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Gut microbiome and metabolic 
pathways linked to sleep quality
Hoon Je Seong , Younghwa Baek , Siwoo Lee  and 
Hee-Jeong Jin *

Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea

Sleep quality is a vital determinant of human health as sleep disorders are 
associated with cognitive deficits, and chronic sleep deprivation is associated 
with a broad range of health complications. Previous studies on the association 
between the gut microbiome and sleep quality have been constrained by 
small sample sizes or have focused on specific sleep disorders, thus yielding 
inconsistent results. Herein, we investigated the relationship between microbial 
composition and sleep quality in a cohort of 159 Koreans. Sleep quality was 
measured using the Pittsburgh Sleep Quality Index (PSQI), determined through 
a self-administered questionnaire. Gut microbiome analyses were performed 
using 16S rRNA amplicons. We found no direct correlation between microbial 
alpha diversity metrics and sleep; however, we  identified differences in beta 
diversity among sleep quality groups (with a PSQI score  >  5 indicating poor sleep 
quality and PSQI ≤5 indicating good sleep quality). We also found differential 
microbial signatures (Bacteroides, Prevotella 9, and Faecalibacterium) among the 
groups. Furthermore, functional metabolic pathway profiles revealed significant 
linear correlations of the L-arginine and L-tryptophan biosynthetic pathways 
as well as 4-aminobutanoate degradation with sleep status. In particular, 
Faecalibacterium prausnitzii, which harbors these metabolic pathways, showed 
differences between sleep quality groups and a linear association with sleep 
quality scores and was thus identified as the species most strongly associated 
with sleep status. This study provides a significant advance in our understanding 
of the relationship between gut microbiota and sleep regulation. The current 
findings provide a basis for further research into potential therapeutic strategies 
for sleep disorders targeting the gut microbiome.
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1 Introduction

Sleep quality is a vital determinant of human health and wellbeing. In recent years, the 
prevalence of sleep disorders has increased owing to lifestyle changes with the advent of 
telecommuting (Cabré-Riera et al., 2019), development of social media (Alonzo et al., 2021), 
and emergence of COVID-19 (Wehbe et al., 2022). Sleep disorders are intrinsically associated 
with cognitive deficits, and chronic sleep deprivation is associated with a broad range of health 
complications, including an elevated risk of inflammatory, metabolic, cardiovascular, 
neurological, and psychiatric diseases.

Sleep disorders are common and affect approximately 40–50% of the global population 
(Ford et  al., 2014; Bin Heyat et  al., 2021). Improving sleep quality remains a significant 
challenge owing to the severe adverse effects associated with Z-drugs (zolpidem, zopiclone, 
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eszopiclone, and zaleplon), which can include cognitive impairment, 
falls, and amnesia (Gunja, 2013; Brandt and Leong, 2017), as well as 
with dopaminergic agents, known to cause and exacerbate the 
symptoms of sleep disturbance (Videnovic and Golombek, 2013; 
Ondo, 2014). Furthermore, the therapeutic options for addressing 
obstructive sleep apnea, such as surgery or positive airway pressure, 
are often inaccessible or inconvenient (Knauert et al., 2015). Given the 
pervasive impact of sleep disorders on millions of people worldwide 
and their severe effects on cognitive and physical function, the need 
to elucidate the relationship between sleep and various biological 
processes has emerged as a priority. Significant advances in our 
understanding of sleep biology have been made through large-scale 
genetic association studies (Jones et al., 2019; Campos et al., 2020; 
Sonti and Grant, 2022) and more recently, through comprehensive 
omics data analysis (Lahtinen et al., 2021; Wang et al., 2021).

The gut microbiome is emerging as an essential determinant of 
human health, associated with the occurrence of several metabolic and 
disease processes and the gut–brain axis (Zheng et al., 2021; Xiao et al., 
2022; Zhou et  al., 2023). Through this axis, the gut microbiome 
influences mood (Kuo and Chung, 2019), depression (Zheng et al., 
2021), and psychiatric disorders, such as autism spectrum disorders 
(Mulle et al., 2013). Moreover, the microbiome undergoes changes in 
response to circadian rhythms (Tahara et  al., 2018), and circadian 
disruption can affect gut microbiome homeostasis (Yang et al., 2023). 
Gut dysbiosis can lead to a decreased abundance of beneficial bacteria 
and exacerbation of inflammation, which can negatively impact the gut–
brain axis and consequently affect sleep quality (Sen et al., 2021; Wang 
et al., 2021). Several studies have provided preliminary evidence for the 
involvement of the gut microbiome in sleep disorders in both mouse 
models and patients (Grosicki et al., 2020; Wang et al., 2021; Yang et al., 
2023). These findings suggest that perturbations in sleep status can cause 
structural and functional changes in the gut microbiome, highlighting 
the close link between the gut microbiome and sleep.

Recently, the role of microbial-derived metabolites, such as short-
chain fatty acids (SCFAs), serotonin, and melatonin, in sleep has 
garnered considerable attention. SCFAs, as the end products of 
microbial fermentation, are key signaling molecules that mediate 
communication between the gut microbiota and the host (Dalile et al., 
2019). Butyrate, a predominant SCFA, has neuroprotective effects and 
is involved in the regulation of the circadian rhythm (Tahara et al., 
2018; Dalile et al., 2019). Serotonin is primarily produced in the gut 
and is a crucial neurotransmitter that modulates mood and sleep 
(Bohórquez and Liddle, 2015). It is also a precursor of melatonin, a 
hormone synthesized and released by the pineal gland that is essential 
for sleep regulation (Jagota and Reddy, 2007). The gut microbiota is 
known to directly or indirectly influence the production of these 
neuroactive compounds (Yano et al., 2015; Dalile et al., 2019), thus 
potentially influencing the gut–brain axis and sleep (Magzal et al., 
2021; Tang et al., 2022). These findings highlight the need to study the 
gut microbiome for gaining a deeper understanding into the 
pathophysiology of sleep disorders and potential treatment 
alternatives. However, to date, gut microbiome studies in relation to 
sleep quality in humans have been limited by sample size and 
inconsistent methods for assessing sleep status (Jackson et al., 2015; 
Grosicki et  al., 2020; Agrawal et  al., 2021), thereby making it 
challenging to estimate the impact of sleep.

Therefore, in this study, we aimed to investigate the characteristics 
of bacteria and their functional metabolic pathways associated with 

sleep quality. To interpret our results in terms of general sleep, 
regardless of a specific disease, we  performed gut microbiome 
analyses on 159 healthy Korean participants using 16S rRNA 
amplicons. Based on the substantial number of participants and sleep 
quality evaluation, we analyzed alterations in the bacterial community 
structure via 16S rRNA sequencing. This allowed us to identify 
bacteria associated with sleep quality and characterize their functional 
metabolic pathways. The current findings shed light on the complex 
relationship between sleep and the gut microbiome in healthy 
individuals, offering general insights into microbiome-based 
interventions against sleep disorders.

2 Methods

2.1 Participants

To investigate the microbiome alterations associated with sleep 
quality, we recruited participants from the Korean Medicine Daejeon 
Citizen Cohort (KDCC) study (Baek et al., 2020), an ongoing cohort 
study to assess the relationship between lifestyle factors and chronic 
diseases. Exclusion criteria were as follows: antibiotic use for last 
2 weeks; any cancer; any medical disability that interfered with a 
subject’s ability to complete study procedures. We did not exclude 
persons with metabolic diseases such as obesity, hypertension, and 
diabetes. Although these diseases may influence the stability of the gut 
microbiota, subjects with poor sleep quality tend to have higher rates 
of these metabolic medical conditions (Xia et  al., 2021; Duan 
et al., 2023).

A total of 159 individuals (Supplementary Figure S1) consented 
to the provision of microbiome data from March to November 2023, 
and the study was conducted after they signed a consent form. 
We  provided instructions for use and return, one sheet of waste 
collection paper, one tube for waste collection, one wet tissue for the 
bidet, and one return envelope to each subject. Samples were 
immediately discarded after analysis at the research institution. The 
Institutional Review Board of the Korea Institute of Oriental Medicine 
and the Regional Ethics Board of Dunsan Korean Medicine Hospital 
of Daejeon University reviewed and approved this study (IRB No. 
DJDSKH-17-BM-12). Written informed consent was obtained from 
all the participants.

2.2 Data collection

Sleep quality was measured based on the respondents’ subjective 
responses to the Korean version of the PSQI (Lee et al., 2020). The 
PSQI is a widely-used tool for assessing global sleep quality (Mollayeva 
et al., 2016). It assesses sleep latency, duration, habitual efficiency, 
disturbances, daytime sleepiness, sleep quality, and medication use 
(Buysse et al., 1989). The global PSQI score, which ranges from 0 to 
21, can be calculated by summing the scores of the seven components 
on a scale ranging from 0 to 3, with higher scores indicating worse 
sleep quality. The PSQI is a reliable and valid tool for assessing sleep 
quality in clinical practice and research, and a global PSQI score of 5 
or higher indicates poor sleep.

We used additional metadata on age, sex, blood pressure 
medication, and clinical information collected from the KDCC cohort 
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to control for confounding factors that could affect the relationship 
between the microbiome and sleep. Specifically, the clinical 
information for the participants included the following five risk 
factors for metabolic syndrome (MetS) (Expert Panel on Detection, 
2001): (1) systolic and diastolic blood pressure, (2) glucose level, (3) 
high-density lipoprotein (HDL) cholesterol level, (4) triglyceride level, 
and (5) waist circumference. We defined a MetS score when five risk 
factors crossed the cut-off according to gender-adjusted Korean-
specific diagnostic criteria (Lee et al., 2007): (1) high blood pressure 
(systolic blood pressure ≥ 130 mmHg, diastolic blood 
pressure ≥ 85 mmHg) or specific treatment; (2) fasting plasma glucose 
≥100 mg/dL or specific treatment; (3) low HDL cholesterol (<40 mg/
dL for men, <50 mg/dL for women) or specific treatment; (4) high 
triglyceride levels (150 mg/dL) or specific treatment; and (5) 
abdominal obesity with cutoffs specific to South Koreans (waist 
circumference ≥ 90 cm for men or ≥ 85 cm for women).

2.3 Sample collection and DNA extraction

Stool samples were collected by participants in a hat that sits on 
the toilet seat. DNA was extracted from the fecal samples using a ARA 
MagNA Plant DNA Isolation Kit (LAS, Gimpo, Korea). Each fecal 
sample (200 μL) was transferred to a 2-ml tube containing 20 μL 
(40 mg/mL) proteinase k and 0.3 mL PL1 lysis buffer (LAS, Gimpo, 
Korea). After rotation with shaking for 10 min, samples were 
centrifuged to pellet the debris and lysing matrix at room temperature 
at 12,000 g for 2 min. After centrifuging, 0.4 mL of the supernatant was 
mixed with 0.4 mL PB2 binding buffer (LAS, Gimpo, Korea) and 20 μL 
magnetic beads. The subsequent DNA extraction steps were 
performed according to the manufacturer’s instructions. Eluted DNA 
was quantified with the Dropsense96. (PerkinElmer, Shelton, CT, 
United States) and stored at −20°C until use.

2.4 16S rRNA amplicon sequencing

A 16S rRNA amplicon sequencing library targeting the V3-V4 
hypervariable region was prepared according to the Illumina 16S 
metagenomic sequencing library preparation protocol (Illumina, San 
Diego, CA, United States). Primary PCR used KAPA HiFi HotStart 
ReadyMix (KAPA Biosystems, Wilmington, MA, United States), with 
10 ng of template DNA and V3-V4 specific primers (341F-805R), 
including Illumina sequencing indexes and adapters, were used. The 
primer sequences were as follows: 5′-TCGTCGGCAGCGTCAGAT 
GTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ (forward) 
and 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGG 
ACTACHVGGGTATCTAATCC-3′ (reverse). The PCR products were 
purified using the Agencourt AMPure XP system (Beckman Coulter 
Genomics, Brea, CA, United States) and subjected to a limited-cycle 
amplification step with the Nextera XT Index Kit (Illumina). After a 
second purification, products were visualized via gel electrophoresis 
and quantified with a Qubit 3.0 fluorometer using the Qubit dsDNA 
HS Assay Kit (Thermo Scientific). The pooled libraries were assessed 
on an Agilent 2100 Bioanalyzer (Agilent Technologies) for size 
verification and quantification (CFX96 Real Time System [Bio-Rad]) 
prior to sequencing. Sequencing was performed on the Illumina 
MiSeq system with 300-bp paired-end reads.

2.5 Microbial community analysis

The microbial community was analyzed at the amplicon sequence 
variant (ASV) level using the Ampliseq pipeline (v2.4.1) (Straub et al., 
2020) based on the DADA2 algorithm. AmpliSeq consists of a series 
of analyses in the following programs using the NextFlow pipeline: 
FastQC (v0.11.9), Cutadapt (v3.4), DADA2 (v.1.22.0), and QIIME2 
(v2019.10.0). The taxonomy of ASV was assigned using the 
‘assignTaxonomy’ module in DADA2 with SILVA database (v.138); 
however, we only utilized the results of the ‘assignSpecies’ module 
because species assignment requires a 100% exact match 
(Edgar, 2018).

Microbial diversity indices were calculated after rarefaction at the 
minimum sample depth (29,798 reads) for all the samples. Alpha 
diversity was calculated using evenness, Faith’s phylogenetic diversity 
(PD), observed features, and Shannon’s H index. Beta diversity 
measures the differences in ASV communities between samples using 
the Bray–Curtis and UniFrac indices. The association of the 
individuals’ clinical data with the Bray–Curtis distance matrix was 
calculated using the vegan’s envifit module.

2.6 Functional pathway prediction

PICRUSt2 (v2.5.0) (Douglas et  al., 2020) was used to predict 
metagenomic functional pathways. PICRUSt2 is a software tool that 
predicts metagenomic functional attributes based on phylogenetic 
information from the ASV dataset. Briefly, we inferred the function of 
the ASVs generated by DADA2 based on a pre-constructed 
phylogenetic tree. The unstratified MetaCyc pathways were then 
converted into relative abundances for subsequent differential testing. 
We also used the “stratified” option to infer the ASVs assigned to each 
metabolic pathway.

2.7 Statistical analysis

Linear discriminant analysis (LDA) effect size (LEfSe) (Segata 
et al., 2011) was used to identify potential bacterial markers that could 
distinguish between the sleep quality groups. LEfSe first used between-
group statistical tests (Kruskal-Wallis, p < 0.05) to detect features that 
were significantly different between the sleep quality groups. LDA was 
used to estimate the effect size of each differentially enriched 
component, which indicated biological relevance (LDA score > 2).

Microbial balance signatures discriminating sleep quality were 
identified using self-analysis. The optimal number of microbial 
balance variables was chosen using the Selbal (Rivera-Pinto et al., 
2018). cv. module with 5-fold cross-validation. To avoid bias from rare 
ASVs, we used only ASV and species abundances that represented a 
20% prevalence in all samples with at least 10 reads.

To adjust for clinical characteristics that may affect the 
microbiome, we used a multivariate association with linear models 
(MaAsLin2) (Mallick et  al., 2021) algorithm to test the microbial 
taxonomy and functional metabolic pathways related to sleep quality 
scores. Microbial features that passed the significance threshold (adj. 
p false discovery rate [FDR] < 0.25) are shown in the MaAsLin2 
analysis comparing global PSQI scores after adjusting for age, sex, 
MetS score, and blood pressure medication status.
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2.8 Co-occurrence network analysis

To infer the gut microbiota co-occurrence networks of the two 
groups according to sleep quality, we used SPIEC-EASI (Kurtz et al., 
2015) with ASV relative abundance data. Only ASVs with a total 
sample frequency of at least 20% and more than two read counts were 
selected to reduce bias from rarely detected ASVs during the 
co-occurrence analysis. The R package igraph was used to calculate 
the edge density (D) and network transitivity (T) values. We filtered 
out negative relationships between ASVs to calculate network 
modularity and used Cytoscape (Shannon et al., 2003) for subsequent 
network visualization.

3 Results

3.1 Microbial community structure 
according to sleep quality

In this study, we  analyzed the microbial communities of 159 
participants, of which 99 (62.26%) belonged to the good sleep quality 
(GS) group and 60 (37.74%) to the poor sleep quality (PS) group (PSQI 
score > 5), as detailed in Supplementary Table S1 (p > 0.05). No 
significant differences in the metadata characteristics were observed 
among the participants in either group. Additionally, no correlation was 
identified between the sleep quality metric (PSQI) and age, sex, or other 
metadata associated with MetS (Supplementary Figure S2, p > 0.05).

Our analysis of the gut microbial community using 16S rRNA 
amplicon sequencing yielded over 12.7 million quality-filtered reads 
(76,878 ± 31,623 sequences per sample). The DADA2 algorithm 
generated a final set of 7,528 ASVs for subsequent downstream 
analyses. This set included 13 bacterial phyla and two archaeal phyla, 
with Bacteroidetes, Firmicutes, and Proteobacteria being the most 
abundant and evenly distributed across all samples, regardless of sleep 
quality (Figure 1A).

When comparing the microbial diversity between the GS and PS 
groups using various indices (including α-diversity measures: 
observed ASVs, Shannon, Faith’s phylogenetic diversity; and 
β-diversity measures: Bray–Curtis and UniFrac distances), 
we  observed no differences in α-diversity. However, a significant 
difference was noted in β-diversity (Bray–Curtis, PERMANOVA, 
p = 0.004), suggesting a variation in microbial community structure 
between the groups based on sleep quality (Figure 1B). We further 
analyzed the linear relationship of the principal coordinate analysis 
ordination with other metadata using the Envfit function (Figure 1B). 
The total PSQI score (R2 = 0.075, p = 0.0025) and age (R2 = 0.066, 
p = 0.0058) showed contrasting associations, indicating that while 
these metrics were not correlated with each other, each had a distinct 
and significant effect on the gut microbiome.

3.2 Differential microbiome signatures 
across sleep quality groups

To identify the biomarker taxa that showed significantly 
differential enrichment in the GS and PS groups, we  used LEfSe 
analysis. Predominantly, these biomarkers reflected the ASV at the 
genus and species levels (LDA ≥ 3 and p < 0.05). Bacteroides was the 

most enriched genus in both groups, with unique differences at the 
ASV and species levels; Bacteroides plebeius was identified in the GS 
group, while B. vulgaris was found in the PS group (Figure  2A). 
Furthermore, significant ASVs of Prevotella group  9, Alistipes, 
Alloprevotella, and Veillonella were observed in the PS group, whereas 
the GS group was marked by ASVs of Faecalibacterium prausnitzii, 
Lachnospira pectinoschiza, Bacteroides, and Dialister. Reducing the 
LDA score threshold to 3 to 2 for both groups (p < 0.05) enabled the 
identification of previously undetected biomarkers at the genus level, 
such as Erysipelatoclostridium, Flavonifractor, Desulfovibrio, 
Lachnospiraceae UCG 001, and Pseudomonas. At the family level, 
Pseudomonadaceae was specific to the GS group (Figure 2B).

We expanded our investigation to explore microbial ratios, termed 
as “balance,” instead of solely focusing on individual taxon markers. This 
approach aims to uncover a more detailed microbial signature 
associated with sleep quality (Figure 2C). In line with our LEfSe analysis, 
balance confirmed that the ASV level provided the most accurate 
discrimination between the sleep groups (Figure 2D; cross-validated 
area under the curve [AUC]: 0.89), followed by the family (cross-
validated AUC: 0.64) and genus (cross-validated AUC:0.74) levels. The 
balance consisted of 15 ASVs, with seven overlapping with prior LEfSe 
results (LDA ≥ 2), which also demonstrated significant discriminatory 
power for sleep quality (Figure 2D; cross-validated AUC: 0.78). The PS 
group was represented by the numerators (ASV401, ASV815, and 
ASV4442) and the GS group by the denominators (ASV1091, ASV3129, 
ASV4911, and ASV6619) of the balance. Additionally, we identified 
ASVs associated with Anaerostipes, Clostridium, Eubacterium, 
Flavonifractor, Streptococcus, and Turicibacter, which differed from the 
LEfSe findings. Their combined analysis allowed us to more precisely 
identify the microbial markers linked to sleep quality, suggesting that 
these findings are due to differences in microbial composition, further 
supported by the beta diversity results.

3.3 Co-occurrence networks in the 
microbial communities

To further explore the bacterial interactions relative to sleep 
quality groups, we constructed microbial networks. The GS and PS 
group networks consisted of 222 and 232 ASVs, respectively, with 197 
ASVs shared across the networks. However, the network topology 
diverged between the two groups, with D and T (clustering coefficient) 
being higher in the GS group (D: 0.015, T: 0.147) than in the PS group 
(D: 0.008, T: 0.123). Although the overall network structure was 
similar between the two groups, the PS group exhibited fewer 
substantial interactions. Notably, the positive inter-microbial clusters 
that dominated the GS group were disorganized and diminished in 
the PS group, although they retained their form Figure 3.

Calculating modularity based on the connectivity of each ASV 
yielded eight modules for each sleep quality group. Among these, 
three modules in the GS group (M1–M3) exhibited a topology similar 
to the eight modules in the PS group (referred to as M1’–M3’, 
respectively), sharing numerous ASVs belonging to the 
Lachnospiraceae and Oscillospiraceae families. Despite 42.4% of all 
modules sharing ASVs, the marker ASVs for each group remained 
unique to that group (Figure 3). In the GS group, modules M1 and M2 
were split into three modules each in the PS group (labeled as M1’ 1–3 
and M2’ 1–3) with the addition of PS group-specific marker ASVs not 
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found in the GS group (Figure 3). Notably, in the PS group, marker 
ASV2359, along with two other PS group marker ASVs (ASV919 and 
ASV1357) associated with Erysipelatoclostridiaceae, formed the PS 
group-specific module M2’-3. Conversely, five modules identified in 
the GS group (M4–M8) were found to be de-modularized in the PS 
group, highlighting the stable nature of bacterial interactions within 
the GS group and suggesting a more consistent co-occurrence pattern. 
While the microbial network backbones of the two groups were 
similar, they differed in their specific microbial interactions, which in 
turn affected the stability of each group’s microbial community.

3.4 Linear associations between metabolic 
pathway profiles and PSQI scores

Next, we aimed to understand the link between sleep quality and 
the microbiome by directly associating PSQI scores with the 

microbiome rather than dividing samples based on sleep quality. After 
adjusting for age, sex, MetS score, and blood pressure medication, 
we examined both individual microbial taxa and metabolic pathways.

Among the microbial taxa, only ASV3334 (F. prausnitzii) showed 
a negative correlation with the PSQI scores (adjusted p = 0.23). 
However, within the metabolic pathway profiles, several significant 
metabolic pathways were identified that associated with sleep quality 
independently of other metadata (including age, sex, MetS score, and 
blood pressure medication). Specifically, seven factors showed a 
positive correlation with PSQI scores, while two factors exhibited a 
negative correlation (adjusted p < 0.25) (Figure 4A).

Most degradation pathways, including sucrose, dicarboxylic acid 
sugars (D-glucarate and galactarate), and 4-aminobutanoate (GABA), 
were positively correlated with PSQI scores (PWY-5384, 
GLUCARDEG-PWY, GALACTARDEG-PWY, GLUCARCALACTSUPER- 
PWY, and PWY-5022). Pathways related to the synthesis of common 
Enterobacteriaceae-associated antigens (PWY-7315 and ECASYN- 

FIGURE 1

Gut microbial community profile of the Korean Medicine Daejeon Citizen Cohort. (A) Microbial community composition at the class level. (B) Principal 
coordinate analysis (PCoA) of Bray–Curtis dissimilarity in sleep quality groups (PERMANOVA, p  =  0.004). PSQI, Pittsburgh Sleep Quality Index.
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PWY) also showed positive correlations with the PSQI scores. In 
contrast, biosynthetic pathways for the production of amino acids, 
including L-arginine (PWY-5154) and thiamine diphosphate 
(THISYN-PWY), were negatively correlated with the PSQI scores 
(Figure 4B).

Nine metabolic pathways demonstrated substantial differences in 
taxonomic richness based on their association with PSQI scores. The 
two pathways negatively associated with PSQI scores corresponded to 
an average of 202.5 genera. Conversely, the seven pathways positively 
correlated with PSQI scores were linked to an average of 69.14 genera, 
indicating significant disparities in taxonomic diversity of functional 
significance. Moreover, when comparing the microbial communities 
of these metabolic pathways using nonmetric multidimensional 
scaling plots, the ASV composition showed significant differences 
between the sleep groups, indicating that the diversity of 
microorganisms within the metabolic pathways varied (Figure 4C). 
Beyond these diversity differences, two pathways associated with good 
sleep quality (negatively correlated with PSQI scores) were 
predominantly enriched in two species previously found to be markers 
of the GS group: B. plebeius and F. prausnitzii (Figure  4B). These 
results indicate that differences in metabolites resulting from changes 
in the microbiome are associated with an individual’s sleep quality.

4 Discussion

A growing body of evidence suggests that the microbiota–gut–
brain axis plays an integral role in the etiology and progression of 
sleep disorders by directly or indirectly contributing to sleep 
regulation. Disturbances in sleep patterns have been linked to 
changes in gut microbiota composition, whereas sleep deprivation 
has been linked to gut microbiota dysfunction. However, existing 
research has mainly focused on individual sleep disorders, such as 
apnea or insomnia, with small sample sizes (Han et al., 2022) often 
representing a limitation. Consequently, a comprehensive 
understanding of the association between sleep quality and the 
microbiome is warranted.

In this study, we  explored the potential links between the 
microbiome, its functional pathways, and sleep quality in a cohort of 
159 individuals from South Korea. Although our findings did not 
indicate any significant correlation between microbial diversity 
metrics and MetS within the sampled cohort (Supplementary Figure S2, 
Supplementary Table S1), we noted substantial differences in beta 
diversity (Bray–Curtis dissimilarity) and microbial signatures that 
could be used to distinguish between groups based on sleep quality. 
Moreover, observing a more stabilized microbiome in the GS group 

FIGURE 2

The most differential microbiome signatures according to sleep quality groups. (A) Major bacterial taxa according to sleep quality group based on the 
linear discriminant analysis (LDA) score  >  3. (B) Cladogram of lineage specific markers based on LDA scores (>2) according to sleep quality. (C) The best 
microbial balance signature to discriminate sleep quality groups at the amplicon sequence variant (ASV) level. (D) ROC curve for sleep quality markers 
(ASVs) identified by LefSe and the balance signature.
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underscores the close interplay between sleep quality and the gut 
microbial community.

Here, we observed several microbial markers, such as Alistipes, 
Bacteroides, Dialister, Faecalibacterium, and Veillonella, that showed 
significant differences between the sleep quality groups. This is in line 
with previous findings linking these microbes with the gut–brain axis 
and various sleep and psychiatric disorders. For example, Bacteroides, 
and Veillonella are often overrepresented in major depressive 
disorders, whereas Faecalibacterium and Dialister are 
underrepresented (Kuo and Chung, 2019). Alistipes is also enriched in 
major depressive disorders (Zhang et al., 2021), possibly regulating 
emotions through indole metabolism (Song et al., 2006). In sleep-
related studies, the abundance of Faecalibacterium and Prevotella 
group 9 decreased in a chronic insomnia group (Li et al., 2020) and 
that of Alloprevotella and Prevotella decreased with declining fecal 
SCFA concentrations after sleep deprivation (Wang et  al., 2021). 
However, Prevotella was identified as a marker for the PS group in this 
study. When considered alongside previous findings (Grosicki et al., 
2020), which reported that Prevotella was positively correlated with 
the PSQI score, the results appear inconsistent. Furthermore, studies 
on sleep disorders due to acute sleep deprivation (Li et al., 2020) and 
traumatic brain injury (Zhanfeng et  al., 2022) have reported an 
increase in the abundance of Bacteroides upon sleep disturbance. 
However, our findings indicate that at the ASV and species level, 
B. plebeius and B. vulgatus exhibit opposite patterns between the sleep 
groups, suggesting a need for more detailed analyses beyond the genus 
level. This apparent contradiction could be because of differences in 

study design, cohort characteristics, or unaccounted environmental 
factors. Such discrepancies underscore the need for further research 
to resolve inconsistent conclusions in sleep research regarding specific 
changes in bacterial composition (Reutrakul et al., 2020; Morwani-
Mangnani et al., 2022).

The SCFA butyrate can be  directly transmitted via the vagus 
nerve, acting as a signaling molecule to induce sleep onset (Szentirmai 
et al., 2019). However, this mechanism is drastically altered under 
specific pathophysiological conditions (Magzal et al., 2021). Although 
SCFAs have been shown to inhibit inflammation and promote sleep 
in several observational studies (Szentirmai et al., 2019), paradoxically, 
a recent study reported that low sleep efficiency in older adults 
corresponds to higher fecal SCFA levels (Magzal et  al., 2021). 
Consequently, SCFAs may influence sleep by modulating 
inflammation and the gut–brain axis; however, the precise metabolic 
links remain ambiguous and require further investigation (Magzal 
et al., 2021; Morwani-Mangnani et al., 2022). In this study, marker 
microbes (Bacteroides, Prevotella, Veillonella, L. pectinoschiza, and 
F. prausnitzii) were strongly associated with SCFA production (Ng and 
Hamilton, 1973; Schwiertz et al., 2010; Zhang et al., 2015; Koh et al., 
2016; Liu et al., 2018; Cheng et al., 2022), suggesting a possible link 
between sleep quality and bacterial composition. However, these 
markers were found in both the GS and PS groups regardless of sleep 
quality. Furthermore, one limitation of the present study is that SCFAs 
were not directly detected. Our results, in addition to those of previous 
studies, do not provide sufficient evidence to conclude that SCFAs 
directly affect sleep quality.

FIGURE 3

Microbial co-occurrence networks according to sleep quality groups. Nodes in bold are sleep quality group markers, shown with their corresponding 
amplicon sequence variant (ASV) IDs. GS, good sleep quality; PS, poor sleep quality.
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Building on the observations of microbial markers, we further 
examined the functional metabolic pathway profiles to ascertain 
potential associations with sleep quality. In this regard, we  found 
correlations between the PSQI and certain pathway markers. 
Specifically, the biosynthetic pathways of L-arginine and thiamine 
diphosphate (vitamin B1 derivative) positively correlated with better 
sleep quality (negatively correlated with the PSQI score) and were 
closely related to sleep induction. L-arginine, a precursor to the 
neurotransmitter nitric oxide, is known to induce sleep (Gautier-
Sauvigné et al., 2005) and augment slow-wave sleep (Monti and Jantos, 
2004). Supplementation with L-arginine has been shown to ameliorate 
pathological changes caused by REM sleep deprivation (Jiang et al., 
2017). Additionally, vitamin B1 plays a pivotal role as a cofactor in 
glucose metabolism and is deeply involved in the regulation of the 
activity of the central nervous system, acting as a primary source for 
the metabolism of neurotransmitters such as glutamate, GABA, and 
acetylcholine (Rudzki et al., 2021). Deficiencies in vitamin B1 have 
been linked to various psychiatric conditions, including sleep 
disturbances (Dhir et al., 2019).

Furthermore, the L-tryptophan biosynthetic pathway was 
enriched in the GS group (adj. p FDR = 0.15); the enrichment of this 
pathway was suppressed, according to the PSQI score (p = 0.01, adj. p 
FDR = 0.3). L-tryptophan is the sole precursor of serotonin (Richard 
et al., 2009) and exerts a direct influence on the gut–brain axis, mood, 
and sleep (Kikuchi et al., 2021), with reports linking L-tryptophan 

supplementation to a decreased degree of depression, increased sleep 
duration (Lieberman et al., 2016), and amelioration of sleep disorders 
(Silber and Schmitt, 2010). Remarkably, the therapeutic effects of 
tryptophan in sleep disorder treatment are mediated via melatonin, 
without impairing cognitive performance or suppressing wakefulness 
during sleep (Richard et al., 2009).

In contrast, the microbial pathways involved in the degradation of 
GABA (PWY-5022) were negatively correlated with improved sleep 
quality. GABA, the most common inhibitory neurotransmitter, is 
associated with the enhancement of hyperarousal in insomnia 
(Riemann et al., 2010; Plante et al., 2012) when its levels are decreased 
and has been associated with shorter sleep duration (Spiegelhalder 
et  al., 2016). Furthermore, SCFAs are the products of GABA 
degradation, and the increased abundance of SCFA-producing 
microbes in the PS group may thus be related to the enhancement in 
the activity of GABA-degrading metabolic pathways. This finding 
reveals a potential link between sleep quality and metabolic pathways, 
such as the L-arginine, L-tryptophan, vitamin B1, and GABA 
metabolic pathways, further suggesting that they might influence the 
gut–brain axis more prominently than SCFAs.

F. prausnitzii, one of the most abundant bacteria in the gut, has 
attracted significant interest because of its potential role in gut health 
(Lopez-Siles et  al., 2017). It is a key SCFA butyrate-producing 
bacterium in the gut and has been found to be negatively associated 
with various inflammatory bowel diseases, such as ulcerative colitis 

FIGURE 4

Metabolic pathways inferred by PICRUSt2 correlate with sleep quality scores (global Pittsburgh Sleep Quality Index [PSQI]). (A) Multivariate association 
test of metabolic pathways with PSQI and other clinical metadata. (B) Significant metabolic pathways with a linear relationship with sleep quality 
scores. The mean metabolic pathway abundance of the top 10 bacterial species with each metabolic pathway. (C) NMDS analysis of taxonomic 
stratified metabolic pathway.
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and Crohn’s disease; these findings suggest that this bacterium is a 
potential marker of gut health (Miquel et al., 2013). Although no 
studies have directly linked F. prausnitzii to sleep, it is one of the 
bacterial taxa whose abundance is reduced by circadian rhythm 
changes (Mortaş et al., 2020) and obstructive sleep apnea syndrome 
(Valentini et  al., 2020). In our study, ASV3334, which belongs to 
F. prausnitzii, was the only microbial marker that was abundant in the 
GS group; its abundance increased linearly with sleep quality. This 
ASV is also predicted to involve metabolic pathways associated with 
sleep quality. As our study was conducted in a Korean cohort from 
Daejeon, South Korea, it may have contributed to the identification of 
a specific ASV rather than a species. Thus, our findings suggest a 
potential association between F. prausnitzii and sleep quality, 
extending insights from circadian rhythm studies (Mortaş et al., 2020). 
However, additional studies are required to validate this association in 
different ethnic populations with various lifestyles.

In conclusion, our study unveiled a potential association between 
the gut microbiota composition, their metabolic functions, and sleep 
quality, pinpointing key distinctions in microbial diversity among 
groups defined by sleep quality. However, as an observational cohort 
study, our study has certain limitations that affect the interpretation 
of microbial changes, such as diet history and food intake. In addition, 
we could not directly detect metabolite changes in blood or fecal 
samples or utilize controlled interventional designs to establish 
causality. Therefore, future in vivo studies on the sleep-related marker 
microbes and metabolomes introduced in this research are necessary 
in order to uncover the mechanisms underlying the gut microbiota-
mediated enhancement of sleep quality. Overall, this study broadens 
our understanding of the complex interplay between sleep quality and 
the microbiome, providing a basis for future therapeutic strategies. 
These strategies could help in alleviating sleep disorders by modifying 
the microbiome with probiotics and prebiotics, and future causality 
studies aimed at influencing the markers identified in the present 
study will be conducted.
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