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Exploring the e�ects of seasonal variation on the gut microbiota of cold-water

fish plays an important role in understanding the relationship between seasonal

variation and cold-water fish. Gut samples of cold-water fish and environmental

samples were collected during summer and winter from the lower reaches

of the Yalong River. The results of the 16S rRNA sequencing showed that

significant di�erences were identified in the composition and diversity of gut

bacteria of cold-water fish. Co-occurrence network complexity of the gut

bacteria of cold-water fish was higher in summer compared to winter (Sum:

nodes: 256; edges: 20,450; Win: nodes: 580; edges: 16,725). Furthermore, from

summer to winter, the contribution of sediment bacteria (Sum: 5.3%; Win: 23.7%)

decreased in the gut bacteria of cold-water fish, while the contribution of water

bacteria (Sum: 0%; Win: 27.7%) increased. The normalized stochastic ratio (NST)

and infer community assembly mechanisms by phylogenetic bin-based null

model analysis (iCAMP) showed that deterministic processes played a more

important role than stochastic processes in the microbial assembly mechanism

of gut bacteria of cold-water fish. From summer to winter, the contribution

of deterministic processes to gut bacteria community assembly mechanisms

decreased, while the contribution of stochastic processes increased. Overall,

these results demonstrated that seasonal variation influenced the gut bacteria

of cold-water fish and served as a potential reference for future research to

understand the adaptation of fish to varying environments.

KEYWORDS

cold-water fish, seasonal variation, microbial assembly mechanism, gut bacteria,

environment

Introduction

Disentangling the community assembly mechanisms is crucial for understanding

the animal adaptation process (Yan et al., 2016; Ning et al., 2019; Xu et al.,

2023). Neutral and niche-based theories are important mechanisms to explore the

host’s microbial assembly mechanisms (Sloan et al., 2006). Neutral theories assume

that all individuals are ecologically equivalent and stochastic processes that largely

control species dynamics and patterns, including speciation/extinction, migration,
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and random birth/death (Gravel et al., 2006; Chase and

Myers, 2011). On the contrary, niche-based theories postulate

that deterministic processes, such as abiotic factors (e.g., pH,

temperature) and biotic factors (e.g., predation and competition),

can largely control species distribution and persistence (Gravel

et al., 2006; Stegen et al., 2013; Ning et al., 2019). An increasing

number of models have been developed to determine the relative

importance of stochastic and deterministic processes in microbial

community assembly based on the neutral and null modeling

methods (Stegen et al., 2015; Ning et al., 2019). These models

include infer community assembly mechanisms by phylogenetic

bin-based null model analysis (iCAMP), beta nearest-taxon index

(βNTI) (Stegen et al., 2012), Raup-Crick index (RCbray) (Stegen

et al., 2013), and normalized stochastic ratio (NST) (Ning et al.,

2019). From day 0 to day 30, the gut bacterial community assembly

mechanisms of Schizothorax wangchiachii significantly increased in

the contribution of deterministic processes, while decreasing in the

contribution of stochastic processes (Kruskal–Wallis H-test; P <

0.05) (Xu et al., 2023). However, few studies have comprehensively

investigated the ecological processes that regulate the gut microbial

community assembly of cold-water fish between different seasons.

The fish gut microbiome plays an important role in helping

the host to adapt to seasonal variation (Dehler et al., 2017; Wang

et al., 2018; Dulski et al., 2020). Seasonal variation may include a

range of water temperature, food availability, pH, and host habitat.

Previous studies have reported that seasonal variation influenced

the gut’s total bacterial abundance and the dominant species of fish

(Al-Harbi and Naim Uddin, 2004; Hagi et al., 2004). Differences

were identified in the gut bacterial composition of Salmo salar

between different water temperatures (Neuman et al., 2016). The

increase in temperatures (to 21◦C) was associated with an increase

in Vibro spp. and the disappearance of lactic acid bacteria (LAB)

and Acinetobacteri spp. (Neuman et al., 2016). These results may

help fish to adapt to varying environmental temperatures. The

relative abundance of Proteobacteria in the gut microbes of Tinca

tinca decreased from summer (mean level: 57.61 ± 32.57%) to

winter (83.49 ±11.90%) (Dulski et al., 2020). Moreover, the results

of preparing three-dimensional plots using principal coordinates

analysis (PCoA) showed that significant differences were found

in the gut microbial structure of T. tinca between summer and

autumn (Dulski et al., 2020). The change in the pH of water may

influence the gut microbial composition of Leuciscus waleckii. At

the genus level, Psychrobacter maritimus, Moraxella osloensis, and

Psychrobacter faecaliswere identified to be the dominant bacteria in

the gut of L. waleckii inhabiting in high pH environments (pH: 9.4–

9.6), while Aeromonas and Ralstonia were significantly enriched in

low pH environments (pH: 7.3–7.9) (Luo et al., 2022). Therefore,

exploring the effect of seasonal variation on the cold-water fish

gut microbiome could play a key role in understanding the host

adaptation processes.

Schizothorax wangchiachii, Schizothorax kozlovi, and

Percocypris pingi are vital economical fish species distributed

in the upper reaches of the Yangtze River and its tributaries (Yue,

2000). In this study, the NST and iCAMP models were used to

determine the relative importance of stochastic and deterministic

processes on the gut bacteria of cold-water fish between summer

and winter. The gut samples of cold-water fish with different

feeding habits (Herbivorous: SW, S. wangchiachii; omnivorous:

SK, S. kozlovi; carnivorous: PP, P. pingi) and environmental

samples (water and sediment samples) were collected from the

lower Yalong River. The present study aimed to hypothesize that,

from summer to winter, the relative importance of deterministic

processes on the gut bacterial community will decrease, while the

relative importance of stochastic processes will increase.

Materials and methods

Sample collection

In total, 30 gut samples and 20 environmental samples (water

samples: 10; sediment samples: 10) were collected from summer

(sum) and winter (win) in the lower reaches of the Yalong River,

Sichuan Province, China (101◦64′86.16′′; 28◦34′14.82′′). Each cold-

water fish was captured by drift nets in the sampling water area and

euthanized withMS-222 (06–1.0 g/L; a chemical used to anesthetize

fish samples) to collect the gut content. Water environmental

variables were measured in the sampling water areas during both

summer and winter. The pH and temperature (TEM) of the water

samples were measured using a multiparameter instrument (HI-

98130 pH/EC/TDS/◦C, HANNA Instruments, Woonsocket, RI,

USA), while electrical conductivity (EC) was measured using a

conductivity meter (sensION+ MM150 portable meter, Hach).

Dissolved oxygen (DO) was determined using a dissolved oxygen

analyzer (WTW Multi 3420 Set G, Xylem Inc., Germany), while

total dissolved solids (TDS) and salt (SALT) were measured using

a multiparameter instrument (HI-98130 pH/EC/TDS/◦C, HANNA

Instruments, Woonsocket, RI, USA).

For environmental sampling, each sediment sample (3 cm deep

and 2.5 cm wide) was collected three times using an aseptic shovel

from one sampling site (Chang et al., 2017). Each water sample

was collected in three 10-L sterile polyethylene terephthalate (PET)

bottles and immediately stored at−20◦C. Then, the vacuum pump

(pressure: 0.5 MPa; membrane aperture 0.2µm; and membrane

diameter: 10 cm) was used to filter the water sample (Zwart et al.,

2002; Liu et al., 2018).

DNA extraction and 16S rRNA sequencing

The QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA) was

used to extract DNA from gut content, water, and sediment samples

according to the manufacturer’s instructions. The V4–V5 region

of the bacterial 16S rRNA gene was amplified by using universal

primers 515F (5′-GTGCCAGCMGCCGCGG-3′) and 907R (5′-

CCGTCAATTCMTTTRAGT-3′) (Caporaso et al., 2012). PCR

thermocycling conditions were as follows: initial denaturation at

95◦C for 5min, followed by 35 cycles at 95◦C for 5 s, annealing

at 55◦C for 30 s, extension at 72◦C for 45 s, and final extension at

71◦C for 10min. All PCR products were purified using a Universal

DNA Purification Kit (TIANGEN, China), and the Illumina HiSeq

platform (Hiseq2500 PE250) was used for sequencing barcoded

V4–V5 amplicons.
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Bioinformatics analysis

Raw pair end reads (PE) were processed using the QIIME

1.9 software package (Caporaso et al., 2010). In quality control,

the function Trimmomatic was used to remove low-quality reads

(Parameter: ILLUMINACLIP:2:30:10; TRAILING:20, MINLEN:50;

SLIDING WINDOW: 50:20) (Bolger et al., 2014), the function

search was used for chimerism checks, and the function flash

was used for splicing (the minimum length overlap is 10 bp, and

the maximum mismatch ratio is 0.2) (Edgar, 2010). After quality

control procedures, all clean sequences were clustered into the

operational taxonomic units (OTUs) with >97% sequence identity.

Each OTU was classified by the annotation against the Silva

132 database (Release 132) (http://www.arb-silva.de; confidence

threshold: 0.7) (Quast et al., 2012).

Bar plot and pie chart were generated using the package of

ggplot2 (Wickham, 2011) in R 3.0 to visualize the gut microbial

composition of cold-water fish collected during summer and

winter at the phylum, family, and genus levels. The Mann–

WhitneyU and Kruskal–WallisH-tests were used to test significant

differences in the gut microbial composition and alpha diversity

indices of cold-water fish between summer and winter in Stamp

software (version 2.1.3) (Parks et al., 2014). Linear discriminant

analysis (LDA) effect size (LEfSe) was used to analyze the

differences in the gut microbial composition of cold-water fish.

The Chao 1 index, observed OTU number index, and Shannon–

Wiener index were used to calculate the alpha diversity of the

gut microbes of cold-water fish. The box chart was used to

visualize the dissimilarity. Bray–Curtis dissimilarity was calculated

by the vegan package (Dixon, 2003) to assess the beta diversity

in the gut and environmental samples between summer and

winter. PERMANOVA (number of permutations: 999) based

on Bray–Curtis distance was used to analyze the differences

in different samples between summer and winter. Nonmetric

multidimensional scaling (NMDS) was used to visualize the results

(Anderson, 2001). Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States (PICRUSt) was used to

predict the gut microbial function of cold-water fish between

summer and winter. The Mann–Whitney U-test and t-test (equal

variance) were used to calculate significant differences in the

KEGG pathways (level1, 2) of the gut microbiota of cold-water

fish between summer and winter in Stamp software (version 2.1.3)

(Parks et al., 2014).

Redundancy analysis (RDA) was used to examine the

relationship between the gut bacteria of cold-water fish and

environmental variables in the vegan package of R 3.0 (RDA

function) (Dixon, 2003). Subsequently, the heatmap was used to

identify significant differences between the gut bacteria of cold-

water fish (at the phylum, the family, and the genus levels) and

environmental variables. To investigate the relationship between

gut and environmental microbes (water and sediment microbes),

Source-Tracker software (version 0.9.5) was used in this study

(Knights et al., 2011). The gut microbes were treated as sinks,

while the water and sediment microbes were treated as sources. The

Circos graph generated by Circos software was used to show the

proportion of the gut, water, and sediment samples. A pie chart was

used to visualize the contribution of water and sediment microbes

found in the gut microbes of cold-water fish collected between

summer and winter.

Co-occurrence networks for the gut bacteria of cold-water fish

were constructed based on Spearman rank correlations with OTU

abundance (detected in at least 80% of samples). The statistically

robust correlations were used in the analysis of co-occurrence

networks, and the P-value and correlation coefficient were set to

0.001 and 0.6, respectively. To reduce the probability of obtaining

false positive results, the Benjamini andHochberg FDRmethodwas

used to adjust all P-values in R 3.0 software (Benjamini et al., 2006).

Gephi 0.92 software was used to calculate the network diagram

parameters and visualize the network (Bastian et al., 2009). Co-

occurrence networks were constructed based on Spearman’s rank

correlation coefficients of the topmost abundant phyla of the gut

bacteria of cold-water fish to evaluate the relationship between

bacterial community and environmental variables.

Microbial assembly mechanism analysis

The pNST index (Ning et al., 2019) and iCAMP (Ning et al.,

2020) models were used to test the gut bacterial community

data of cold-water fish to determine the relative importance of

deterministic and stochastic processes on microbial community

assembly. In pNST, 0.5 is the boundary point between stochastic

processes (>0.5) and deterministic (<0.5) processes (Ning et al.,

2019). The Mann–Whitney U-test was used to calculate significant

differences in the pNST value of the gut bacteria of cold-water

fish between summer and winter. In the iCAMP model, the first

step is phylogenetic binning with three binning algorithms based

on the distance to abundant taxa, the pairwise distance, and the

phylogenetic tree to obtain adequate within-bin phylogenetic signal

(Ning et al., 2020). The Mantel test or pNST method was used

to compute the relative importance of stochastic processes and

estimate the phylogenetic signal of each bin, and then, an optimized

phylogenetic signal threshold (ds) and minimal taxa number in

a bin (nmin) were chosen (Ning et al., 2020). In the second step,

the null model-based phylogenetic metric beta Net Relatedness

Index (βNRI) and the taxonomic β-diversity Raup Crick metric

(modified RC metric) were used to measure the variations of

phylogenetic and taxonomic diversities, respectively (Ning et al.,

2020). For each bin, pairwise βNRI <-1.96 or >1.96 indicates

homogeneous selection or heterogeneous selection. The value of

RC of >0.95 or <-0.95 implied significant deviations from null

model expectations (Stegen et al., 2013; Ning et al., 2020). The

fraction of pairwise comparisons with |βNRI|≤ 1.96 and RC> 0.95

indicates the dispersal limitation, while |βNRI| ≤ 1.96 and RC >

−0.95 represents homogenizing dispersal. The remaining |βNRI|≤

1.96 and |RC|≤ 0.95 were used to identify the influence of the drift

or undominant processes. In the third step, the results of different

bins based on an abundance-weighted percentage for each bin or

the whole community was incorporated to estimate the relative

importance of each ecological process (Ning et al., 2020). Moreover,

1000 randomized permutations and all taxa numbers were used for

sbsequent analysis of community assembly structure. The iCAMP

and NST packages in R 3.0 were used to calculate the microbial

assembly mechanism analysis (Ning et al., 2019, 2020).
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The niche breadth approach (Levins, 1969) was used to quantify

the habitat specialization across summer and winter. The niche

breadth with larger values indicates that the taxa occupy abundant

habitats and are evenly distributed on a large scale, while the

lower values indicate that they occupy fewer habitats. The Mann–

Whitney U-test was used to calculate significant differences in

the niche breadth of the gut bacteria of cold-water fish between

summer and winter in Stamp software (version 2.1.3) (Parks et al.,

2014). Furthermore, the neutral community model (NCM) was

used to predict the relationship between OTU detection frequency

and their relative abundance across the wider metacommunity

(Sloan et al., 2006). In the NCM model, the R2 indicates the

overall fit of the neutral model, and the N and m represent the

metacommunity size and the immigration rate, respectively (Sloan

et al., 2006).

Results

Gut bacterial community composition and
diversity of cold-water fish changed with
seasonality

There were significant differences in the gut microbial

composition of cold-water fish between summer and

winter (Figure 2, Supplementary Figures S1, S2 and

Supplementary Table S1). In summer, the dominant phylum

was Proteobacteria (relative abundance: 38%), Fusobacteria

(38%), and Firmicutes (9%) in the gut microbes of cold-water fish

(Figure 2, Supplementary Figure S1 and Supplementary Table S1).

However, in winter, Proteobacteria (43%) was dominant in the

gut microbiome of cold-water fish, followed by Firmicutes

(19%), Fusobacteria (17%), and Cyanobacteria (11%),

while the least abundant was Actinobacteria (1%; Figure 2,

Supplementary Figure S1 and Supplementary Table S1). The

relative abundance of Proteobacteria and Cyanobacteria in the gut

microbiota of cold-water fish generally increased (Proteobacteria:

sum: 38%; and win: 43%; Cyanobacteria: sum: 7%; win: 11%;

Figure 2, Supplementary Figure S1 and Supplementary Table S1).

Furthermore, at the species level, the relative abundance of

Cyanobacteria in the gut microbiota of cold-water fish was

significantly different among SW, SK, and PP (Kruskal–Wallis

H-test, P < 0.05; Supplementary Figure S2). At the genus

level, the relative abundance of Cetobacterium (sum: 31%;

win: 23%), Clostridium sensu stricto 1 (sum: 5%; win: 2%),

and Rhodobacter (sum: 4%; win: 3%) in the gut microbiota of

cold-water fish decreased from summer to winter, while the

Aeromonas (sum: 17%; win: 19%) and Pirellula (sum: 1%; win: 4%)

increased from summer to winter (Supplementary Figure S2 and

Supplementary Tables S2, S3).

Significant differences were found in the gut microbial

diversity of cold-water fish (PERMANOVA, P < 0.05; Figure 1,

Supplementary Figure S3 and Supplementary Table S4). The Chao

1 (Mean ± SD: sum: 602 ± 424; win: 782 ± 648) and observed

OTU number indices (sum: 424 ± 290; win: 776 ± 382) in the

gut microbes of cold-water fish were increased from summer to

winter (Figure 2 and Supplementary Table S4). However, in water

and sediment microbes, the Chao 1 (water: sum: 3,044 ± 201;

win: 1,459 ± 202; sediment: sum: 3,318 ± 378; win: 2,948 ±

189) and observed OTU number indices (water: sum: 2,035 ±

86; win: 2,586 ± 327; sediment: sum: 2,586 ± 327; win: 2,182

± 181) were significantly decreased from summer to winter

(Mann–Whitney U-test; both, p < 0.01; Supplementary Figure S3

and Supplementary Table S4). At the species level, the Chao 1

and observed OTU number indices in the gut microbes were

significantly increased from SW and SK to PP (Kruskal–Wallis

H-test, both, p < 0.05; Supplementary Figure S3).

A non-metric multidimensional scaling plot of the gut bacteria

of cold-water fish identified a separation between seasons (summer

and winter) and species (SW, SK, and PP; Figure 2C and

Supplementary Figure S4). The community structure of the gut

microbiota of cold-water fish was significantly different from

environmental microbes (water and sediment microbes; ADONIS:

R2 = 0.647; p = 0.001; Supplementary Figure S4A). Furthermore,

the results of Bray–Curtis dissimilarity in the gut microbiota of

cold-water fish significantly increased from summer to winter

(sum: 0.68 ± 0.17; win: 0.48 ± 0.23; Mann–Whitney U-test, p <

0.01; Figure 2). Similarly, the results of Bray–Curtis dissimilarity

were significantly different between the three species of the

gut microbiota (SW, SK, and PP) and environmental microbes

(Supplementary Figure S4B).

Gut bacterial community assembly of
cold-water fish between summer and
winter

Overall, the value of pNST was below the 50% boundary

for gut bacteria of cold-water fish between summer and winter

(the value of pNST: sum: 0.3 ± 0.3; win: 0.4 ± 0.2), implying

that deterministic processes played a more important role than

stochastic processes (Figures 1, 3B and Table 1). At the species

level, differences in the value of pNST were found in gut

bacteria of SW, SK, and PP between summer and winter

(Table 1). For example, in SW and SK, the value of pNST of

gut bacteria increased from summer to winter (SW: sum: 0.3

± 0.1; win: 0.7 ± 0.1; SK: sum: 0.1 ± 0.1; win: 0.3 ± 0.2;),

while it decreased in PP (PP: sum: 0.6 ± 0.4; win: 0.3 ± 0.3;

Table 1).

In the iCAMP model, the most suitable number of Ds and

Nmin was 0.2 and 60, respectively (Figures 3C, D). From summer

to winter, the results of iCAMP showed that the gut bacterial

community assembly mechanisms decreased in the contribution

of deterministic processes but increased in the contribution of

stochastic processes (Figure 4). Furthermore, the homogeneous

selection was the dominant microbial assembly mechanism,

followed by drift and dispersal limitation (Figure 4). Similarly,

the deterministic processes played a more important role than

the stochastic processes in environmental bacteria (Sum_Env and

Win_Env; Figure 4). Significant differences were identified in the

homogeneous selection mechanism of the gut bacteria of cold-

water fish between summer and winter (Mann–Whitney U-test,

p < 0.01; Figure 4). At the species level, homogeneous selection

was the dominant microbial assembly mechanism, followed by

drift, dispersal limitation, and heterogeneous dispersal, with
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FIGURE 1

Changes in the gut microbial assembly mechanism of cold-water fish between summer and winter (By Figdraw).

FIGURE 2

Gut microbial composition and diversity of cold-water fish between summer and winter. (A, B) The gut microbial composition of cold-water fish

between summer and winter at the phylum level; (C) non-metric multidimensional scaling (NMDS) analysis based on Bray–Curtis distances to

explore the dissimilarity in the gut bacteria of cold-water fish between summer and winter; (D, E) gut microbial alpha diversity of cold-water fish

between summer and winter; (F) gut microbial beta diversity of cold-water fish between summer and winter.
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FIGURE 3

Relative abundance of niche breadth and phylogenetic normalized stochasticity ratio of gut bacteria of cold-water fish between summer and winter.

(A) Boxplots exhibiting the niche breadth of the gut bacteria of cold-water fish between summer and winter; (B) boxplots exhibiting the phylogenetic

normalized stochasticity ratio (pNST) of the gut bacteria of cold-water fish between summer and winter; (C, D) boxplots of Nmin and DS in the gut

bacterial community of cold-water fish. The STDab value at di�erent levels of the Nmin (minimal bin size); with Ds equal to 0.2 and the Ds

(phylogenetic signal threshold) with Nmin equal to 60, respectively. The Mann–Whitney U-test was used to analyze the significant di�erences in

niche breadth and pNST among di�erent samples.

heterogeneous selection exhibiting the lowest microbial assembly

mechanism (Supplementary Figures S5, S6).

The niche breadth and the NCM model were used to estimate

the community-level habitat of cold-water fish (Figure 3A and

Supplementary Figure S7). The niche breadth of the gut bacteria

of cold-water fish increased from summer to winter (sum: 6.3

± 5.0; win: 7.6 ± 5.0; Figure 3A and Table 1). At the species

level, in SW and SK (SW: sum: 4.1 ± 1.2; win: 13.2 ± 7.4; SK:

sum: 2.9 ±1; win: 3.5 ± 1.1), the niche breadth increased from

summer to winter but decreased in PP (PP: sum: 12 ± 13; win:

6 ± 4; Table 1). Furthermore, the findings of the NCM model

showed that a higher Nm value of the gut bacteria of cold-water

fish was found in winter than in summer (sum: 779; win: 863;

Supplementary Figures S7A, B).
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Relationship between the gut bacteria of
cold-water fish and environmental
variables

Differences in the effects of environmental variables on

the gut bacteria of cold-water fish (SW, SK, and PP) were

identified between summer and winter (Figure 5). In the RDA

analysis, the first two RDA axes explained 97% total variance,

TABLE 1 Microbial assembly mechanism of the gut bacteria of cold-water

fish and environmental bacteria between summer and winter.

Group Season Assembly mechanism

NST Niche
breadth

SW Sum 0.3± 0.1 4.1± 1.2

Win 0.7± 0.1 13.2± 7.4

SK Sum 0.1± 0.1 2.9±1

Win 0.3± 0.2 3.5± 1.1

PP Sum 0.6± 0.4 12± 13

Win 0.3± 0.3 6± 4

Water Sum 0.7± 0.2 37± 6

Win 0.3± 0.1 31± 4

Sediment Sum 0.4± 0.1 189± 89

Win 0.4± 0.1 107± 84

All level Sum 0.3± 0.3 6.3± 5.0

Win 0.4± 0.2 7.6± 5.0

Sum_Env 0.6± 0.2 113± 107

Win_Env 0.4± 0.1 69± 54

with RDA1 accounting for 57% of the total variance and

RDA2 accounting for 40% of the variance (Figure 5A). Water

temperature (TEM), pH, and DO were major environmental

variables 322 influencing the gut bacterial community of cold-water

fish (Figure 5A). Furthermore, the results of RDA showed that

Fusobacteria was positively correlated with TEM, while Firmicutes

and Proteobacteria were positively correlated with pH (Figure 5A).

The results of the heatmap confirmed these findings (Figure 5B).

At the family level, Fusobacteriaceae and Aeromonadaceae were

positively correlated with TEM but negatively correlated with

pH, DO, EC, TDS, and SALT (Figure 5B). At the genus level,

Clostridium sensu stricto 1 was significantly positively correlated

with pH (p < 0.05) but significantly negatively correlated

with DO (p < 0.05; Figure 5B). The results of the network

indicated differences in the effects of environmental variables

on cold-water fish (Figure 6C). At the phylum level, Firmicutes,

Cyanobacteria, Planctomycetes, Verrucomicrobia, Actinobacteria,

and Chloroflexi were influenced by the SALT, TDS, EC, and DO

(Figure 5C).

The contribution of water and sediment bacteria to gut

bacteria of cold-water fish varied between summer and winter

(Figure 6). Overall, the contribution of sediment bacteria decreased

in the gut bacteria of cold-water fish, while the contribution

of water bacteria increased from summer to winter (Figure 6A).

For example, in summer, the contribution of sediment bacteria

(5.3%) to the gut bacteria of cold-water fish was higher than

that of water bacteria (0%; Figures 6B–G). However, in winter,

the contribution of water bacteria (27.7%) to the gut bacteria of

cold-water fish was higher than that of sediment bacteria (23.7%;

Figures 6B–G). Moreover, a higher contribution ofWin_Env (Win-

W and Win-S bacteria) was noted in the gut microbiota of cold-

water fish than Sum_Env (Sum-W and Sum-S bacteria; total

contribution percentage: Win_Env vs Sum_Env: 51.3% vs 4.3%;

Figures 6B–G).

FIGURE 4

The relative importance of di�erent bacterial community assembly mechanisms of the gut bacteria of cold-water fish and environmental bacteria

between summer and winter. (A) The area of the ring map represents the proportion of di�erent ecological processes; (B) di�erences of five

ecological processes in the bacterial community assembly mechanisms of the gut bacteria of cold-water fish and environmental bacteria between

summer and winter.
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FIGURE 5

Relationship between environmental variables and gut bacteria of cold-water fish. (A) Redundancy analysis (RDA) correlation of skin and gut bacteria

of amphibians. Arrows indicated the director and magnitude of each microbial community at the phylum level. The black circle represents phyla. The

red circle represents environmental variables. The other circles represent the gut samples of cold-water fish; (B) a heatmap illustrating the

relationship between environmental variables and the gut bacteria at the phylum, family, and genus levels. The Mann–Whitney U-test was employed

to assess significant di�erences in the environmental variables and the gut bacteria of cold-water fish. P < 0.001, marked “***”, P < 0.01, marked “**”,

P < 0.05, marked “*”. (C) Network of environmental variables and gut bacteria of cold-water fish between summer and winter. The blue diamond

represents environmental variables; and the other circles represent phyla. The lines indicate that there is a relationship between bacteria and

environmental variables.

Co-occurrence analysis of the gut bacteria
of cold-water fish between summer and
winter

Overall, the network complexity of the gut bacteria of cold-

water fish increased from summer to winter (Figure 7 and

Supplementary Figure S9 and Table 2). For example, the number

of nodes and edges of the gut bacteria of cold-water fish was

higher in summer than in winter (Sum: nodes: 256; edges:

20,450; Win: nodes: 580; edges: 16,725; Figure 7A and Table 2). In

the network of environmental bacteria, the network complexity

increased from summer to winter (Sum_Env: nodes: 112; edges:

1,119; Win_Env: nodes: 120; edges: 9,769; Figure 7A and Table 2).

At the species level, the network complexity in the gut bacteria

showed significant differences and increased from SW and SK

to PP between summer and winter (Kruskal–Wallis H-test; p <

0.05; Figure 7B and Supplementary Figure S9). In summer, the

highest network complexity was identified in the gut bacteria of PP,

followed by the SW, and the lowest was observed in the SK (nodes:

SW: 201; SK: 194; PP: 258; edges: SW: 498; SK: 194; PP: 1,857;

Figure 7B and Supplementary Figures S9A–C). However, in winter,

the highest network complexity was identified in the gut bacteria of

SW, followed by the SK, and the lowest was observed in those of the

PP (nodes: SW: 750; SK: 717; PP: 688; edges: SW: 8,269; SK: 7266;

PP: 7,631; Figure 7B, Supplementary Figures S9D–F).

Discussion

Seasonal variation influenced the gut
bacterial composition and diversity of
cold-water fish

Significant differences were found in the gut bacterial

composition of fish in different seasons (Ye et al., 2014;

Bazhenov et al., 2019; Dulski et al., 2020; Bereded et al., 2021).

Significant differences were identified in the relative abundance

of Fusobacteria, Bacteroidetes, and Cyanobacteria of Oreochromis

niloticus in different months (April, August, July, June, and May).

The relative abundance of Fusobacteria was higher in April and

August than in other months (Bereded et al., 2021). This result
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FIGURE 6

Relationship between the gut bacteria of cold-water fish and environmental bacteria between summer and winter. (A) The circle plot represents the

contribution of water and sediment bacteria for the gut bacteria of cold-water fish between summer and winter; (B–G) Pie charts represent the

relative percentage of water, sediment, and unknown for the gut bacteria of cold-water fish between summer and winter.

was consistent with our results. Differences in the gut bacterial

composition of cold-water fish between summer and winter

were observed (Figures 2A, B, and Supplementary Figure S2). For

example, the relative abundance of Proteobacteria, Cyanobacteria,

and Planctomycetes among the microbes of the gut microbiota of

cold-water fish increased from summer to winter (Figures 2A, B).

The same result was found at the species level (SW, SK, and

PP; Supplementary Figures S1, S2). From summer to winter, the

average water temperature of the cold-water fish environment

decreased from 15.7 to 7.4◦C (Supplementary Table S5). To cope

with the decrease of environmental water temperature, cold-

water fish may obtain enough nutrients by eating a large

amount to adapt to the changes in the environment. Cold-

water fish may obtain more food to maintain normal body

temperature to cope with the decrease in environmental water

temperature. This finding was further supported by the results of

PICRUSt (Supplementary Figure S8). A previous study reported

that Cyanobacteria is the dominant food for wild S. wangchiachii

(SW), and it aids in digesting and absorbing nutrients from food

(Xu et al., 2022; Zhang, 2022). A higher feeding intensity and

fullness index of S. wangchiachii were found in winter than in

summer (Zhang, 2022). Therefore, an increase in the relative

abundance of Cyanobacteria in gut microbes from summer to

winter also implies that cold-water fish need to get more food

to cope with the challenge of seasonal variation (e.g., water

temperature decrease) and for their overwintering and spawning in

the next year (Zhang, 2022; Figures 2A, B). Furthermore, through

our long-term field survey, we found that more cold-water fish

breed fromMarch to June in the following year and concluded that

cold-water adult fish need to obtain more food and nutrients in

preparation for the upcoming breeding season.

Seasonal variation significantly influenced the gut bacterial

diversity of fish (Bazhenov et al., 2019; Dulski et al., 2020; Bereded

et al., 2021). A previous study found that significant differences

were identified in the alpha diversity indexes of the gut microbes

of O. niloticus among different seasons. The lower alpha diversity

indexes were found in April and August than in other months

(Bereded et al., 2021). The alpha diversity of the gut bacteria of cold-

water fish increased from summer to winter (Figures 2D, F and

Supplementary Figure S3). The beta diversity of the gut bacteria

of cold-water fish significantly increased from summer to winter

(Figure 2C and Supplementary Figure S4). This phenomenon may

be attributed to the different feeding strategies of cold-water fish.

A previous study showed that the feeding intensity and the fullness
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FIGURE 7

Co-occurrence networks of the gut microbiota of cold-water fish between summer and winter. (A) Co-occurrence networks of the gut microbiota

of cold-water fish between summer and winter; (B, C) variations in the co-occurrence network parameters of the gut microbiota of cold-water fish

between summer and winter. The Mann–Whitney U-test was employed to assess significant di�erences in the co-occurrence network parameters.

index of S. wangchiachii increased from summer to winter (Zhang,

2022). Cold-water fish breeding usually begins in winter and

ends in summer, expanding their search range to obtain more

food for reproduction. And cold-water fish had more exposure

to water bacteria in winter than in summer. The results of gut

bacterial composition of cold-water fish confirmed this finding

(Figures 2A, B). Overall, seasonal variation significantly influenced

the gut bacterial composition and diversity of cold-water fish.

Seasonal variation influenced the gut
bacterial community assembly of
cold-water fish

In microbial ecology, studying the gut bacterial community

assembly mechanism of fish is essential to understanding

the contribution of ecological processes to the structure of

microbial communities (Sloan et al., 2006; Stegen et al., 2013;

Yan et al., 2016). In this study, the deterministic process

dominated the microbial assembly mechanism of cold-water

fish between summer and winter (Figures 3, 4). From summer

to winter, the microbial assembly analysis showed that gut

bacterial community assembly mechanisms decreased in the

contribution of deterministic processes (homogeneous selection)

but increased in the contribution of stochastic processes (drift;

Figure 4). These findings indicated the same environmental

selective pressure (e.g., pH, TEM, and DO) for cold-water fish in

summer. Similar environmental variables were found in summer

(Supplementary Table S5). Moreover, the results of the source-

tracker analysis confirmed this finding (Figure 6). However, drift

was the dominant factor regulating the gut bacterial assembly

mechanism of cold-water fish in winter (Figure 4). This findingmay

be attributed to the fact that the pressure of the host itself was the
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TABLE 2 Co-occurrence networks parameters of the gut bacteria of

cold-water fish and environmental bacteria between summer and winter.

Co-
occurrence
networks
parameters

Sample

Sum Win Sum_Env Win_Env

Node 256 580 112 120

Edge 20,450 16,725 1,119 9,769

Positive_edge 556 1,172 1,107 957

Negative_edge 5.6 12 10 20

Average_density 0.10 0.13 0.14 0.12

Transitivity 0.6 0.6 0.63 0.5

Diameter 5.3 5.9 6.1 6.8

Average_path.length 2.1 2.1 2.1 2.4

main factor influencing the gut bacteria of cold-water fish (Xu et al.,

2023). Previous studies have reported that cold-water fish need to

get more food to adapt to seasonal variation and overwintering

and spawning in the next year (Zhang, 2022). Furthermore, the

niche breadth showed an increase in the gut bacteria of cold-water

fish from summer to winter (Figure 3A). This result was consistent

with the NCM model analysis (Supplementary Figure S7). The gut

bacteria of cold-water fish exhibited a greater distribution in winter

than in summer. Feeding strategies and biological activity of cold-

water fish may explain this finding. In winter, cold-water fish are

more likely to acquire food for spawning, and therefore, there are

more chances for the gut bacteria to transfer between different

environments. However, in summer, cold-water fish have plenty of

food, and their breeding period also comes to a halt, and thus, there

is less opportunity for gut bacteria to transmit among different

environments. Overall, seasonal variation influenced cold-water

fish gut bacterial community assembly mechanisms.

Environmental variables influenced the gut
bacteria of cold-water fish between
summer and winter

Environment, and season have influenced on the gut bacteria

of fish (Dehler et al., 2017; Dulski et al., 2020; Kim et al., 2021), and

these findings were consistent with our results. These findings were

consistent with our results. Significant differences were identified

in the influence of environmental variables on gut bacteria of cold-

water fish between summer and winter (Figures 5, 6). It can be

noted that the relative abundance of Cyanobacteria in the gut

bacteria of cold-water fish had a significantly negative correlation

with TEM but a positive correlation with DO, EC, TDS, and SALT

(Figure 5). Cyanobacteria is an important food source for cold-

water fish (e.g., SW) and may help the host to digest and absorb

nutrients (Xu et al., 2022; Zhang, 2022). Thus, water temperature

(TEM) was the major factor that influenced the relative abundance

of Cyanobacteria in the gut bacteria of cold-water fish between

summer and winter.

Cold-water fish prefer fast-flowing environments with plenty

of dissolved oxygen (DO) and are good for acquiring food. The

result of the source-tracker analysis showed that differences in

the contribution of environmental bacteria (water and sediment

bacteria) were found between summer and winter (Figure 6). From

summer to winter, the contribution of water bacteria to the gut

bacteria of cold-water fish increased, while the contribution of

sediment bacteria decreased (Figure 6). In summer, cold-water

fish are equipped with enough food, and they do not go in

search of food. However, cold-water fish need to obtain more

food for their overwintering and spawning in the next year

in winter (Zhang, 2022). Thus, in winter, cold-water fish may

have encountered different environmental factors in water (e.g.,

DO, TEM, and pH) possibly with different microbes that would

contribute to the observed gut bacteria. Overall, environmental

variables significantly influenced the gut bacteria of cold-water fish.

Seasonal variation influenced the gut
bacterial network complexity of cold-water
fish

Network complexity is an important index to explore the

relationship between gut microbes and the environment (Shi

et al., 2016). From summer to winter, the network complexity

increased in cold-water fish gut bacterial communities (Figure 7

and Supplementary Figure S9). In this study, water temperatures

(TEM) decreased in cold-water fish habitats from summer to winter

(Supplementary Table S5). This finding implied that cold-water fish

faced an extreme challenge (e.g., environmental variation) from

summer to winter (Zhang, 2022). Previous studies have shown

that an increase in the network complexity of the host’s microbial

system could enhance its adaptability to the wild environment

(Zhao et al., 2021; Xu et al., 2023). Therefore, these findings

implied that the higher network complexity may help the gut

bacteria of cold-water fish to resist environmental disturbances (i.e.,

water temperature declines). Moreover, at the species level, the

network complexity of the gut bacteria of SW (Herbivorous), SK

(Omnivorous), and PP (Carnivorous) increased from summer to

winter (Supplementary Figure S9). These findings further support

our results. The highest network complexity of gut bacteria was

identified in SW. This result illustrated that herbivorous (e.g., SW)

gut bacteria required higher network complexity to cope with

the challenges posed by seasonal variation (e.g., environmental

changes). Overall, these results imply that the greater network

complexity of the gut bacteria could play a key role in the

adaptation of cold-water fish to seasonal variation.

Conclusion

This study provides a novel understanding of the relationship

between the gut bacteria of cold-water fish and environmental

bacteria by exploring the differences between summer and winter.

Significant differences occur in the gut bacterial composition,

diversity, and network complexity of cold-water fish between

summer and winter. Water temperature (TEM), DO, pH were
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dominant environmental factors that influenced the gut microbiota

of cold-water fish. Deterministic processes were the dominant

factor regulating the gut bacterial assembly of cold-water fish

between summer and winter. From summer to winter, the

community assembly mechanisms of the gut bacteria in cold-

water fish showed a decrease in the contribution of deterministic

processes but an increase in the contribution of stochastic

processes. Furthermore, niche breadth was higher in winter than

in summer. Together, these results demonstrate that seasonal

variation significantly influenced the gut bacterial communities of

cold-water fish. In the future, more samples and environmental

factors should be collected to systematically explore how cold-water

fish adapt to different seasons.
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