinolones was identified using RGI with the 
CARD database (Alcock et  al., 2020a,b). Hits were determined if 
meeting the criteria of ≥90% coverage and ≥ 95% identity. For metal 
resistance genes, only experimentally confirmed genes were included 
in the analysis.

2.6 Data analyses

Descriptive statistics on the distribution of ARGs, virulence 
factors, metal resistance genes, and plasmid replicons were conducted 
in SAS OnDemand for Academics. Differences in the mean number 
of ARGs and virulence genes by factors of treatment group, diarrhea 
status, and number of therapeutic antibiotic doses were evaluated 
using a t-test/ANOVA or Mann–Whitney U test.

Proportions of E. coli genomes with presence of ARGs and 
virulence factors were plotted as heatmaps in R using the pheatmap 

package. Rows of the heatmaps were clustered using the Euclidean 
distance metric and complete linkage method. Bar plots and violin 
plots of the distribution of ARGs and virulence factors, respectively, 
were visualized in R using ggplot2 (Wickham et al., 2023).

To investigate the differences in antimicrobial resistance, 
virulence, metal resistance, and pangenome composition amongst 
isolates, clustering based on the presence and absence matrices for 
each were assessed by grouping factors of treatment group, diarrhea 
status, sequence type, and antibiotic exposure as previously described 
(Lee et al., 2023). A PERMDISP2 procedure was conducted to evaluate 
if dispersions of groups for each grouping factor were homogenous 
(Anderson, 2006; Anderson et al., 2006). Permutational analysis of 
variance (PERMANOVA) and ANOSIM (analysis of similarity) were 
then performed to evaluate equivalence of centroids of groups and 
average of ranks of within-group to between-group distances, 
respectively (Anderson and Walsh, 2013). Additionally, non-metric 
multidimensional scaling was performed by grouping factor of 
sequence type for AMR and virulence genes. All tests were performed 
using 10,000 permutations and a Jaccard distance metric in R using 
the vegan package (Oksanen et al., 2022).

Logistic regression models were constructed to assess the 
association between the presence of ARGs with calf-level factors. 
Models were constructed with outcomes specified as the presence or 
absence of individual ARGs, quinolone resistance determinants 
(presence of any point mutations or plasmid-mediated quinolone 
resistance determinants), and extended spectrum beta-lactamase 
(ESBL) resistance genes. ARGs which were present in all E. coli 
genomes were omitted from analysis. Calf-level factors included in 
model building included treatment group (isolate from zinc – or 
placebo – treated calf), therapeutic spectinomycin exposure at the 
time of isolate collection, and diarrhea status of the calf at the time of 
isolate collection. Antibiotic exposure and calf diarrhea status were 
evaluated based on individual calf-level data collected through daily 
assessments. Specifically, spectinomycin treatment was coded as a 
binary variable (received treatment or not), number of doses received 
(0, 1, or 2 doses), or days from the last spectinomycin dose received, 
and diarrhea status was coded as days on or from diarrhea or a 
categorical variable (healthy/pre-diarrheic, diarrheic, or recovered). 
Final models were selected based on the lowest AIC after inclusion of 
confounders (antimicrobial exposure for all ARG models) and any 
other significant predictors. Given their public health significance, the 
association between the presence of extended spectrum beta-
lactamase (ESBL) genes and other ARGs were also evaluated using 
Fisher’s exact test.

Antimicrobial susceptibility testing data previously collected on 
study isolates (broth microdilution using the NARMS Gram Negative 
panel, YCMV3AGNF) were used to assess the concordance between 
genotypic and phenotypic resistance (Lee et al., 2022) for the following 
drugs: gentamicin, streptomycin, amoxicillin-clavulanic acid, 
cefoxitin, ceftiofur, ceftriaxone, trimethoprim-sulfamethoxazole, 
azithromycin, ampicillin, chloramphenicol, nalidixic acid, 
ciprofloxacin, and tetracycline. Classification of isolates into 
susceptible, intermediate, and resistant categories were conducted 
using CLSI breakpoints, with the exception of streptomycin and 
azithromycin where NARMS breakpoints were used due to lack of 
CLSI breakpoints (Supplementary file). Additionally, sulfisoxazole was 
omitted from analysis as resistance could not be determined due to 
the limited range of drug dilutions in the panel. Multidrug-resistance 
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(MDR) was defined as resistance to ≥1 drug in ≥3 antimicrobial 
classes (Magiorakos et  al., 2012). Concordance included 
phenotypically resistant isolates with the corresponding ARG(s) (TP, 
true positive) and phenotypically susceptible isolates with absence of 
corresponding ARG(s) (TN, true negative). Discordance included 
phenotypically resistant isolates not having the corresponding ARG(s) 
(FN, false negative), and phenotypically susceptible isolates having the 
corresponding ARG(s) (FP, false positive). Sensitivity and specificity 
were evaluated as TP/(TP + FN) and TN/(TN + FP), respectively. For 
analysis, intermediate isolates were grouped with susceptible isolates.

To evaluate the co-occurrence of plasmid replicons and ARGs, a 
pairwise co-occurrence matrix was constructed and visualized as 
networks using Gephi (Bastian et al., 2009) as previously described (Lee 
et al., 2023). To assess the linkage patterns of ARGs and metal resistance 
genes, pairwise probabilistic co-occurrence analysis was conducted using 
default settings in the R package co-occur (Griffith et al., 2016).

3 Results

3.1 WGS of MDR Escherichia coli isolates

Escherichia coli genomes in this study had an average of 193 
contigs, coverage of 112X, and quality score of 38. Additional quality 
metrics, AST data, and metadata of genomes in this study are available 
in the Supplementary file.

3.2 Concordance of AMR phenotypes with 
genotypes

Escherichia coli isolates in this study were previously determined 
to be MDR through AST. To assess AMR concordance, predictions of 
AMR phenotype from genotype was evaluated for 13 drugs using 
previously collected AST data. Across all tested drugs, genotypic AMR 
predicted phenotypic AMR with an overall sensitivity of 100% and 
specificity of 98.58% (Table 1). Discordances in specificity included a 
streptomycin susceptible isolate with a streptomycin resistance gene 
(aadA2), and a ceftiofur intermediate isolate with carriage of an 
AmpC beta-lactamase gene (blaCMY2).

3.3 Escherichia coli genome population 
structure

Whole genome analysis of the isolates revealed a large 
genomic diversity of E. coli genomes. All-by-all comparison 
identified three main clusters that exhibited minimal to no 
relationship to calf disease status (healthy, diarrheic, or recovered 
calves), treatment group (placebo or zinc), or therapeutic 
antimicrobial treatment (0, 1, or 2 doses of spectinomycin). A 
total of 20 unique sequence types (STs) based on the 7-gene 
allelic profile were identified among 42 isolates, with one isolate 
unable to be assigned to a ST. The most frequently occurring STs 

TABLE 1 Genotypic prediction of phenotypic resistance in dairy calf E. coli isolates (n  =  43).

CLSI class Antimicrobial 
agent

Phenotype: susceptible Phenotype: resistant Sensitivityb 
(%)

Specificityc 
(%)

(No. of isolates) (No. of isolates)

Genotype: 
resistant

Genotype: 
susceptible

Genotype: 
resistant

Genotype: 
susceptible

(FP)a (TN)a (TP)a (FN)a

Aminoglycosides
GEN 0 5 38 0 100% 100%

STR 1 0 42 0 100% 0%

B-lactam 

combination 

agents

AUG2 0 2 41 0 100% 100%

Cephems

FOX 0 2 41 0 100% 100%

XNL 1 1 41 0 100% 50%

AXO 0 1 42 0 100% 100%

Folate pathway 

antagonists
SXT N/A N/A 43 0 100% 0%

Macrolides AZI 0 40 N/A N/A N/A 100%

Penicillins AMP N/A N/A 43 0 100% N/A

Phenicols CHL 0 10 33 0 100% 100%

Quinolones
NAL 0 39 4 0 100% 100%

CIP 0 39 4 0 100% 100%

Tetracyclines TET N/A N/A 43 0 100% N/A

Overall – 2 139 415 0 100% 98.58%

aFP false positive; TN true negative, TP true positive, FN false negative.
bSensitivity TP/(TP + FN).
cSpecificity TN/(TN + FP).
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included ST362 (7/43, 16.28%), followed by ST10 (4/43, 9.30%), 
ST101 (4/43, 9.30%), and ST641 (4/43, 9.30%). STs correlated 
with group and individual clusters from whole genome 
comparisons, with distinctive variability in genome content 
observed within each ST (Figure 1), indicating that the genes 
used to define ST were stable, but the remainder of the genome 
contained large variations. Specifically, the most prevalent STs 
exhibited substantial heterogeneity in genome composition, 
particularly ST10, ST101, and ST641 which had variable 
accessory genes including those for AMR and virulence 
(Figures  1, 2B, 3B). This observation indicated that WGS 
provided higher resolution characterization of strain variation 
than MLST, and prompted examining the pangenome for better 
understanding of the gene variation among isolates in this study.

3.4 Pangenome analysis of Escherichia coli 
isolates

The pangenome of E. coli isolates in this study was open and 
comprised of 14,011 genes that included a core genome with 3,117 genes 
and a soft-core, shell, and cloud genomes of 219, 3,076, and 7,599 genes, 
respectively. Analysis of the cumulative gene curve representing the 
number of total homologous genes and conserved homologs indicated 
an open pangenome that was covered with approximately 10 genomes 

within this population (Supplementary Figure S1). While the core was 
represented within a smaller portion of the isolates, genes from the 
variable portion of the pangenome represented 77.75% variation in the 
isolate population.

3.5 AMR, virulence, metal resistance, and 
pangenome profiles and diversity

The collective ARGs, virulence genes, metal resistance genes, and 
pangenome elements of E. coli were evaluated using multivariate 
analysis to assess if variability in these genomic profiles were driven 
by host-level factors. Tests for differences in E. coli genomic content 
for AMR, virulence, metal resistance, and pangenome elements 
indicated that dispersion differences were not significantly different 
among isolates by treatment group, diarrhea status, and therapeutic 
antibiotic exposure (PERMDISP2 p > 0.05, Table  2). Additionally, 
grouping factors evaluated in this study accounted for a low 
proportion of variance in AMR, virulence, metal resistance, and 
pangenome composition in E. coli genomes (PERMANOVA 
R2 = 9.39E-3-0.04), with equal or greater dissimilarities in average of 
ranks within group than those of between-groups across all factors 
(ANOSIM R = ~0 or R < 0) (Table 2). These analyses indicated that the 
host-level factors evaluated in this study—diarrheal disease status, 
dietary zinc supplementation, and antibiotic treatment—had minimal 

FIGURE 1

All-by-all comparison of genome similarity of E. coli isolates (n  =  43) from pre-weaned dairy calves, generated using MinHash sketches from draft 
whole-genome assemblies of k-mers with a length of 31 and sketch size of 100,000. The heatmap color gradient corresponds to the Jaccard Similarity 
Index (JSI) for each pairwise comparison, with values close to 0 and 1 corresponding to high genome dissimilarity and similarity, respectively.
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influence on the genomic composition of E. coli. These findings 
provided impetus to evaluate the distribution of genes individually 
with respect to host-level factors.

3.6 Antimicrobial resistance genetic 
determinants (ARGs)

Across the 43 E. coli genomes, a total of 40 ARGs among diverse 
antimicrobial classes were detected. The average and median number 
of ARGs per genome—including SNPs for quinolone resistance—was 
13 ARGs with a range of 9 to 19. ARGs conferring resistance to 
antimicrobials of public health significance included seven SNPs in 
chromosomal genes—pS83L, pD87N, and pD87Y in gyrA, pS80I and 

pE84G in parC, and pI355T and pS458T in parE—and 2 plasmid-
mediated quinolone resistance genes—qnrB19 and qnrS1—associated 
with quinolone resistance, and those for AmpC (blaCMY-2) and 
extended-spectrum (blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55) beta-
lactamases (ESBL). The presence of ESBL gene(s) in E. coli was 
significantly associated with the presence of one or more quinolone 
resistance determinants (p < 0.05, Fisher’s exact test).

ARGs present in more than half of the isolates included mdf(A) 
(43/43, 100%), aph(6)-Id (39/43, 90.7%), rmtE (38/43, 88.4%), 
aph(3″)-Ib (36/43, 83.7%), and aadA5 (27/43, 62.8%) for 
aminoglycoside resistance, blaCMY-2 (41/43, 95.3%) for beta-lactam 
resistance, dfrA17 (28/43, 65.1%) for trimethoprim resistance, floR 
(33/43, 76.7%) for phenicol resistance, sul2 (40/43, 93.0%) for 
sulfonamide resistance, and tet(A) (43/43, 100%) and tet(M) (40/43, 

FIGURE 2

Antimicrobial resistance genetic determinants in fecal E. coli isolates from pre-weaned dairy calves (n  =  43). (A) Heat map of ARG prevalence among 
isolates. (B) Non-metric multidimensional scaling of ARG composition of isolates by grouping factor of sequence type. Distribution of number of ARGs 
in E. coli isolates by (C) treatment group (D) diarrhea status and (E) therapeutic antibiotic exposure.
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93.0%) for tetracycline resistance (Figure 2A). The average number of 
ARGs across all genomes and collective AMR profiles did not differ 
significantly by dietary zinc supplementation treatment group (zinc 

or placebo), diarrhea status (healthy, diarrheic, and recovered), and 
therapeutic antibiotic exposure (0, 1, or 2 doses) (Table  2, 
Figures 2C–E).

FIGURE 3

Virulence genes in fecal E. coli isolates from pre-weaned dairy calves (n  =  43). (A) Heat map of virulence gene prevalence among isolates. (B) Non-
metric multidimensional scaling of virulence gene composition in isolates by grouping factor of sequence type. Distribution of number of virulence 
genes in E. coli isolates by (C) treatment group (D) diarrhea status and (E) therapeutic antibiotic exposure.
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3.7 Mobile genetic elements associated 
with ARGs

As E. coli isolates in this study were MDR, it was of interest to 
investigate the mobile genetic elements associated with ARGs that 
may contribute to AMR co-transfer. Eighteen putative plasmids based 
on the presence of plasmid replicons were identified across all 
genomes, with a pairwise co-occurrence matrix indicating high 
frequency co-occurrence of AMR gene clusters with certain putative 
plasmids (Figure 4). The most frequently co-occurring gene network 
of aph(6)-Id, blaCMY-2, floR, mdf(A), sul2, and tet(A) was associated 
with the IncA/C2 plasmid replicon in 30 (69.8%) genomes. A second 
smaller network including mdf(A), rmtE, and tet(A) co-occurred with 
the IncFIB (AP001918) plasmid replicon at a frequency of 20 (46.5%) 
genomes. At a minimum threshold co-occurrence of ≥10 genomes 
(about 25% of the genomes), a larger network of genes including 
aac(3)-VIa, aadA2, dfrA12, mdf(A), rmtE, sul1, tet(A), and tet(M) 
were detected with IncHI2/2A plasmid replicons. Screening for 
plasmid replicons among genomes in this study identified unique sets 
of ARGs in co-occurrence with primarily large AMR plasmids.

3.8 Association between dietary zinc 
supplementation and genotypic AMR

The relationship between genotypic AMR and calf zinc treatment 
group of isolates was examined to determine the association between 
dietary zinc supplementation in pre-weaned dairy calves and the 
selection of specific ARGs. From descriptive analysis, SNPs in genes 
for quinolone resistance were exclusively detected in isolates from 
placebo calves. Antibiotic exposure-adjusted logistic regression 
models identified higher odds of certain ARGs in E. coli isolates from 
zinc-treated compared to placebo calves (dfrA12, aadA2, sul2, aac(3)-
VIa, aph(3″)-Ib, blaTEM-1B, sul1, and alleles of blaCTX-M), though none of 

these associations were significant (OR = 1.60–2.92, p > 0.05). 
Conversely, there were non-significant lower odds for other ARGs and 
point mutations associated with quinolone resistance for isolates from 
zinc-treated to placebo calves [aadA5, dfrA17, floR, aph(3′)-Ia, blaCMY-

2, aph(6)-Id (OR = 0.23–0.82, p > 0.05)] (Figure  5, Table  3, 
Supplementary Tables S1–S15).

3.9 Virulence genes

A total of 103 virulence genes corresponding to adherence/biofilm 
formation (n = 36), iron/nutrient acquisition (n = 40), secretion 
(n = 21), toxin (n = 4), and other functions (n = 2) were detected across 
E. coli genomes. The average and median number of virulence genes 
were 40.58 and 38, respectively (range of 18 to 68). Five virulence 
genes related to enterobactin (entB, entC, fepA, fepD and fes) were 
detected across all isolates (Figure 3A). The number of virulence genes 
and collective virulence profiles across genomes did not differ 
significantly by dietary zinc supplementation treatment group, 
diarrhea status, and therapeutic antibiotic exposure (Table  2, 
Figures 3C–E).

Virulence genes from the afa-7 and afa-8 clusters (afaA-E) 
encoding afimbrial adhesins were detected primarily in isolates from 
placebo calves (85.71%, 6/7), with the full gene set present in six 
isolates. Other virulence genes detected related to colonization 
included those encoding F17 fimbriae (f17d-A, f17d-C, f17d-D, and 
f17d-G) in six isolates, and P fimbriae in 12 isolates (pap genes) (Bertin 
et al., 2000; Bihannic et al., 2014; Ryu et al., 2020). Additionally, genes 
in the fim cluster (fimA-I) encoding type 1 fimbriae were present in 
the majority of isolates, though only one isolate harbored the fimA 
structural gene and three isolates the fimH adhesin gene. Major 
virulence genes related to secretion included those corresponding to 
Type II (gsp) and Type III (esp) secretion systems. Virulence genes for 
toxins, astA (enteroaggregative heat-stable enterotoxin) and/or 

TABLE 2 Results of PERMDISP2, PERMANOVA, and ANOSIM tests.

Group PERMDISP2 p-value (F) PERMANOVA p-value (R2) ANOSIM p-value (R)

AMR (ResFinder) genes (n = 40)

  Treatment group 0.75 (0.10) 0.15 (0.04) 0.38 (4.23E−3)

  Diarrhea status 0.74 (0.29) 0.87 (0.02) 0.49 (−5.89E−3)

  Antibiotic doses 0.62 (0.48) 0.83 (9.39E−3) 0.85 (−0.09)

Virulence (VFDB) genes (n = 103)

  Treatment group 0.86 (0.03) 0.73 (0.01) 0.75 (−0.035)

  Diarrhea status 0.98 (0.02) 0.76 (0.03) 0.57 (−0.020)

  Antibiotic doses 0.69 (0.38) 0.70 (0.02) 0.67 (−0.048)

BacMet genes (n = 153)

  Treatment group 0.71 (0.15) 0.22 (0.03) 0.37 (7.93E−3)

  Diarrhea status 0.96 (0.04) 0.93 (0.02) 0.49 (−4.04E−3)

  Antibiotic doses 0.97 (0.03) 0.76 (0.01) 0.52 (−0.01)

Pangenome (Roary) elements (n = 14,011)

  Treatment group 0.92 (0.01) 0.34 (0.025) 0.42 (2.0E–3)

  Diarrhea status 0.59 (0.54) 0.93 (0.03) 0.80 (−0.066)

  Antibiotic doses 0.71 (0.35) 0.57 (0.02) 0.47 (2.63E–3)
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cdtABC (cytolethal distending toxin), were identified in isolate(s) from 
pre–and post-diarrheic calves. Overall, virulence genes were 
interspersed in the population across calf zinc treatment group and 

diarrhea status. The largest number and diversity of virulence genes 
identified corresponded to iron/nutrient acquisition, including genes 
chuSTUVWXY (heme uptake), entA-F (enterobactin), fepA-D 

FIGURE 4

Co-occurrence network of plasmid replicons and antimicrobial resistance genetic determinants (ARGs) in E. coli isolates. Nodes representing ARGs are 
color coded by antimicrobial class and edges representing low to high frequency of co-occurrence are depicted in a light to dark color gradient.

FIGURE 5

Antibiotic exposure-adjusted logistic regression models evaluating the association between presence of antimicrobial resistance genetic determinants 
(ARGs) and calf treatment group of E. coli isolates. Point estimates for each model are color-coded by antimicrobial class. Binary outcomes for 
quinolone and blaCTX-M models were specified as the presence/absence of any quinolone resistance mechanism (plasmid-mediated genes or point 
mutations) and the presence/absence of any blaCTX-M alleles, respectively.
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(enterobactin), fyuA (yersiniabactin receptor), iucABCD-iutA 
(aerobactin), and those in the ybt operon (yersiniabactin) (Figure 3A).

3.10 Association between AMR and metal 
resistance genes

A total of 153 metal resistance genes (MRGs) were identified 
across all E. coli genomes examined, with the average and median 

number of MRGs per genome being 128.42 and 127, respectively, 
with a range of 123 to 135. Co-occurrence analysis of ARGs and 
metal resistance genes included 16,585 gene pairs and identified 96 
positive and 77 negative co-occurrences. Positive associations 
including both ARGs and metal resistance were observed between 
aminoglycoside (aac(3)-VIa, aadA2), beta-lactam (blaTEM-1B), 
sulfonamide (sul1), and trimethoprim (dfrA12) resistance and acid 
(gadA and gadB), tellurium (terZ and terW) and mercury (merT) 
resistance genes (Figure 6).

TABLE 3 Distribution of antimicrobial resistance genetic determinants (ARGs) in E. coli by calf treatment group and treatment group point estimates 
(zinc vs. placebo) from antibiotic exposure-adjusted logistic regression models.

ARG Zinc Placebo OR (95% CI) p-value

sul1 9/17 (52.94%) 7/26 (26.92%) 2.83 (0.77, 10.45) 0.12

blaTEM-1B 7/17 (41.18%) 6/26 (23.08%) 2.44 (0.63, 9.45) 0.2

aph(3″)-Ib 15/17 (88.24%) 21/26 (80.77%) 2.32 (0.37, 14.71) 0.37

aac(3)-VIa 7/17 (41.18%) 6/26 (23.08%) 2.21 (0.58, 8.50) 0.25

aadA2 8/17 (47.06%) 9/26 (34.62%) 1.61 (0.45, 5.72) 0.46

dfrA12 8/17 (47.06%) 9/26 (34.62%) 1.60 (0.45, 5.67) 0.47

aph(6)-Id 15/17 (88.24%) 24/26 (92.31%) 0.82 (0.096, 7.00) 0.86

floR 12/17 (70.59%) 21/26 (80.77%) 0.65 (0.15, 2.78) 0.56

dfrA17 9/17 (52.94%) 19/26 (73.08%) 0.45 (0.12, 1.64) 0.22

aadA5 8/17 (47.06%) 19/26 (73.08%) 0.35 (0.096, 1.30) 0.12

quinolone 1/17 (5.88%) 5/26 (19.23%) 0.23 (0.024, 2.29) 0.21

sul2 16/17 (94.12%) 24/26 (92.31) 1.89 (0.14, 25.12) 0.63

blaCTX-M 2/17 (11.76%) 1/26 (3.85%) 2.92 (0.23, 36.49) 0.41

Binary outcomes for quinolone and blaCTX-M models were specified as the presence/absence of any quinolone resistance mechanism (plasmid-mediated genes or point mutations) and the 
presence/absence of any blaCTX-M alleles, respectively.

FIGURE 6

Pairwise probabilistic co-occurrence analysis for positive, negative, or random associations between antimicrobial resistance genetic determinants and 
metal resistance genes in E. coli isolates.
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4 Discussion

The enteric microbiota serves as a symbiotic partner of the host, 
with crucial roles in intestinal health, metabolism, and host immune 
response (Casadevall and Pirofski, 2000; Kaiko and Stappenbeck, 
2014; Jandhyala et al., 2015). The acquisition and loss of genes—such 
as those for AMR—in enteric microbes like E. coli can occur as 
adaptive responses to environmental (e.g., dysbiosis) and host changes 
(e.g., diet and disease). In this study, we investigated the host-microbe 
interface of enteric MDR E. coli from pre-weaned dairy calves to 
evaluate potential contributing factors to MDR persistence and better 
understand the relationship between genomic composition and host-
level factors of antimicrobial exposure, dietary zinc supplementation, 
and calf diarrheal disease.

Whole genome sequence analysis revealed high genome variability 
and an open pangenome of multidrug-resistant (MDR) E. coli from 
dairy calves in this study. The diverse population structure of E. coli 
has been well-documented, with the frequent acquisition, loss, and 
modification of genes contributing to its large gene pool, fitness, and 
competitive ability to thrive in widespread geographical and host 
environments (Horesh et al., 2021). From all-by-all comparisons of 
the WGS, the isolates in this study clustered by sequence type (ST) but 
not host-level factors of disease status, dietary influences, or 
antimicrobial exposure. Common STs identified included ST362, a 
frequently occurring ST in calves that has been associated with extra 
intestinal infections (Falgenhauer et  al., 2017; Vieille et  al., 2019; 
Homeier-Bachmann et al., 2022). Other prevalent STs were those with 
zoonotic potential, such as ST641 which has been isolated from 
poultry and goat sources (Cortés et  al., 2010; Zhuge et  al., 2021; 
Treilles et al., 2023), ST10, a widespread lineage of pathogenic and 
commensal E. coli which are prominently MDR in animal populations 
(Haley et al., 2023; Silva et al., 2023; Wang et al., 2023), and ST101, 
another frequently occurring MDR clonal group frequently detected 
in food, water, food animal, and human matrices (Umpiérrez et al., 
2017; Zhong et al., 2019; Sauget et al., 2023; Silva et al., 2023).

The accessory genome of E. coli encodes various characteristics 
for survival and reproduction, including those related to AMR (Hall 
et  al., 2021). The early developing microbiota of calves has been 
observed to harbor high prevalence and diversity of ARGs (Liu et al., 
2019; Haley et al., 2023), which is corroborated by the large assortment 
of ARGs detected in our E. coli genomes. In this study, the number of 
ARGs in E. coli did not correlate with antimicrobial use. However, the 
presence of ARGs corresponding to certain antimicrobial classes were 
consistent with the AMR selection pressures in our study; the high 
prevalence and diversity of tetracycline and aminoglycoside ARGs 
detected in E. coli genomes was reflective of the tetracycline and 
neomycin administered in dietary milk and spectinomycin for the 
therapeutic treatment of diarrhea. The same tetracycline and 
aminoglycoside ARGs in our study are frequently present in E. coli 
from calves (Jeamsripong et al., 2021; Salaheen et al., 2023), even from 
those with no previous antibiotic exposure (Liu et al., 2019). Similarly, 
other ARGs identified in our study including those encoding beta-
lactam, phenicol, trimethoprim, and/or sulfonamide resistance have 
also been previously reported in calves (Haley et al., 2023; Salaheen 
et al., 2023), suggesting that the collection of ARGs in our study is 
representative of the enteric calf resistome during early life.

A major mechanism of third-generation cephalosporin resistance 
in Salmonella and E. coli from food and food-producing animals is 

AmpC-type beta-lactamase blaCMY-2, which was detected in almost 
every E. coli genome in this study, despite the lack of beta-lactam use 
in calves. The occurrence of blaCMY-2 in dairy cattle has been presumed 
to be from frequent use of ceftiofur for the intramammary treatment 
of mastitis and parenteral treatment of acute metritis and bacterial 
pneumonia (Durel et al., 2019). However, studies have found limited 
evidence for the direct dissemination of blaCMY-2 through ceftiofur use 
(Daniels et al., 2009; Schmidt et al., 2013) or associations between 
recent ceftiofur treatment and reduced-susceptible E. coli at the 
individual cow level (Tragesser et  al., 2006). We  found a high 
frequency of a co-occurrence networks with blaCMY-2, ARGs 
corresponding to aminoglycoside, phenicol, sulfonamide, and 
tetracycline resistance, and the IncA/C2 plasmid replicon in our study 
isolates. These data support observations from other studies, in which 
the occurrence of blaCMY-2 in absence of cephalosporin use has been 
postulated to be from its acquisition on large MDR plasmids, followed 
by clonal expansion and/or the presence of indirect and co-selective 
AMR pressures that maintain these plasmids at the herd-level (Alcaine 
et al., 2005; Subbiah et al., 2011; Martin et al., 2012; Schmidt et al., 
2013; Deng et  al., 2015). Other beta-lactam ARGs conferring 
resistance to cephalosporins found in this study included ESBL genes 
from the blaCTX-M family (blaCTX-M-15, blaCTX-M-27, and blaCTM-M-55) from 
three E. coli genomes. In addition to being resistant to third-generation 
cephalosporins, ESBL – producing E. coli have important clinical 
consequences as they are frequently MDR to other critically important 
antimicrobials such as quinolones (Zurfluh et al., 2014; Azargun et al., 
2018; Furmanek-Blaszk et al., 2023), a finding that is corroborated 
through the significant association observed between the presence of 
ESBL and quinolone resistance determinants among E. coli in 
this study.

While antimicrobial use is perceived as a main driver of AMR, 
non-antimicrobial factors such as heavy metal exposure have also 
been recognized to influence AMR selection. Heavy metals such as 
zinc are frequently used as growth promoters or therapeutic agents in 
livestock species (Yazdankhah et al., 2014); for example, dietary zinc 
supplementation in pre-weaned calves may be used to reduce the 
burden of diarrheal disease and promote calf growth (Glover et al., 
2013; Feldmann et al., 2019; Chang et al., 2020; Liu et al., 2023; Yu 
et  al., 2023). Little is known on the influence of dietary zinc on 
genomic AMR in cattle, however a previous study in swine found that 
high zinc in feed (2.5 g/kg) significantly increased intestinal abundance 
of tetracycline and sulfonamide ARGs (Vahjen et al., 2015). As all 
E. coli genomes in our study had tet genes, we were unable to evaluate 
the selection of tetracycline ARGs. Adjusted logistic regression models 
found higher odds ratios for the presence of sulfonamide genes— sul1 
(OR = 2.83, 95% CI 0.77–10.45) and sul2 (OR = 1.89, 95% CI 0.14–
25.12)—in E. coli from zinc compared to those from placebo calves. 
Although these findings were not statistically significant, the direction 
of associations support the aforementioned findings of potential 
sulfonamide ARG selection from dietary zinc (Vahjen et al., 2015). 
We  also found unique SNPs in the genes conferring quinolone 
resistance in isolates from placebo treated calves, suggesting an 
antagonistic effect of zinc on certain classes of ARGs. However, the 
lower odds ratio for the presence of quinolone ARGs from logistic 
regression in isolates from zinc compared to placebo treated calves 
(OR = 0.23 95% CI 0.02–2.29) was also not statistically significant. 
These non-significant findings may be attributed to the small sample 
size of isolates in our study that may have resulted in inadequate 
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power to detect differences in addition to other uncharacterized 
variables. Hence, future studies employing larger sample sizes are 
needed to ascertain the relationship between zinc exposure and ARG 
selection, particularly for those in our study (sul2, blaCMY-2, aph(3″)-Ib, 
and blaCTX-M alleles) with large confidence intervals for point estimates.

Beyond the selection of individual ARGs, co-selection of both 
ARGs and metal resistance genes may occur through co-resistance, a 
phenomenon where dissimilar mechanisms for both resistances are 
selected due to their genetic linkage (Wales and Davies, 2015). The 
linkage of ARGs and metal resistance genes has been well documented 
(Baker-Austin et al., 2006; Wales and Davies, 2015; Nguyen et al., 
2019). Patterns in ARG and metal resistance gene co-occurrence have 
been observed to vary depending on the organism, host, and location 
(Poole, 2017). In our study, we  identified several positive 
co-occurrences between ARGs encoding resistance to beta-lactam, 
sulfonamide, aminoglycoside and trimethoprim and metal resistance 
genes encoding mercury and tellurium resistance. Positive 
co-occurrences between these ARGs from the same classes of 
antimicrobials and mercury and tellurium resistance genes were 
previously reported in fecal E. coli from dairy herds from Pennsylvania 
(Haley et al., 2023). These data suggest that specific AMR and metal 
resistance genes are pervasive and selected for in dairy cattle and their 
farm environments irrespective of geographical location.

In addition to evaluating potential host-level drivers of AMR in 
calf E. coli, this study compared genotypic AMR—the presence of 
ARGs and point mutations conferring quinolone resistance—with 
phenotypic AMR data from antimicrobial susceptibility testing. 
Genotypic AMR exhibited a high degree of concordance with 
phenotypic AMR for genomically heterogeneous MDR isolates in this 
study. Despite the small sample size of isolates (n = 43) from one host 
(dairy calves) and source (single dairy farm), our findings are 
consistent with previous work evaluating genotypic and phenotypic 
concordance in E. coli and Salmonella from cattle and/or food animal 
sources (Tyson et al., 2015; McDermott et al., 2016; Carroll et al., 2021; 
Lee et al., 2022, 2023). Discrepancies for streptomycin and ceftiofur as 
observed in two isolates in this study have been frequently reported 
(Tyson et al., 2015; McDermott et al., 2016; Lee et al., 2023), and may 
be a result of lack of CLSI breakpoints for these veterinary drugs, 
technical variability in AST/WGS processes (e.g., 2-fold variations in 
MIC from AST at intermediate and resistant cut-off thresholds), and 
choice of classifying intermediate isolates. As an example of the latter, 
grouping of intermediate and susceptible isolates for analysis resulted 
in discrepancy of a ceftiofur immediate isolate in this study; the 
genotypic and phenotypic AMR for this isolate would have been 
congruent if intermediate isolates were instead treated as resistant.

Diarrheal disease status of calves was not significantly associated 
with genomic variability in this study, including virulence profiles. 
E. coli can be categorized into various pathotypes depending on the 
presence of certain virulence attributes (Kaper et al., 2004), with 
common pathotypes associated with neonatal calf diarrhea including 
enteropathogenic (EPEC), Shiga toxin-producing (STEC), 
enterotoxigenic (ETEC), and enteroaggregative (EAEC) E. coli 
(Awad et al., 2020). While MDR E. coli isolates in this study lacked 
the comprehensive virulence markers of these diarrheagenic 
pathotypes, they encoded a wide diversity of virulence genes that 
overlap with those in pathogenic strains. For instance, adhesin 
virulence genes observed in our study, fim and pap genes encoding 
Type I  fimbriae and P fimbriae respectively, are associated with 
various pathotypes in both humans and animals (Bertin et al., 2000; 

Sarowska et al., 2019), and f17 genes encoding F17 fimbriae and 
afa-7 and afa-8 gene clusters encoding afimbrial adhesion appear to 
be more host-specific and predominant in bovine E. coli associated 
with diarrhea and septicemia (Lalioui and Le Bouguénec, 2001; 
Bihannic et al., 2014; Shahrani et al., 2014). Additionally, detected in 
a few isolates were cdtABC and astA encoding cytolethal distending 
toxin (CDT) and enteroaggregative heat-stable enterotoxin (EAST1), 
which are typically present in EPEC and ETEC, respectively 
(Yamamoto and Echeverria, 1996; Osek, 2003; Gomes et al., 2016; 
Meza-Segura et  al., 2017). The presence of some but not all 
pathotype-determining virulence genes in E. coli from our study 
suggests that the acquisition and loss of genes (e.g., from host and 
environmental influences) may dynamically contribute to the 
virulence potential of E. coli and their ability to cause 
diarrheal disease.

The most abundant virulence genes in MDR E. coli in this study 
were those involved in iron acquisition (e.g., sideophores and heme 
uptake). Iron plays a critical role in microbial metabolic processes 
and cell division, and its acquisition is an important host–microbe 
interaction that contributes to bacterial survival and pathogen 
infection (Caza and Kronstad, 2013; Nairz and Weiss, 2020). 
Previous studies identified several iron acquisition systems— some 
of which were also identified in our study (e.g., iucABCD-iutA)— to 
be significantly enriched in MDR bovine E. coli (Haley et al., 2023, 
2024). Virulence factors and ARGs are essential for bacteria to 
overcome host immune responses and antimicrobial exposure, 
respectively. The simultaneous carriage of both in MDR E. coli may 
confer a fitness advantage in adverse conditions, promoting the 
co-selection and maintenance of these genes in MDR isolates as 
opposed to their susceptible counterparts (Beceiro et  al., 2013). 
Moreover, the pre-weaned calf diet is primarily composed of milk, 
which is nutritionally negligible in iron and may contribute to a 
low-iron environment in the calf gut that has been hypothesized to 
favor the selection of MDR E. coli with more extensive repertoires 
of iron acquisition systems (Haley et  al., 2023, 2024). During 
infection and disease, host-driven iron sequestration occurs as an 
immune defense strategy to inhibit the growth of pathogens 
(Beceiro et al., 2013; Nairz and Weiss, 2020). As E. coli genomes in 
our study were from pre-weaned calves in various stages of diarrheal 
disease (pre-diarrheic, diarrheic, and recovered), we hypothesize 
that host-mediated iron withdrawal is another factor which may 
further favor the survival of MDR E. coli with high iron-
scavenging capacity.

In conclusion, our analysis indicated that the genomes of MDR 
E. coli from pre-weaned dairy calves were highly diverse and 
minimally driven by the host-level factors evaluated in this study 
(dietary zinc supplementation, therapeutic antimicrobial treatment, 
and diarrhea disease status). Key limitations include the relatively 
small sample size of isolates and the absence of a susceptible and/or 
non-MDR group of E. coli genomes for comparison. Future work that 
evaluates longitudinal effects would provide greater insight on the 
relationship between genomic diversity and factors such as disease—
which may occur in progressive stages—and antimicrobial exposure, 
which can rapidly and transiently impact the gut microbiome. Our 
findings corroborate previous reports of MDR E. coli from calves 
harboring diverse ARGs conferring resistance to clinically important 
drugs, enriched abundance of virulence factors for iron acquisition 
systems, and linkage of certain metal resistance genes and ARGs. 
These data suggest that the selection and persistence of MDR E. coli 

https://doi.org/10.3389/fmicb.2024.1420300
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lee et al. 10.3389/fmicb.2024.1420300

Frontiers in Microbiology 13 frontiersin.org

in calves are adaptive and attributed to the presence of these and/or 
other unidentified genes that confer a fitness advantage in the calf gut.
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