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Introduction: Revealing individual characteristics is supportive for identifying

individuals in forensic crime. As saliva is one of the most common biological

samples used in crime scenes, it is important to make full use of the rich

individual information contained in saliva. The aim of this study was to explore

the application of the microbiome in forensic science by analysing differences

in the salivary microbiome and metabolome of healthy individuals with different

dietary habits.

Methods: We performed 16S rDNA sequencing analysis based on oral saliva

samples collected from 12 vegetarians, 12 seafood omnivores and 12 beef and

lamb omnivores. Non-targeted metabolomics analyses were also performed

based on saliva samples from healthy individuals.

Results: The results showed that the dominant flora of vegetarians was

dominated by Neisseria (belonging to the phylum Proteobacteria), while seafood

omnivores and beef and lamb omnivores were dominated by Streptococcus

(belonging to the phylum Firmicutes). NDMS-based and cluster analyses showed

that vegetarian dieters were significantly differentiated from meat dieters

(seafood omnivores and beef and lamb omnivores), which may be related to

the fact that high-fiber diets can create a different salivary flora structure.

Variants were also detected in salivary metabolic pathways, including positive

correlations with Lipid metabolism, Amino acid metabolism, Carbohydrate

metabolism, and Nucleotide metabolism in vegetarians, and correlations in

seafood omnivores. In order to select salivary microorganisms and metabolic

markers that can distinguish different dietary profiles, a random forest classifier

model was constructed in this study, and the results showed that individuals with

different dietary profiles could be successfully distinguished based on the core

genera and metabolites such as Streptococcus, Histidinyl-Valine.
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Conclusion: Our study provides a supportive basis for the application of salivary

polyomics in order to reveal the dietary characteristics of individuals for forensic

investigation and crime solving.

KEYWORDS

forensic, saliva, dietary habits, microbiome, metabolism

Introduction

Identification of personal identity information is one of the
most obscure points in forensic evidence science, and how to dig
out more information from the limited physical evidence has been
the crucial challenge for criminal investigators to solve the case
(Ohira et al., 2009). Saliva is the more common biological material
used in actual forensic examinations, and is often left at the crime
scene through droplet transmission such as sneezing and coughing,
as well as in the form of kissing and biting (Richardson et al., 2019;
Karadayi et al., 2021). Therefore, the evidence value of saliva in
forensic medicine and criminal investigation is of great importance,
and it is the main investigation tool for forensic investigation of
crimes and sexual assault cases (Kamodyov et al., 2013).

The oral cavity is a window for communication between human
body and environment, from which nutrients are imported, which
in turn promotes the succession of microbial communities. Due
to the presence of different microhabitats such as teeth, tongue
and buccal mucosa, the oral microbial community is shaped by
forces in dynamic equilibrium (salivary flow and shedding, etc.)
and interactions between microorganisms and hosts (Mark Welch
et al., 2020). The microorganisms that inhabit in saliva from
the oral cavity account for more than 99.9% of the total oral
microorganisms (Sharma et al., 2018). Microbial characteristics
of saliva can be created using any saliva residues found in bite
marks or lip prints, which provide details on an individual’s age,
gender, personal characteristics or health status (Yadav et al.,
2024). The trace of oral microorganisms collected at the crime
scene can produce investigation clues of criminal and civil cases.
In forensic applications, research on human saliva microbiota
focuses on providing alternative methods to address issues
related to postmortem inference (Adserias-Garriga et al., 2017),
fluid identification (Dobay et al., 2019), individual identification,
individual characteristic inference (Moon et al., 2015) and so on.
For example, Leake et al. used next-generation sequencing to
analyze the saliva microbiome of two individuals at four time
points to characterize individual recognition potential, and the
results showed that samples from the same individual would cluster
together regardless of time (Leake et al., 2016). Based on the relative
abundance information of saliva microbiome, Murugesan et al.
found that adults under the age of 65 have lower bacterial richness
and diversity than those over 65, which was of great significance
for distinguishing individuals in different age groups (Murugesan
et al., 2020). In addition, they also characterized that race, gender,
oral health, and other factors play a certain role in the salivary
microbiome.

As the above NGS analytical studies in demonstrated the
potential of the salivary microbiome in forensic identification

such as sex and age inference, individual identification, etc.,
however, based on the assessment of long-term diet and
salivary microbiomes, in-depth analysis of the link with the
salivary metabolome can help to further reveal individual dietary
characteristics (Filippis et al., 2014). The dynamic community
succession of microbial system reflects the interaction with oral
cavity and environment to some extent, and methodologies has
the ability to explore the interaction between metabolites and
environment. These analysis tools explore whether the human
body and environment can describe the external environment
and lifestyle of the human body, and obtain information about
dietary characteristics by analyzing the microbial and metabolic
groups of saliva. In forensic cases, this helps to narrow down
and target the scope of the investigation. Personal eating habits
can predict the level of specific metabolites in plasma, and
plasma metabolisms emphasizes personal eating habits (Chen et al.,
2022). Urine is an ideal biomarker representative to study the
physiological status of the whole body, and physiological changes
(gender, age, diet, daily rhythm, exercise, hormone status, lifestyle,
extreme environment, etc.) can be reflected in urine (Wu and Gao,
2015). With the development of technology and knowledge, the
metaphoric analysis of biological body fluids (urine and plasma)
has been rich, but the readily available metaphoric analysis of
saliva is limited. The composition of food can be measured by
metabolites (Yuliana et al., 2022), and people’s diet and nutritional
composition are different in different places, which brings more
biological information to the crime scene. Various diseases can be
identified by detecting salivary markers (Gardner et al., 2020), but
there are few studies on salivary metabolisms with eating habits.

Research has shown that changing the intake of three major
constant nutrients, including carbohydrates, proteins, and fats,
significantly affects the composition of the microbial community
(Le Huërou-Luron et al., 2010). The human microbiome is
a multidimensional and interrelated microbial circle. The
microbial composition structure and competition often predict
diverse information such as life diseases (Nasidze et al., 2009).
However, a single microbiome analysis does not fully reflect
individual characteristics, and combined multi-omics analyses
of salivary microbiome and metabolome functions are used to
reveal information more comprehensively about the individual
characteristics of the host. It is currently recognized that the
main dietary habits of inland people are carnivores and vegans,
while coastal people mainly consume seafood (McEvoy et al.,
2012; Meriggi et al., 2024). This paper takes the joint metaphoric
analysis of the microbial composition of oral saliva as the
breakthrough point to characterize the relationship between
microbial composition and human life in different dietary habits.
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Results

Sequencing data of microbial
communities

The study obtained 1,827,182 optimized sequences with
774,779,370 bases in total from the saliva samples of 36 healthy
adult volunteers, with an average sequence length of 424bp. All
the effective sequences obtained were annotated and classified
at different taxonomic levels, and ultimately 780 operational
taxonomic units (OTUs) were generated, which belonged to 1
domain, 1 kingdom, 23 phyla, 50 classes, 109 orders, 187 families,
356 genera, and 599 species.

Alpha diversity analysis

The Chao index and Simpson index were used to assess the
richness and diversity of microbial communities in saliva samples.
The one-way ANOVA test was employed to investigate whether
there were significant differences in alpha diversity index values
among groups. In this study, there were no significant differences
in the Chao index among the three groups. The results of the
Simpson diversity index showed that the Simpson index value
of group A was the lowest, which was statistically different from
groups B (P< 0.001) and C (P< 0.01). Additionally, the rarefaction
curves based on the Shannon index tended to flatten out, indicating
that the sequencing data volume of the samples was sufficient and
reasonable (Figure 1).

Composition of salivary microbial
communities among individuals with
different dietary patterns

The average relative abundance of microorganisms in three
groups, A, B, and C, at the levels of phyla and genera was assessed
to further reveal the characteristics of their microbial composition.
As shown in the Figure 2, at the phylum level, the top five
bacterial phyla with the highest relative abundance were Firmicutes,
Bacteroidota, Proteobacteria, Actinobacteriota, and Patescibacteria
(Figure 2A). Among them, Proteobacteria accounted for the highest
proportion in group A, while Firmicutes accounted for the highest
proportion in groups B and C. At the genus level, Streptococcus,
Neisseria, Prevotella, Porphyromonas, and Haemophilus were the
dominant genera in saliva samples (Figure 2B). Group A was
dominated by Neisseria and Prevotella, while groups B and C were
dominated by Streptococcus. As shown in the Venn diagram, the
number of shared microbial genera among the three groups was
119, accounting for 34%, including the aforementioned dominant
genera in saliva (Figure 2C). Each group also had its unique
microbial genera, such as Moraxella in group A, Delftia in group
B, and Pseudomonas, Akkermansia, Odoribacter, etc., in group C
(Figures 2E–G). Among them, group C had the largest number of
unique microorganisms, with up to 174 genera (Figure 2C).

The results of microbiota typing analysis revealed that the
salivary samples from individuals with the three dietary patterns

studied could be divided into two types based on the composition of
their microbiota: type 1 and type 2, with Neisseria and Streptococcus
as the top 1 species, respectively (Figure 3B). All samples from
group A were classified as type 1, while most samples from
groups B (66.67%) and C (83.33%) were dominated by type 2
(Figure 3A). Analysis of the heatmap of the top 30 genera in terms
of total abundance at the genus level and the sample clustering
tree indicated that the composition of dominant bacterial genera
in groups B and C was more similar and differed from that in group
A (Figure 3C).

Overview of the oral metabolome

The original data were filtered for low-quality peaks, filled
with missing values, and log transformed (log10) to reduce
the errors caused by the experiment and analysis. After data
preprocessing, the number of identified metabolites in positive
ion mode was 1093, and the number of identified metabolites in
negative ion mode was 907.

By comparing with KEGG database, the information of
metabolic pathways involved in metabolites was obtained and
statistically analyzed. “Metabolism” and “Organismal Systems”
were first category of the KEGG pathway, which contained
the most metabolites identified above. The secondary category
with the most metabolites in "metabolism" was "Amino acid
metabolism", followed by "Lipid metabolism" and "Carbohydrate
metabolism". The secondary category that contains the most
metabolites in the "organism system" is the "Digestive system". The
more metabolites involved in this pathway, the more active the
pathway becomes. As shown in the Figure 4, the top 20 KEGG
metabolic pathways were "ABC transporters", "Purine metabolism",
"Tryptophan metabolism" and so on.

Using OPLS-DA to distinguish the three
groups

There were a lot of up-or down-regulated metabolites in
different diet groups (Figures 5A–C). Orthogonal Partial Least
Squares Discriminant Analysis (OPLS-DA) was performed to
screen significant differential metabolites under the condition of
VIP > 1 and P < 0.05 of student T test. Samples within groups
were clustered, while there was a clear separation between groups
(Figures 5D–F). For the reliability of the results, the OPLS-DA
model was analyzed with 200 permutation tests to ensure that the
model was not overfitted (Figures 5G–I).

Identification of key modules based on
WGCNA

The soft threshold was set to 6 and the kME value was set
to 0.3 for module identification. According to the expression
trend of metabolites, the metabolites were divided into three
modules, and metabolites that were not divided into specific
modules were classified into gray modules. The turquoise module
contained 1,348 metabolites, the blue module contained 315
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FIGURE 1

Alpha diversity analysis (A, B) and rarefaction curves (C) of the different groups. (**0.001 < P ≤ 0.01, ***P ≤ 0.001).

FIGURE 2

The mean relative abundances of bacterial phyla (A) and genera (B). (C) Venn diagram of the different groups. (D) Shared microbial genera across
three groups. (E–G) Unique microbial genera in each group.
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FIGURE 3

Microbiota typing analysis on genus level (A) and the microbiota types composition within each group (B), Heatmap of the abundance of the first 30
bacterial genera and the sample clustering tree (C).

FIGURE 4

KEGG pathway classification (A) and top 20 KEGG pathway (B) for all samples.

metabolites, and the brown module contained 128 metabolites
(Figure 6A). The remaining metabolites that were not assigned
to these three modules were placed in the gray module. After
obtaining the modules, the correlation between the modules and
diet information was analyzed by spearman analysis to explore
the association between metabolic network and diet. Group

A showed a positive correlation with the blue module and a
negative correlation with the turquoise module, while group B
exhibited the opposite pattern. Additionally, group C did not
show significant correlations with the three modules mentioned
above but had a negative correlation with the gray module
(Figure 6B).
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FIGURE 5

(A–C) Up-or down-regulated metabolites in different diet groups. (D–F) The Pls-DA score plot showed separation degree of the two groups (group
A VS B, group B VS C, group A VS C). (G–I) For the validation of the above PLS-DA models, the number of random permutation tests is 200.

Functional annotation analysis of the metabolites within the
modules was performed using the KEGG database. Both the blue
and turquoise modules primarily belonged to the primary category
of Metabolism in terms of KEGG functional classification. The
secondary classification of the KEGG metabolic pathways in the
blue module was mainly focused on Lipid metabolism, Amino
acid metabolism, Carbohydrate metabolism, and Nucleotide
metabolism. In contrast, the secondary classification of the KEGG
metabolic pathways in the turquoise module encompassed Amino
acid metabolism, lipid metabolism, Metabolism of cofactors and
vitamins, Nucleotide metabolism, Metabolism of other amino
acids, and Carbohydrate metabolism (Figures 6C, D).

Identification of core metabolites in key
modules and their correlation with
microbial taxa

Each module was visualized as a network, and the top
30 nodes with the highest connectivity within each module
were selected for further analysis. Based on the node degree (a
measure of node connectivity, with a higher degree indicating

greater importance of the node), the top five metabolites in
each module were chosen as core metabolites. The top five
metabolites in the blue module were Retinyl beta-glucuronide,
PS[18:4(6Z,9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)], CDP-
DG(18:0/18:0), M-Secociguatoxin 4A, and Schidigerasaponin
D1 (Figure 7A). Phe Asp Val, Histidinyl-Valine, Gly Ile Val,
L-Dopa and Val Ile Val were the most important metabolites
in the turquoise module by visualizing the correlation between
metabolites within the module (Figure 7B). By analyzing the
correlation between the top 10 bacteria in relative abundance
and core metabolites, Porphyromonas, Streptococcus, Neisseria,
Rothia, Granulicatella, Actinomyces, Gemella showed significant
correlations with core metabolites with higher relative abundance
(Figure 7C).

Random forest

Using the results of seven dominant bacterial genera and ten
core metabolites in saliva as dependent variables, a random forest
multi-class classification model was constructed based on the oral
microbiome and metabolome results. The model built based on
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FIGURE 6

(A) Based on the expression trends of metabolites, metabolites are clustered into modules, where each branch represents a metabolite and each
color denotes a distinct module. (B) The correlation between the module and the diet group is shown. (C, D) Pathway classification of blue and
turquoise module.

the microbiome and metabolome results performed well. The
validation set (n = 9, with 3 samples from group A, 3 samples
from group B, and 3 samples from group C) showed that 8 of

the 9 validation samples were correctly classified. All samples from
group A and group B were correctly classified, while 2 of the 3
samples from group C were correctly classified, and 1 was predicted
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FIGURE 7

The top 5 metabolites in the blue (A) and turquoise (B) module. (C) Correlation analysis of core metabolites and top 10 bacterial genera. (D) Receiver
operating characteristic curves (ROC) was used to evaluate the performance of random forest classification models; AUC indicates the area under
the curve.

to be in group B (C-6). The overall accuracy rate was 88.89%. The
performance of the random forest model was evaluated through
ROC analysis, and the results showed that the AUC values for
groups A, B, and C were 1.000, 1.000, and 0.778, respectively
(Figure 7D).

Discussion

In this study, we conducted a joint multi-omics analysis of
the salivary microbiome and metabolome of vegetarian, seafood
omnivores and beef and lamb omnivores. Our study demonstrated
that groups with different dietary profiles have significantly
different microbiome and metabolome profiles, and that these
differential profiles may have potential applications for revealing
individual characteristics of forensic criminal individuals. In
addition, our study identified a set of microbial and metabolite
markers associated with dietary traits, showing great potential for
accurately distinguishing individuals with different dietary habits.

Comparison of salivary microbiomes

The oral cavity provides a highly heterogeneous ecological
niche for microorganisms, and the composition of the salivary

microbiome (Aas et al., 2005) can be influenced by both the
individual and the external environment, with different dietary
habits probably being the most significant influence (Stahringer
et al., 2012). In our study, we found no significant difference
in the species richness of salivary microbes among individuals
with the three dietary profiles, whereas vegetarians had the lowest
microbial diversity compared to seafood omnivores and beef
and lamb omnivores. Wastyk et al. (2021) showed that high-
fiber diets lead to lower microbial living habitats by examining
the effects of high-fiber diets and highly fermented foods on
the human immune system. Previous studies (Zaura et al.,
2009) characterized the salivary microbiome to be dominated
by Firmicutes, Bacteroidota, Proteobacteria, Actinobacteriota, and
Patescibacteria at the facultative level, and the results of the present
study showed agreement. Among them, seafood omnivores and
beef and lamb omnivores had similar compositional abundance,
in contrast to vegetarians who had higher Proteobacteria and
lower Firmicutes. This dissimilarity was also demonstrated at the
genus level, where vegetarians were dominated by Neisseria spp.
(belonging to the phylum Proteobacteria), while seafood omnivores
and beef and lamb omnivores were dominated by Streptococcus
spp. (belonging to the phylum Firmicutes). In line with previous
studies, Johansson et al. (2018) discussed the relationship between
dietary milk consumption and the salivary microbiome and found
that Neisseria spp. were more prevalent in the saliva of low-milk
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consumers, whereas a high-protein diet, i.e., a meat diet, created
more Streptococcus.

In addition, studies have demonstrated that different
diets create different oral ecosystems contributing to different
microbial life. The present study analyzed the shared and unique
microorganisms of individuals with three dietary characteristics.
There were 119 microorganisms common to individuals with
different diets, suggesting that core genera (Oliveira et al., 2021)
such as Streptococcus, Neisseria, and Prevotella spp. comprise the
salivary microbiome despite dietary differences, and Pester et al.
(2010) suggest that minor low-abundance taxa may be key taxa in
the ecosystem. Unique microbiomes of low fractional abundance
in this study, such as Moraxella in the vegetarian group, Delftia
in the seafood omnivore group, and Pseudomonas, Akkermansia,
and Odoribacter in the beef and lamb omnivore group, may be
important microbial markers for distinguishing between the three
dietary traits. The same clustering method was applied as for
the identification of enterotypes of the human gut microbiota
(Arumugam et al., 2011). The results of salivary colony typing
indicated that Neisseria and Streptococcus were predominant in
vegetarians and carnivores (seafood omnivores and beef and lamb
omnivores), respectively. Further, cluster analyses showed that
carnivores could be significantly distinguished from vegetarians,
whereas seafood omnivores and beef and lamb omnivores
could not be distinguished due to the similarity in community
composition. This may be due to the fact that seafood and beef
and lamb are both high protein foods, whereas vegetarians
have a predominantly fibrous diet (Laffranchi et al., 2010), and
different dietary habits may result in different salivary microbiomes
(Cato et al., 2023).

Changes in the salivary metabolome

To date, there is increasing evidence (Wu et al., 2021)
that microorganisms perform different functions through
the metabolites they produce, and that metabolites have
become an important bridge between ecological influences
and microorganisms. Comprehensive multi-omics analyses of
the microbiome (Fan and Pedersen, 2021) and metabolome
can provide clues to correlate the microbiome with individual
traits. Our metabolomics results on saliva samples showed
that "metabolism" and "organismal system" contained the most
metabolites, while amino acid metabolism", "lipid metabolism" and
"carbohydrate metabolism" were the most abundant metabolites
in metabolism. Digestion is the most abundant metabolite in the
organismal system. The top 20 metabolites in the salivary metabolic
pathway include ABC transporters", "Purine metabolism",
"Tryptophan metabolism" and others. Most of the metabolites
detected in this study are consistent with previously reported
metabolites in saliva of healthy individuals (Wang et al., 2014;
Sridharan et al., 2019). Nutrition is known to affect oral health
and metabolism in many ways (Laine et al., 2014), and in order
to gain more insight into the differences in salivary metabolomes
of individuals with different dietary profiles, a least squares
discriminant analysis showed significant differences between
vegetarians, seafood omnivores and beef and lamb omnivores. It
was found that up- or down-regulation of different metabolites

could distinguish different populations (Filippis et al., 2014).
In addition, based on the WGCNA analysis, the key modules
of different dietary characteristics could be identified, and the
vegetarians showed a positive correlation with Lipid metabolism,
Amino acid metabolism, etc. The seafood omnivores group, on the
other hand, showed a positive correlation with Lipid metabolism.
The opposite was true for the seafood omnivore group. Studies
(Schmidt et al., 2016; Draper et al., 2018) that have analyzed
metabolomic associations with habitual diets have shown that
vegetarians tend to have higher levels of glycine.

Individual differentiation of different
dietary traits

Salivary microbiomes and metabolomics (Genco et al., 2005;
Fábián et al., 2008; Aimetti et al., 2012) have been used for high-
throughput identification of disease-related salivary biomarkers
and to facilitate early diagnosis of a variety of diseases. We
sought to correlate salivary dominant flora and core metabolites
to screen for salivary microbial and metabolic markers that can
be used to discriminate between populations with different dietary
profiles to provide supportive evidence for forensic investigation
and crime detection. Based on the network analysis, the first five
metabolites in each module were screened as core metabolites,
and a random forest classifier was constructed by combining the
seven dominant genera in saliva. The importance ranking based on
the random forest showed that the most important characteristic
differences in the classification were mainly g_Granulicatella, g
_Neisseria, g_Gemella, g_Streptococcus, Histidinyl-Valine. similarly,
a study by Filippo et al. (2010) found that the phylum Thicket and
the phylum Anopheles Mycobacterium phylum could distinguish
between individuals with Western European diets and rural African
diets, demonstrating that the microbiome is an important marker
for discriminatory categorization. In this study, the classifier model
had a recognition accuracy of 88.89%, and the AUC values indicate
the high performance of the model. All the vegetarians and seafood
dieters in the validation set were classified correctly, while one
beef and lamb omnivore individuals were classified in the seafood
omnivore group. This may be due to the fact that the beef and lamb
group belongs to the same meat group as the seafood group and
is associated with high fiber in the vegetarian group (Cato et al.,
2023). The combination of dietary habits, individual lifestyle habits
and other factors may play an important role. This requires further
research to understand.

Limitations of this study

The small sample size may lead to underrepresentation of the
findings of this study. In addition, a population of three dietary
profiles does not generalize to a wide variety of case scenarios,
which may lead to a decrease in model accuracy when other
individuals with particular dietary habits are present. Although our
study revealed a functional link between the salivary microbiome
and the metabolome, subsequent next steps based on more
comprehensive sampling are needed; larger sample sizes, inclusion
of other dietary traits, and dental cleanliness would help validate
the results revealed in our study.

Frontiers in Microbiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1419686
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1419686 July 10, 2024 Time: 16:43 # 10

Sun et al. 10.3389/fmicb.2024.1419686

Conclusion

In this study, we provided new insights into populations
with different dietary profiles, using multi-omics analyses
to explore salivary microbiome and metabolome profiles of
vegetarians, seafood omnivores, and beef and lamb omnivores.
We characterized the differences in the oral microbiomes and
metabolomes of people with three different diets, identified salivary
biomarkers to differentiate between the three dietary profiles,
constructed a random forest classifier model to successfully
differentiate between the three dietary profiles, and revealed the
dietary profile of the individuals to provide supportive evidence for
forensic investigation and detection of crime.

Methods

Sample and individual information
collection

Thirty-six healthy adult volunteers aged between 18 and 56
years were recruited. These volunteers were stratified into three
groups according to their dietary preferences: Group A consisted
of vegans (n = 12), Group B comprised seafood-based omnivores
(n = 12), and Group C included red meat-consuming omnivores
(specifically those who mainly consume beef and lamb, n = 12). The
volunteers followed the diet for at least 1 year and had no history
of antibiotic use and no other gastrointestinal disorders within
3 months. The volunteers collected 2 mL saliva in the morning
without brushing their teeth after fasting for 10 hours. Saliva was
stored in sterile centrifuge tubes in a refrigerator at −80◦C for
subsequent microbial and metabolomics analysis. All participants
signed informed written consent. This study was approved by
the Biomedical Ethics Committee of Southern Medical University,
Guangzhou, China. Before the start of this study, all individual
participants included had informed consent to this study and
signed a written informed consent form.

DNA extraction, 16S rRNA gene amplicon
sequencing, and data processing

Bacterial genomic DNA was extracted from saliva samples
using the E.Z.N.A. R© soil DNA Kit (Omega Bio-tek, Norcross,
GA, USA) following the manufacturer’s instructions. The
concentration and purity of DNA were quantified by using an
ultraviolet spectrophotometer and DNA extraction quality is
checked by 1% agarose gel electrophoresis. Universal primers
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′), which correspond to the
bacterial 16S rRNA DNA sequence in the V3-V4 region, were used
to amplify DNA samples that passed the quality inspection. PCR
enrichment was performed in a 25 µl reaction with 12.5 µl 2× Q5
Master Mix, 0.2 µM each primer, 120 ng of extracted DNA, and
nuclease-free water. The PCR amplification conditions were as
follows: following an initial denaturation step at 95◦C for 3 min,
27 cycles were conducted which involved denaturation at 95◦C

for 30 s, annealing at 55◦C for 30 s, and extension at 72◦C for
30 s; with a final extension step at 72◦C for 10 min. PCR products
were purified using amplRexp beads and eluted in elution buffer.
Libraries were constructed using the NEB Next UltraTM DNA
library preparation kit from Illumina (New England Biolabs Inc.,
Ipswich, USA). Validated libraries were sequenced on the Illumina
MiSeq platform (Illumina Corporation, San Diego, USA). The
raw data were uploaded to the NCBI SRA database (Accession
Number: PRJNA1124888).

Metabolome sample preparation,
UHPLC-MS/MS analysis and data
processing

The samples were sent to the laboratory and centrifuged
at 13500 r/min for 10 min at 4◦C. Remove the supernatant,
aliquot, and store at −80◦C. At the beginning of the experiment,
the samples were taken out from the −80◦C refrigerator and
thawed; 100 µL of the saliva sample was added to a 1.5 mL
centrifuge tube containing 400 µL of a solution (acetonitrile:
methanol = 1:1 (v:v)) with 0.02 mg/mL of the internal standard
(l-2-chlorophenylalanine) for metabolite extraction. The mixture
was vortexed for 30 seconds and sonicated at low temperature for
30 min (5◦C, 40 KHz). The sample was then placed at −20◦C
for 30 minutes to precipitate proteins. After centrifugation for
15 min at 4◦C and 13,000 g, the supernatant was taken off
and dried with nitrogen. The sample was then redissolved in
100 µL of a solution (acetonitrile: water = 1:1) and extracted
by low-temperature sonication for 5 min (5◦C, 40 KHz). After
centrifugation at 13000 g and 4◦C for 10 min, the supernatant
was transferred to a sample bottle for LC-MS/MS analysis.
Simultaneously, 10 µL of the supernatant from each sample was
mixed to generate a quality control (QC) sample. The QC sample
was processed and tested in the same manner as the analytical
samples, serving as a representative of the entire sample set and
regularly injected (every 5–15 samples) to monitor the stability
of the analysis.

The LC-MS/MS analysis of sample was conducted on a Thermo
UHPLC-Q Exactive HF-X system equipped with ACQUITY
HSS T3 column (100 mm × 2.1 mm i.d., 1.8 µm; Waters,
USA). The mobile phases consisted of 0.1% formic acid in
water:acetonitrile (95:5, v/v) (solvent A) and 0.1% formic acid
in acetonitrile:isopropanol:water (47.5:47.5, v/v) (solvent B). The
flow rate was 0.40 mL/min and the column temperature was
40◦C. The mass spectrometric data were collected using a Thermo
UHPLC-Q Exactive HF-X Mass Spectrometer equipped with
an electrospray ionization (ESI) source operating in positive
mode and negative mode. The optimal conditions were set as
followed: source temperature at 425◦C; sheath gas flow rate
at 50 arb; Aux gas flow rate at 13 arb; ion-spray voltage
floating (ISVF) at −3500V in negative mode and 3500V in
positive mode, respectively; Normalized collision energy, 20–40–
60V rolling for MS/MS. Full MS resolution was 60,000, and MS/MS
resolution was 7500. Data acquisition was performed with the Data
Dependent Acquisition (DDA) mode. The detection was carried
out over a mass range of 70–1050 m/z. The raw data for the
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metabolome of this study have been uploaded to MetaboLights
(Number: MTBLS10471).

Statistical analysis

FLASH software (Magoc and Salzberg, 2011) was used to
merge and splice the sequences, which were then assembled
into Tags based on the overlap relationship between reads.
Using Uparse (Version 7.1),1 non-redundant sequence fragments
(Tags) were clustered into OTUs based on a sequence similarity
greater than 97%. Chimera sequences were then identified
and removed using UCHIME software (Rognes et al., 2016).
RDP classifier software (Wang et al., 2007) was employed
for species annotation, with a comparison threshold set
at 70%. Each sequence information was compared with the
SILVA biological database (silva138/16S_bacteria) for analysis.
Alpha diversity is used to analyze the species diversity in
the sample, using mothur (Schloss et al., 2009) (Version
1.39.5) software to calculate 3 indicators, including Chao,
Shannon and Simpson. Nonmetric Multidimensional Scaling
(NMDS) was used to show how dissimilarity changed between
groups, calculated using QIIME (Version 1.80) software. Use
LEfSe (Segata et al., 2011) (LDA Effect Size) (Version 1.0)
to calculate the LDA score value. The significant flora must
meet the threshold p < 0.05 and the LDA score value ≥ 2.0
(or ≤−2.0).

The pretreatment of LC/MS raw data was imported into
Progenesis QI software (Paglia and Astarita, 2017) (Waters
Corporation, Milford, USA) for baseline filtering, peak
identification, integration, retention time correction, and peak
alignment. Ultimately, a three-dimensional data matrix containing
sample information, metabolite name and mass spectral response
intensity was obtained. The data matrix was further filtered and at
least 80% of the metabolic features detected in any set of samples
were retained. For specific samples with metabolite levels below
the lower limit of quantification, the minimum metabolite value
was estimated, and each metabolic signature was normalized to
the sum. To reduce the errors caused by sample preparation and
instrument instability, the response intensities of the sample mass
spectrometry peaks were normalized using the sum normalization
method, to obtain the normalized data matrix. Meanwhile,
the variables of QC samples with relative standard deviation
(RSD) > 30% were excluded and log10 logarithmic zed, to obtain
the final data matrix for subsequent analysis. At the same time, the
metabolites were identified by searching database, and the main
databases were the HMDB,2 Metlin.3

The R package “ropls” (Version 1.6.2) was used to perform
Partial Least Squares Discriminant Analysis (PLS-DA), and the
number of random permutation tests was set to 200. Fold Change
Analysis (FC Analysis) was used to evaluate the up-regulation or
down-regulation patterns of different metabolites. The metabolites
with VIP > 1, p < 0.05 were determined as significantly different
metabolites based on the Variable importance in the projeciton

1 http://drive5.com/uparse/

2 http://www.hmdb.ca/

3 https://metlin.scripps.edu/

(VIP) obtained by the OPLS-DA model and the p-value generated
by student’s t test. Differential metabolites among two groups
were mapped into their biochemical pathways through metabolic
enrichment and pathway analysis based on KEGG database.4

Python packages “scipy.stats”5 was used to perform enrichment
analysis to obtain the most relevant biological pathways for
experimental treatments. Spearman rank correlation test was
performed to assess the association between key microbiota and
key metabolites. The correlation coefficient (r) ranges from −1 to
1, where a positive correlation represents r > 0 and a negative
correlation represents r < 0.

Machine learning process

Random forests were used to analyze and predict populations
with different dietary structures. Random Forest is a classifier
containing multiple decision trees, and its classification results are
judged on different decision trees according to the attributes of each
dimension of the test sample, and the final classification is given
after comprehensively considering all the judgment results, and the
maximum probability value is taken for the classification problem
results, and the species class (biomarker) that is most important
for sample classification is efficiently and quickly selected (Song
et al., 2021). Random forest analysis was performed using the R
package “randomForest” (v4.6.14) and visualized using the “pROC”
package (Version 1.18.0) and the “ggplot2” package (v3.3.3). For
the input features, the classifiers contained only key microbiota and
metabolites. A total of 70% of the samples (n = 27) were randomly
selected as the training set to construct the decision tree, and the
remaining samples (n = 9) were used as the test set to verify the
decision tree. The receiver operating characteristic (ROC) curve
was used to evaluate the constructed model, and the area under the
ROC curve (AUC) was used to represent the ROC effect to evaluate
the efficacy of salivary microbial markers and significantly different
metabolites in predicting different dietary structures.
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