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The Picornaviridae is a family of icosahedral viruses with single-stranded, highly 
diverse positive-sense RNA genomes. Virions consist of a capsid, without 
envelope, surrounding a core of RNA genome. A typical genome of picornavirus 
harbors a well-conserved and highly structured RNA element known as the 
internal ribosome entry site (IRES), functionally essential for viral replication and 
protein translation. Based on differences in their structures and mechanisms 
of action, picornaviral IRESs have been categorized into five types: type I, II, III, 
IV, and V. Compared with the type IV IRES, the others not only are structurally 
complicated, but also involve multiple initiation factors for triggering protein 
translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like 
IRES due to its structural resemblance to the HCV IRES, exhibits a simpler 
and more compact structure than those of the other four. The increasing 
identification of picornaviruses with the type IV IRES suggests that this IRES 
type seems to reveal strong retention and adaptation in terms of viral evolution. 
Here, we systematically reviewed structural features and biological functions of 
the type IV IRES in picornaviruses. A comprehensive understanding of the roles 
of type IV IRESs will contribute to elucidating the replication mechanism and 
pathogenesis of picornaviruses.
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1 Introduction

The family Picornaviridae comprises a large group of RNA viruses, including several 
significant human and animal pathogens (Zell, 2018). Since the discovery of the first 
picornavirus, foot-and mouth disease virus in 1898, this family has expanded to include at 
least 158 recognized species divided into 68 genera (Ng et al., 2015; Zell et al., 2021). These 
viruses have single positive-stranded RNA genomes ranging from 6.7 to 10.1 kilonucleotides 
in length (Andino et al., 2023). Although picornaviruses express different proteins, their RNA 
genomes share a similar organization (Yang et al., 2002). The picornaviral genome codes for a 
single polyprotein, subsequently cleaved into multiple mature structural and nonstructural 
proteins by virus-encoded proteinases (Zell, 2018). The 5′ end of picornaviral genome lacks a 
cap structure present in eukaryotic mRNAs. Instead, it is covalently linked to a virus-encoded 
protein, VPg, serving as a primer for RNA synthesis (Martinez-Salas et al., 2015). Immediately 
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following VPg, there is a long and highly structured 5′ untranslated 
region (5’ UTR) containing the internal ribosome entry site (IRES), a 
cis-acting element essential for the synthesis of viral polyprotein 
(Daijogo and Semler, 2011).

The IRES element is an RNA fragment capable of folding into a 
complex structure, enabling itself to interact with one or more 
components of the canonical translation apparatus in a specific, 
cap-independent manner (Fernández-Miragall and Martínez-Salas, 
2007; Firth and Brierley, 2012; Holmes and Semler, 2019). These 
interactions facilitate the recruitment of ribosomes or ribosomal 
pre-initiation complexes to an internal site in mRNA following 
infection with RNA viruses. By bypassing the conventional process of 
translation initiation, IRES allows for the continuous synthesis of viral 
proteins, even in the presence of the host’s translational shutdown of 
its own proteins (Jackson et  al., 2010; Yu et  al., 2011b; Firth and 
Brierley, 2012; Arhab et al., 2020). Consequently, RNA viruses can 
effectively evade antiviral defenses in hosts.

Due to their diversities in structure and function, picornaviral 
IRES elements have been classified into five distinct types (Martinez-
Salas et al., 2017). The type IV IRES is specifically characterized by its 
compact structure and minimal reliance on eukaryotic initiation 
factors (eIFs) (Sweeney et al., 2014). Moreover, the wide distribution 
of type IV IRESs across numerous genera in the Picornaviridae family 
(Arhab et al., 2020) has aroused widespread interest among virologists. 
Here, we systematically reviewed the type IV IRES, mainly involved 
in its structure, function and impact on the initiation of 
polyprotein translation.

2 Classification of picornaviral IRESs

IRESs were originally found in picornaviruses, such as poliovirus 
(PV) (Pelletier and Sonenberg, 1988) and encephalomyocarditis virus 
(EMCV) (Jang et al., 1988). Subsequently, the presence of IRESs has 
been identified in many other viruses and cellular mRNAs (Yang and 
Wang, 2019). In recent years, with in-depth analysis on their structure- 
and action-related mechanisms, picornavirus IRESs have been 
classified into five types, designated type I, II, III, IV, and V. The type 
IV and V are also referred to as hepatitis C virus (HCV)-like IRES and 
aichivirus (AV)-like IRES, respectively (Sweeney et al., 2014). Each 
type of IRES element contains specific RNA secondary structures that 
vary across IRES types. These structures can exclusively recognize and 
bind specific factors, such as the 40S ribosomal subunit, a subset of 
eIFs, and several RNA-binding proteins (RBPs). Through these 
specific interactions, one IRES is able to recruit directly the ribosome 
to a viral start codon, facilitating the pathway of translation initiation, 
distinct from that of the cap-binding initiation mode (Lozano and 
Martínez-Salas, 2015).

Type I, II, and III IRESs, exemplified by PV, foot-and-mouth 
disease virus (FMDV) and hepatitis A virus (HAV), respectively, 
utilize nearly all canonical translation initiation factors, as well as 
non-canonical ones known as IRES trans-acting factors (ITAFs) 
(Pacheco and Martinez-Salas, 2010), to enhance the IRES activity 
(Hanson et al., 2012). Although initiation factors, like eIF4E and intact 
eIF4G, are superfluous for type I  and II IRESs, these factors are 
essential for the function of type III IRESs (Ali et al., 2001; Sadahiro 
et al., 2018). Similarly, the type V IRES found in AV involves multiple 
canonical eIFs during its process of translation initiation (Yu et al., 

2011b; Sweeney et al., 2012). Distinct from other IRES categories, type 
IV elements demonstrate a diminished dependence on eIFs and 
eliminate the requirement for ITAFs in assembling 48S complexes 
(Pisarev et al., 2004; Mailliot and Martin, 2018). These IRES-mediated 
translation mechanisms are primarily associated with two models 
(Komar and Hatzoglou, 2015): the first one, whereby the 40S ribosome 
positions itself in the vicinity of AUG, subsequently scanning to locate 
the AUG (Figure 1A), and the second one, in which the 40S ribosomal 
subunit directly localizes to the AUG (Figures 1B–D).

The type I IRES in picornaviruses is composed of five principal 
domains, designated dII to dVI (Martinez-Salas et  al., 2015). 
Translation initiation on PV IRES entails the scanning by 43S 
ribosomal preinitiation complexes, and engages a set of eIFs (eIF2, 
eIF3, eIF4A, eIF4G, eIF4B, and eIF1A) and a single ITAF, identified 
as the poly(C)-binding protein 2 (PCBP2), as shown in Figure 1A 
(Sweeney et al., 2014; Andreev et al., 2022). In instance of conventional 
pathways of translation initiation inaccessible, these viruses can 
employ an alternative IRES-independent transition mechanism, 
which depends on eIF2A/eIF2D and utilizes a non-AUG codon for 
initiation. This alternative pathway seems to facilitate ongoing 
translation and viral genome replication in the presence of activated 
intrinsic defenses against viruses (Kim et al., 2023).

Similar to type I IRESs, type II IRESs, such as those of EMCV and 
FMDV, also comprise five major domains, designated H to L (Yu et al., 
2011a). Translation initiation mediated by IRESs of EMCV and 
FMDV involves the specific binding of eIF4G and eIF4A to the 
Y-shaped J-K domain, an interaction dependent on a conserved 
sequence/structural motif at the apex of domain J (Figure 1B) (López 
de Quinto and Martínez-Salas, 2000; Yu et al., 2011a; Sweeney et al., 
2012; Imai et al., 2016). In EMCV, the IRES structure can be remodeled 
by eIF4G/eIF4A to promote EMCV-IRES/40S interactions, and 
rearrange the coding region to accommodate correctly the AUG in the 
ribosomal mRNA cleft. The 43S complex can then undergo structural 
rearrangement due to both AUG/tRNA recognition and close contact 
between the ribosome and IRES. This would allow the 60S to join the 
complex and to initiate translation (Chamond et al., 2014). Type II 
IRESs therefore can function dependent neither on the eIF4E nor on 
factors implicated in ribosomal scanning, such as eIF1 and eIF1A 
(Sweeney et al., 2012).

The secondary structure of the HAV IRES element comprises six 
structural domains, and this IRES element is much longer than types 
I and II (Brown et al., 1991; Francisco-Velilla et al., 2022). HAV IRES 
requires the intact eIF4G to initiate translation, unlike types I and II, 
both of which require only the C-terminal two-thirds fragment of 
eIF4G (Francisco-Velilla et al., 2022). The absence of a cap structure 
at the 5′ end of picornaviral genome indicates that the involvement of 
the cap-binding initiation factor eIF4E is unnecessary for the 
translation initiation of picornaviruses. However, eIF4E is essential in 
HAV for the activation of IRES-mediated translation (Figure  1C) 
(Redondo et al., 2012). Thus, HAV is unable to shut down the protein 
synthesis in hosts by a similar mechanism as those of other 
picornaviruses, and its IRES is inefficient, probably due to its unfair 
competition for the cellular translation machinery and tRNAs (Pinto 
et al., 2018, 2021). To ameliorate the tRNA competition, HAV has 
evolved a highly biased and deoptimized codon usage with respect to 
its hosts (Pinto et al., 2007; Costafreda et al., 2014; Pinto et al., 2018). 
During translation, the eIF4F complex recognizes the IRES element 
and, subsequently, the 43S preinitiation complex and the 60S large 
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ribosomal subunits are directly recruited onto HAV mRNA to 
synthesize the viral polyprotein (Sadahiro et al., 2018).

The AV IRES consists of eight domains, designated E to L. In vitro 
reconstitution of initiation on the AV IRES reveals that it shares some 
characteristics with type I and II IRESs, suggesting that it appears to 
be a chimera between type I and type II (Yu et al., 2011b; Sweeney 
et al., 2012). The formation of 48S complex on the AV IRES requires 
eIF2, eIF3, eIF4A, the eIF4A-interacting central domain of eIF4G 
(eIF4Gm) and the DExH-box protein DHX29. This process is strongly 
stimulated by the pyrimidine tract-binding protein (Figure 1D). The 
lack of dependence on eIF1 and eIF1A, which robustly stimulate 
scanning and monitor the fidelity of AUG selection during this 
process, implies that the AUG can be directly recognized and bound 
by the 43S complex on the AV IRES, hence bypassing the need for 
scanning (Yu et al., 2011b).

The translation initiation mediated by the type IV IRES occurs 
through direct binding of the IRES element to the 40S ribosomal 
subunit. The IRES–40S complex positions the AUG at the P site and 
forms a 48S complex with eIF2/GTP/initiator tRNA (Hashem et al., 
2013), stabilized by the binding of eIF3 (Ji et al., 2004). Following two 
steps of GTP hydrolysis, eIF2 is released, and the 60S ribosomal 
subunit associates under the action of eIF5B, resulting in the 
formation of an active 80S ribosome. This 80S ribosome subsequently 
initiates the synthesis of viral polyprotein (Figure 2) (Ji et al., 2004; 
Johnson et al., 2017; Niepmann and Gerresheim, 2020).

The relationship between RNA structure and biological function 
of distinct IRESs has been intensively analyzed by various 
experimental methods (Malnou et  al., 2002; Bailey and Tapprich, 

2007; Serrano et  al., 2009), providing insights into the initiation 
mechanism of viral protein translation. Since the secondary and 
tertiary structures of type IV IRES are very different from those of the 
other four types, the type IV IRES is systematically reviewed here.

3 Identification of type IV IRES in 
picornaviruses

The type IV IRES was initially identified in HCV, bovine viral 
diarrhea virus (BVDV) and classical swine fever virus (CSFV) (Arhab 
et  al., 2020). This specific IRES type is subsequently found in 
approximately 25 distinct genera in the Picornaviridae family (Table 1) 
(Arhab et al., 2020). In the context of the Picornaviridae family, the 
porcine teschovirus-1 (PTV), belonging to the Teschovirus genus, 
stands as one of the earliest documented instances (Pisarev et al., 
2004). Although the major portion of the PTV-1 genome had been 
determined prior to 2002, its 5′-terminal sequence had been neither 
cloned nor characterized (Kaku et al., 2002). Kaku and colleagues 
subsequently demonstrated the presence of a functional IRES element 
in the PTV 5’ UTR by constructing and analyzing plasmids that 
expressed bicistronic mRNAs. Further tests confirmed that the activity 
of this element was unaffected by the co-expression of an enterovirus 
2A protease and the cleavage of eIF4G. It could also function 
effectively in an RRL (rabbit reticulocyte lysate) in vitro translation 
system (Kaku et al., 2002). Thus, the biological properties of the PTV 
IRES are most similar to those of EMCV and FMDV IRES elements, 
but the computer-predicted secondary structure of the PTV IRES 

FIGURE 1

Schematic representations of secondary structures, and requirements of translation initiation factors for four IRESs in picornaviruses. (A) Type I IRES, 
exemplified by PV, comprises five principal structural domains (dII to dVI). It involves all translation initiation factors and many ITAFs to initiate 
translation, concerning a scanning process. (B) FMDV contains the type II IRES, arranged in modular domains (H to L). The type II IRES does not scan 
the mRNA, and instead, the 48S-like complex is recruited directly to the start codon. (C) The type III IRES has been found only in HAV, and the protein 
translation mediated by this type depends on eIF4E. (D) The type V IRES is present in AV and harbors eight domains. Distinct from all previously 
characterized IRESs, the one of AV exhibits an absolute dependency on DHX29, necessitated by the entrapment of its AUG within a stable hairpin 
structure. DHX29: DExH-box protein DHX29; eIF1A, eIF2, eIF3, eIF4A, eIF4B, eIF4E, and eIF4G: eukaryotic initiation factor 1A, 2, 3, 4A, 4B, 4E, and 4G. 
PTB: pyrimidine tract-binding protein; PCBP: poly(C)-binding protein; 40S: 40S small ribosomal subunit.
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shows no apparent resemblance to those of cardiovirus and 
aphthovirus IRES elements. The PTV IRES is consequently classified 
into a new category of IRES (Kaku et al., 2002).

Following the definition of the type IV IRES, this group further 
determined its boundaries and identified the requirements for the 
formation of 48S preinitiation complexes through toeprinting assays. 
It was found that the formation of 48S preinitiation complex on the 
PTV-1 IRES had no need of the initiation factors eIF1, eIF1A, eIF3, 
eIF4B, and eIF4F (Pisarev et al., 2004). It only involves purified 40S 
ribosomal subunits plus the ternary complex of eIF2, Met-tRNA, and 
GTP, although this process is enhanced in the presence of eIF3. 
Indeed, the PTV-1 IRES can form a binary complex with 40S subunits 
alone (Chard et al., 2006a,b). These data demonstrate that the PTV-1 
IRES has properties completely different from those of other IRES 
elements in picornaviruses, but highly resembles to the HCV IRES 
(Pisarev et al., 2004). Therefore, this unique class of type IV IRES is 
also referred to as HCV-like IRES.

Interestingly, the “unique” IRES was subsequently found in the 
Sapelovirus (Krumbholz et al., 2002; Oberste et al., 2003; Li et al., 2011; 
Son et  al., 2014) and Anativirus genera (Tseng and Tsai, 2007). 
Functional assays demonstrated that these IRES elements remained 
still active, when eIF4G was cleaved and when the activity of eIF4A 
was blocked (Chard et  al., 2006a). On the basis of the sequence 
information and the structure prediction, the type IV IRES has also 
been demonstrated to exist in the Kobuvirus (Reuter et al., 2009), 
Aalivirus (Wang et al., 2014), Tremovirus (Hellen and de Breyne, 2007; 

Bakhshesh et al., 2008), Avihepatovirus (Tseng et al., 2007; Pan et al., 
2012), Pasivirus (Sauvage et al., 2012; Yu et al., 2013; Asnani et al., 
2015), and Senecavirus genera (Willcocks et al., 2011).

In addition to the aforementioned picornaviruses that mainly 
infect pigs and poultry, the others harboring the type IV IRES have 
also been found in a wide range of vertebrates from fishes to mammals. 
For example, seal picornavirus type 1 (SePV-1) was first identified in 
marine mammals in 2007, and then classified into the genus 
Aquamavirus (Kapoor et al., 2008). The second member of this genus 
is bear picornavirus 1 (BePV-1), another novel picornavirus isolated 
from black bear. Sequence analyses of SePV-1 and BePV-1 revealed 
that both of them had the type IV IRES (Wang et al., 2019b). In 2011, 
three novel picornaviruses, bat picornavirus 1 (BPV-1), BPV-2, and 
BPV-3, were identified in bats. Both BPV-1 and BPV-2 were 
characterized by the presence of the type IV IRES, whereas the BPV-3 
harbored the type I  IRES (Lau et  al., 2011; Zell, 2018). More 
picornaviruses have been recently identified in bat species, including 
Hepatovirus (Drexler et al., 2015), Diresapivirus (Wu et al., 2016), 
Crohivirus and Kunsagivirus (Asnani et al., 2015; Yinda et al., 2017) 
genera, all of which are found to possess the type IV IRES.

A novel feline picornavirus, FePV in the genus Felipivirus, was 
identified in stray cats in Hong Kong. FePV is closely related both to 
members in the genus Sapelovirus and to the unclassified BPV-3, but 
with the difference that FePV possesses the type IV IRES instead of 
the type I IRES found in BPV-3 (Lau et al., 2012). Feline sakobuvirus 
A, the second picornavirus with the type IV IRES isolated from cats, 
does not belong to the same genus as that of FePV, but exhibits a closer 
relation to members of the genus Kobuvirus (Ng et al., 2014). Type 
IV-containing picornaviruses are also recognized in other mammals, 
including rats (genus Parechovirus) (Firth et al., 2014), ferret (genus 
Parechovirus) (Smits et al., 2013), marmot (genus Mosavirus) (Luo 
et al., 2018) and baboons (genus Kunsagivirus) (Buechler et al., 2017).

The genus Megrivirus, recognized to contain one of the longest 
picornaviral genomes currently described, comprises five species, 
named A to E. The type IV IRES is present in the 5’ UTR region of all 
species, with the sole exception of species D (Honkavuori et al., 2011; 
Phan et al., 2013; Lau et al., 2014; Liao et al., 2014; Boros et al., 2014a; 
Kim et al., 2015; Wang et al., 2017; Zell, 2018; Yinda et al., 2019; Haji 
Zamani et al., 2023). This type of virus is additionally found in migrant 
bird (genus Kunsagivirus) (Boros et al., 2013), pigeon (genus Colbovirus) 
(Kofstad and Jonassen, 2011), quail (genus Phacovirus) (Pankovics 
et al., 2012), goose (genus Ludopivirus) (Boros et al., 2018), duck (Pink-
eared duck picornavirus), red-crowned crane (genus Grusopivirus) 
(Wang Y. et al., 2019; Arhab et al., 2020), lorikeet (genus Grusopivirus) 
(Wang et  al., 2019a), as well as other species, such as amphibians, 
reptiles (Ng et  al., 2015; Arhab et  al., 2020) and fishes (Table  1) 
(Barbknecht et al., 2014; Lange et al., 2014; Phelps et al., 2014; Asnani 
et al., 2015). Most known type IV-containing picornaviruses are found 
in mammals and birds, whereas this type of picornavirus has also been 
identified in other vertebrates in recent years. These findings further 
emphasize the relative ubiquity and diversity of the type IV IRES.

4 Structure elements of type IV IRES in 
picornaviruses

A great deal of works have been devoted to studies on the 
HCV IRES (Lukavsky, 2009; Berry et al., 2011; Perard et al., 2013; 

FIGURE 2

RNA sequence and secondary structure of HCV IRES. The conserved 
motifs in dII and dII are indicated by blue shades. The start codon is 
indicated by a gray shade.
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TABLE 1 Current classification of picornaviruses with type IV IRES.

Genus Species Identified 
viruses

GenBank 
No.

Genome 
size (nt)

IRES 
size (nt)

Loop E 
motif

“8”-like 
structure

Structural 
domains

References

Aalivirus Aalivirus A Aalivirus A1 KJ000696.1 8,976 267 + + II, III Wang et al. (2014)

Anativirus Anativirus A Avian anativirus 1 AY563023.1 8,289 316 + − II, III Tseng and Tsai (2007)

Aquamavirus Aquamavirus A Seal picornavirus 1 EU142040.1 6,718 196 − + II, III Kapoor et al. (2008)

Aquamavirus Aquamavirus B Bear picornavirus 1 MH760796.1 6,703 / / + / Wang et al. (2019b)

Avihepatovirus Avihepatovirus A Duck hepatitis virus 1 DQ249299.1 7,687 262 + + II, III Hellen and de Breyne (2007), Tseng et al. 

(2007)

Colbovirus Unassigned Pigeon picornavirus B KC560801.3 7,971 417 + + II, III, IV Kofstad and Jonassen (2011), Asnani et al. 

(2015)

Crohivirus Crohivirus B Bat crohivirus NC_033819.1 7,085 334 + − II, III, IV Yinda et al. (2017), Arhab et al. (2020)

Diresapivirus Diresapivirus A Diresapivirus A1 KJ641685.1 6,624 / − − II, III Wu et al. (2016)

Diresapivirus Diresapivirus B Diresapivirus B1 KJ641697.1 7,048 251 − − II, III Wu et al. (2016)

Felipivirus Felipivirus A Feline picornavirus JN572117.1 7,415 239 + − II, III Lau et al. (2012), Asnani et al. (2015)

Grusopivirus Grusopivirus A Grusopivirus A1 KY312544.1 7,917 266 + − II, III Wang Y. et al. (2019)

Grusopivirus Grusopivirus C Lorikeet picornavirus 1 MK443503.1 7,862 / / + / Wang et al. (2019a)

Hepatovirus Hepatovirus C Bat hepatovirus NC_038313.1 7,570 322 − − II, III, IV Drexler et al. (2015), Arhab et al. (2020)

Kobuvirus Aichivirus B Ferret kobuvirus KF006985.1 8,052 297 + − II, III Asnani et al. (2015)

Kobuvirus Aichivirus C Porcine kobuvirus 1 NC_011829.1 8,210 293 + − II, III Reuter et al. (2009)

Kunsagivirus Kunsagivirus A Kunsagivirus A1 KC935379.1 7,272 189 − − II, III Boros et al. (2013), Asnani et al. (2015)

Kunsagivirus Kunsagivirus B Bat kunsagivirus KX644936.1 7,092 179 − − II, III Asnani et al. (2015), Yinda et al. (2017)

Kunsagivirus Kunsagivirus C Kunsagivirus C1 KY670597.1 7,429 / / / / Buechler et al. (2017)

Limnipivirus Limnipivirus A Bluegill picornavirus JX134222 8,050 251 − − II, III, IV Barbknecht et al. (2014), Asnani et al. (2015)

Limnipivirus Limnipivirus B Carp picornavirus 1 KF306267 7,697 233 − − II, III, IV Lange et al. (2014), Asnani et al. (2015)

Limnipivirus Limnipivirus C Fathead minnow 

picornavirus

KC465953.1 7,934 237 − − II, III, IV Phelps et al. (2014), Asnani et al. (2015)

Ludopivirus Ludopivirus A Goose picornavirus 1 MF358731.1 8,051 299 − − II, III Boros et al. (2018)

Megrivirus Megrivirus A Turkey hepatitis virus 1 HM751199.1 9,075 397 + + II, III Honkavuori et al. (2011)

Megrivirus Megrivirus A Duck megrivirus KC663628.1 9,700 398 + + II, III Liao et al. (2014)

Megrivirus Megrivirus A Goose megrivirus KY369299.1 9,840 / / / / Wang et al. (2017)

Megrivirus Megrivirus B Pigeon mesiviruses KC876003.1 9,101 423 + + II, III, IV Phan et al. (2013), Asnani et al. (2015)

Megrivirus Megrivirus C Chicken megrivirus KF961186.1 9,560 396 + + II, III Boros et al. (2014a), Lau et al. (2014), Kim 

et al. (2015), Haji Zamani et al. (2023)

(Continued)
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TABLE 1 (Continued)

Genus Species Identified 
viruses

GenBank 
No.

Genome 
size (nt)

IRES 
size (nt)

Loop E 
motif

“8”-like 
structure

Structural 
domains

References

Megrivirus Megrivirus E Penguin megrivirus MF405436.1 9,702 / / / / Zell (2018), Yinda et al. (2019)

Mosavirus Mosavirus B Marmot mosavirus KY855435.1 8,170 259 − − II, III Luo et al. (2018), Arhab et al. (2020)

Parechovirus Parechovirus D Ferret parechovirus KF006989.1 7,066 329 + − II, III Smits et al. (2013)

Parechovirus Unassigned Manhattan 

parechovirus

KJ950935.1 / 316 + − II, III Firth et al. (2014)

Pasivirus Pasivirus A Swine pasivirus 1 JQ316470.1 6,916 286 − − II, III, IV Sauvage et al. (2012), Yu et al. (2013), Asnani 

et al. (2015)

Pemapivirus Pemapivirus A Pemapivirus A1 MG600106.1 9,196 260 − − II, III Arhab et al. (2020)

Phacovirus Unassigned Quail picornavirus 1 JN674502.1 8,159 345 − + II, III Pankovics et al. (2012)

Rafivirus Rafivirus A Tortoise rafivirus A1 KJ415177.1 7,204 264 + − II, III Asnani et al. (2015), Ng et al. (2015)

Sakobuvirus Sakobuvirus A Feline sakobuvirus A KF387721.1 7,807 274 + − II, III Ng et al. (2014)

Sapelovirus Sapelovirus A Porcine sapelovirus 1 KJ821020.1 7,566 277 − − II, III Krumbholz et al. (2002), Son et al. (2014)

Sapelovirus Sapelovirus B Simian sapelovirus NC_004451.1 8,126 367 + − II, III, IV Oberste et al. (2003), Hellen and de Breyne 

(2007)

Sapelovirus Unassigned California sea lion 

sapelovirus 1

JN420370.2 7,497 269 − − II, III Li et al. (2011)

Senecavirus Senecavirus A Senecavirus A DQ641257.1 7,310 304 − − II, III Willcocks et al. (2011)

Symapivirus Symapivirus A Symapivirus A1 MG600076.1 8,591 254 − − II, III Phelps et al. (2014), Asnani et al. (2015)

Teschovirus Teschovirus A Porcine teschovirus AB038528.1 7,088 219 − − II, III Pisarev et al. (2004), Hellen and de Breyne 

(2007)

Tremovirus Tremovirus A Avian 

encephalomyelitis virus

AJ225173.1 7,055 294 + − II, III Hellen and de Breyne (2007), Bakhshesh et al. 

(2008)

Tropivirus Tropivirus A Tropivirus A1 MG600091.1 8,049 346 + − II, III Arhab et al. (2020)

Unassigned Unassigned Ia io picornavirus 1 JQ814852.1 7,543 239 − − II, III Wu et al. (2016)

Unassigned Unassigned Bat picornavirus 1 HQ595340.1 7,753 276 − − II, III Lau et al. (2011)

Unassigned Unassigned Bat picornavirus 2 HQ595342.1 7,963 / − − II, III Lau et al. (2011)

Unassigned Unassigned Guanxi changeable 

lizard picornavirus 2

MG600105.1 7,115 247 + − II, III Arhab et al. (2020)

Unassigned Unassigned Pink-eared duck 

picornavirus

MK204421.1 6,696 217 − − II, III Arhab et al. (2020)

+ Presence; − Absence; / Undefined.
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Yamamoto et al., 2015; Yokoyama et al., 2019; Brown et al., 2022), 
which is of critical importance for understanding the biological 
mechanisms of the type IV IRES. The structure of HCV IRES can 
serve as an ideal model for unveiling secondary structures of type 
IV IRESs, especially considering the similar roles these elements 
play in the synthesis of viral proteins within their individual 
viruses. Although a significant portion of the currently identified 
HCV-like IRES structures are based on the model of HCV IRES 
for research, each of them has its own specific structure and 
function. The arrangement of type IV IRES is relatively simple, 
mainly composed of secondary stem–loop structures and tertiary 
structures (Asnani et al., 2015; Lee et al., 2017). A typical HCV 
IRES is approximately 340 nt in length, containing many stem–
loop structures, known as dII, dIII, and dIV, a pseudoknot (PK), 
and a helical structure that links dII with dIII and dIV 
(Kalliampakou et al., 2002). DII is a 70-nt-long flexible hairpin, 
composed of two subdomains, IIa and IIb: the former harboring 
an asymmetric internal loop; the latter including an internal loop 

E motif and an apical hairpin (Figure 3). These structural features 
are relatively conserved among closely related HCV-like IRESs in 
members of the Flaviviridae family (Locker et  al., 2007; 
Lukavsky, 2009).

DIII consists of several subdomains (IIIa to IIIf). The basal 
part of dIII contains a 4-way junction, which includes a predicted 
PK (IIIf) and a small stem–loop (IIIe) (Melcher et  al., 2003; 
Lukavsky, 2009). In the middle of the dIII, the dIIId forms part of 
a three-way junction. The apical region of dIII contains a 4-way 
junction (Figure  3), involved in a central dIII stem, as well as 
dIIIa, dIIIb and dIIIc (Koirala et al., 2020). Certain motifs in the 
HCV dIII also exhibit a high degree of conservation in some 
viruses, such as in CSFV and BVDV. For example, dIIIa and dIIIe 
contain AGUA and GA[U/C]A tetraloops, respectively. The dIIId 
features a G-rich loop, with at least three consecutive G residues, 
in the hairpin (Fletcher and Jackson, 2002; Lukavsky, 2009). 
However, the sequence of highly conserved dIIIa loop is 
unimportant for the maintenance of full IRES activity (Fletcher 
and Jackson, 2002). The dIV is the last subdomain in the type IV 
IRES, and harbors the viral start codon (Berry et al., 2011; Tanaka 
et al., 2018).

Over 40 structures associated with the type IV IRES have 
currently been identified or predicted. Representative models of 
type IV IRESs are schematically shown in Supplementary Figure S1. 
These IRESs are 180–420 nucleotides in length (Asnani et  al., 
2015), exhibiting the significant diversity in their structures, 
whereas all these IRES structures contain a crucial, highly 
conserved core region, including the PK as well as subdomains 
IIId, IIIe, and IIIf (Arhab et  al., 2020). The core region is 
functionally essential for the translation initiation. The dIII is 
typically composed of four to seven subdomains in the type IV 
IRES, whereas the number of subdomains varies greatly among 
different picornaviruses. The simplest one is derived from Guangxi 
changeable lizard picornavirus 2, only having four subdomains: 
IIIa, IIId, IIIe, and IIIf. The most complex ones, like members in 
Crohivirus, Parechovirus, Tropivirus, Senecavirus, Ludopivirus, and 
Tremovirus genera, are composed of seven subdomains: IIIa to IIIf. 
In addition to the complete complement of characteristic 
subdomains and motifs, these complex IRESs also bear an extra 
dIIIa2 (Ludopivirus genus) (Boros et al., 2018), dIIId2 (Senecavirus, 
Parechovirus, Crohivirus, and Tropivirus genera) or dIIIb2 
(Tremovirus genus) (Hellen and de Breyne, 2007; Arhab 
et al., 2020).

Several conserved sequences exist in dIII, including the apical 
GGG motif in dIIId and a GA[U/C]A tetraloop in dIIIe. An “AGUA” 
loop at the top of dIIIa, similar to that in HCV IRES, is only found in 
the genera Pasivirus, Tremovirus, Tropivirus, Senecavirus, Crohivirus, 
Parechovirus, and Pasivirus (Hellen and de Breyne, 2007; Asnani et al., 
2015; Arhab et al., 2020). The GGG motif at the top of IIId loop was 
found to be a GGGGG pentaloop in a homologous position in simian 
sapelovirus (Hellen and de Breyne, 2007). In some cases, the G-rich 
sequence has four consecutive G residues in some picornaviruses, 
including in carp picornavirus 1, fathead minnow picornavirus, 
BPV-1, Ia io picornavirus 1, California sea lion sapelovirus 1, 
grusopivirus, FePV, tortoise rafivirus A1 and crohivirus B (Asnani 
et al., 2015; Arhab et al., 2020). However, only two G residues are 
identified in pink-eared duck picornavirus and pemapivirus (Arhab 

FIGURE 3

Steps involved in translation initiation mediated by HCV IRES. The 
HCV IRES first binds to a 40S-eIF3 complex. Subsequently the 
ternary 40S-IRES-eIF3 complex acquires the eIF2-tRNAiMet-GTP and 
eIF5. Following two steps of GTP hydrolysis, the 60S ribosomal 
subunit joins to form the elongation-competent 80S ribosome. 40S: 
40S small ribosomal subunit; 40S-eIF3: 40S ribosomal subunit-
eukaryotic initiation factor 3; 48S: 48S complex; 60S: 60S large 
ribosomal subunit; 80S-IRES-tRNAi: 80S-IRES-initiator tRNA; eIF2-
GTP: eIF2-guanosine triphosphate; eIF2-GDP: eIF2-guanosine 
diphosphate; eIF5B-GTP: eIF5B-guanosine triphosphate; eIF5B-GDP: 
eIF5B-guanosine diphosphate; tRNAi+Met: tRNAi-methionine.
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et al., 2020). The dIIIe, consisting of an apical GA[U/C]A tetraloop 
and a 4-bp stem, is conserved in almost all type IV IRESs, whereas 
members of the species Megrivirus B have a GAUC loop, and Aalivirus 
has a 3-bp stem and 5-nt apical loop (Wang et  al., 2014; Asnani 
et al., 2015).

Significant sequence variations are observed in the apical 
region of dIII. For example, in Kobuvirus, Kunsagivirus, 
Limnipivirus, and Rafivirus genera, the apical region of dIII may 
be severely truncated, possibly lacking one (genera Kunsagivirus, 
Limnipivirus, Sapelovirus, and Teschovirus) or two (genus 
Aalivirus) subdomains (Arhab et  al., 2020). Additionally, 
subdomains IIIa and IIIc may also be  disposed in a staggered 
configuration rather than forming a 4-way junction. Subdomain 
IIIb may be  greatly elongated, as observed in the Megrivirus, 
Phacovirus, and Colbovirus genera, which are topped by a 20-nt-
long “8”-like structure (Asnani et al., 2015; Boros et al., 2016). 
Such a structure is conserved in avian-origin and seal 
picornaviruses, and may be  crucial for the viral translation 
(Pankovics et al., 2012; Boros et al., 2014b).

The dII of type IV IRES, with a length range of 21–120 nt, is 
shorter or longer than that of the HCV IRES. Compared to the dIII, 
the dII shows the great variability. In Teschovirus, Tropivirus, and 
Tremovirus genera, the dII contains a small branching hairpin (dIIb) 
(Arhab et al., 2020). Despite the high variability of dII in the HCV 
IRES, its apical hairpin loop, internal loop E motif and basal internal 
loops are conserved among HCV, and closely related to those of 
HCV-like IRESs (Lukavsky, 2009). Notably, dIV in HCV is not unique 
to it. This special structure is also found in some picornaviral genera 
(e.g., Colbovirus, Megrivirus, Sapelovirus, Crohivirus, Pasivirus, and 
Limnipivirus) containing the type IV IRES. The dIV in these genera 
shows the lower stability than the homologous region in HCV (Asnani 
et al., 2015).

Collectively, the type IV IRES contains a highly conserved core 
region, which is crucial for the translation initiation. Surrounding this 
core, other regions, e.g., dII, vary significantly among IRESs from 
different species. This combination of structural conservation and 
variability may be  related to the function and regulation of type 
IV IRES.

5 Functions of type IV IRES in 
picornaviruses

The heterogeneity of type IV IRES structures exemplifies 
biological variety, and equips viruses with adaptive mechanisms 
to thrive in various host environments (Martinez-Salas et  al., 
2017). Each IRES configuration is likely tailored to particular 
environmental and biological demands, facilitating viral 
proliferation and transmission across diverse hosts. Cellular 
proteins binding to viral IRES are critical for orchestrating the life 
cycle of viruses. For example, certain cellular proteins can enhance 
the activity of IRES, while others may suppress its function (Liu 
et al., 2020; Embarc-Buh et al., 2021; Lopez-Ulloa et al., 2022; 
Marques et  al., 2022). During this process, the secondary and 
tertiary structures of IRES constitute the foundation for the 
interaction with various cellular factors. Perturbation of specific 
conserved motifs may compromise IRES structural integrity, 
potentially impeding viral replication.

The flexibility of secondary structure and the uniqueness of 
primary sequence within dIII contribute to its role as the most 
active region in RNA–protein interactions (Barría et al., 2009; El 
Awady et  al., 2009; Lukavsky, 2009; Johnson et  al., 2017). The 
dIIIa, dIIIb, and dIIIc of HCV are primarily involved in the 
binding of eIF3 and the 40S subunit (Kieft et al., 2001; Rijnbrand 
et al., 2004). Elements equivalent to HCV dIIIa and dIIIc are less 
conserved in picornaviral IRESs, possibly implying that these 
domains are less critical for their functional activities. 
Nevertheless, the possibility that these two domains still have 
other functions in picornaviral IRESs cannot be wholly dismissed, 
and these functions may be achieved by the evolution of additional 
sequences (Chard et al., 2006b). The interaction between dIIIb 
and eIF3 affects a key process of active ribosomal assembly, during 
which the binding of eIF3 to dIIIb will exert effects on both eIF3 
and eIF2 stabilities in the formation of preinitiation complexes 
(Easton et  al., 2009). Deletion mutations at this site reduce 
initiator tRNA deposition, leading to further compromise of the 
80S complex assembly (Ji et  al., 2004). Although the “8”-like 
structure is present in the apical region of dIIIb in certain 
instances, a comprehensive research on its precise mechanism of 
action remains to be  conducted further. A limited number of 
studies (Boros et  al., 2014b) have documented the impact of 
deletions or mutations in this structure on IRES functionality. 
However, given its prevalent occurrence in avian picornaviruses, 
the structure can hold unique significance.

The GGG motif in the dIIId loop is a major determinant of 
ribosome binding dIIId (Jubin et  al., 2000; Friis et  al., 2012; 
Niepmann et  al., 2018), capable of base-pairing with CCC 
nucleotides in the apical loop of ES7 of 18S ribosomal RNAs 
(Hashem et al., 2013; Lattimer et al., 2019). The dIIId apical loop 
contains a GG motif in the genus Pemapivirus, indicating that this 
dinucleotide sequence may be adequate for ribosomal binding 
(Arhab et al., 2020). Mutations in this sequence can reduce the 
binding affinity of the IRES for the 40S subunit, thereby hindering 
the assembly of the 48S complex (Ji et al., 2004; de Breyne et al., 
2008; Willcocks et  al., 2011; Pan et  al., 2012). Certain viruses 
possess two dIIId: dIIId1 and dIIId2. The latter exhibits the 
variability in function across various viruses. For instance, 
dIIId2  in senecavirus A (SVA), albeit unessential for IRES-
mediated translation as evidenced by its non-impact on eIF3 and 
40S recruitment, 48S complexes and 80S ribosomes assembly, 
plays a crucial role in viral infectivity (Willcocks et al., 2011). The 
absence of dIIId2 would interfere with the assembly of 80S 
ribosome in both BDV- and CSFV-infected cells, consequently 
impeding the translation initiation (Willcocks et al., 2017).

The GA[U/C]A tetraloop observed in the dIIIe region of 
HCV-like IRES diverges from the standard GNRA tetraloop that 
is characteristic of type I and II IRES elements (López de Quinto 
and Martínez-Salas, 1997; Psaridi et al., 1999; Robertson et al., 
1999; Asnani et  al., 2016; Mailliot and Martin, 2018). Despite 
minor variations in the tetraloop bases across IRES types, their 
nucleotide sequences are all essential for IRES function. 
Nucleotide insertions, mutations or deletions in this motif may 
lead to IRES inactivation, thereby affecting the conformation and 
stability of IRES by modulating the interaction of RNA–RNA 
tertiary structures (Bhattacharyya and Das, 2006; Fernandez-
Miragall et al., 2006; Bakhshesh et al., 2008; Pan et al., 2012). For 

https://doi.org/10.3389/fmicb.2024.1415698
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2024.1415698

Frontiers in Microbiology 09 frontiersin.org

example, the apical part of dIII would be  reorganized in the 
FMDV IRES after a single nucleotide substitution in the GNRA 
motif to GUAG, or its substitution by a UNCG motif (Fernandez-
Miragall and Martinez-Salas, 2003). Change in each of the four 
nucleotide positions in the GAUA loop of HCV IRES severely 
impairs the IRES activity (Psaridi et al., 1999), and this hairpin 
loop may enhance the interaction between the IIId and the 40S 
subunit (Lukavsky et al., 2000; Angulo et al., 2016).

Type IV IRES features a single PK structure, in contrast to three 
PKs in dicistroviruses (Abaeva et al., 2023). The structure is formed via 
base pairing between loop nucleotides of IIIf and other single-stranded 
regions, showing two base-paired stems, stem I  and II (Liu et  al., 
2021a). The IRES activity is dependent both on the primary sequence 
and on the secondary structure in both stem regions. Any mutation, if 
responsible for disruption of the secondary structure of stem region, 
mutations on both sides of the stem sequence without disturbing the 
overall conformation, or insertion (or deletion) mutations in the stem 
region, would invariably compromise the IRES function (Chard et al., 
2006b; Berry et al., 2010; Willcocks et al., 2011; Pan et al., 2012; Wang 
et al., 2021; Liu et al., 2021b). Furthermore, sequence alterations within 
the PK region of SVA stem II can potentially exert an impact on virion 
assembly (Liu et al., 2021a). The function of the PK is contingent upon 
its intact structure. When the PK participates in the binding of the 40S 
subunit, its primary role is associated with positioning the start codon 
to the ribosomal P site (Kieft et al., 2001; Chard et al., 2006b; Lukavsky, 
2009). An optimal distance is also maintained between the PK and the 
start codon. Either insertion or deletion of nucleotides in this sequence 
would interfere with viral replication to some extent, possibly 
attributed to deleterious effects on the AUG reaching the P site (Berry 
et al., 2010; Liu et al., 2021c).

Ribosomal translocation is a crucial stage in the protein synthesis, 
requiring the mRNA template to move so that new codons are 
positioned within the A site for decoding (Zhou et al., 2014; Milicevic 
et al., 2024). The conformational shift induced by HCV dII in the 40S 
subunit affects the translocation process (Brown et al., 2022). Despite 
the spatial separation between dII and dIII, the asymmetrical interior 
loop in dIIa facilitates the formation of bent dII conformation 
(Lukavsky et al., 2003). This bending permits the apical region of dIIb 
to spatially contact the 40S ribosomal subunit bound to dIII, not only 
facilitating the adoption of a specific HCV RNA configuration in the 
decoding groove, but also potentially assisting in the proper selection 
of start codon (Lukavsky et al., 2003; Filbin and Kieft, 2011; Johnson 
et al., 2017; Brown et al., 2022).

The hairpin loop and loop E motif in dIIb can promote both eIF5-
induced GTP hydrolysis and eIF2/GDP release from the initiation 
complex (Locker et al., 2007; Martinez-Salas et al., 2008; Barría et al., 
2009). Both deletion and mutation of the dII region would lead to a 
significant reduction in the IRES function (Friis et al., 2012; Filbin 
et al., 2013). The majority of functional studies are currently involved 
in the dII of HCV IRES. The dII in the type IV IRES shows 
considerable variation among picornaviruses, some of which contain 
neither a loop E motif nor an asymmetric inner loop. In certain 
viruses, their dII regions simply show a stem-loop structure formed 
via a 21-nt-long motif (Asnani et al., 2015). This simplified dII may 
exert functions distinct from those of HCV through synergistic 
actions with other IRES domains, or interaction with specific host 
factors, reflecting the evolutionary plasticity of viral IRES in both 
structure and function.

To summarize, IRES dIII primarily engages in the binding of eIF3 
and 40S ribosomal subunits, and in the precise localization of the start 
codon. The dII is mainly involved in 80S ribosome assembly, and in 
the following initiation steps. The attachment of 40S ribosomal subunit 
or eIF3 to IRES is not confined to an individual dIII subdomain. 
Rather, the higher-order structures formed between multiple IRES 
domains, along with their exposed conserved sequences and structural 
motifs, collectively provide multiple regulatory interfaces for 
recruitment and precise localization of these molecules. Therefore, 
maintaining the structural integrity of the IRES is functionally crucial 
for viral replication. Any mutation, which disrupts the IRES structure 
or alters its conserved sequences, will lead to IRES inactivation, 
thereby affecting the translation process of the viral proteins.

6 Conclusion

The first reports concerning IRES elements unequivocally 
demonstrated the cap-independent initiation of translation in PV and 
EMCV genomes. There has been substantial progress in recent 20 years 
in uncovering structures and functions of picornaviral IRESs. The type 
IV IRES can fold into a compact tertiary structure, making its own key 
elements interact with the small ribosomal subunit through a cluster of 
specific ribosomal proteins for triggering the translation of viral 
polyprotein. Unfortunately, most valuable reports associated with the 
type IV IRES are based on the HCV, rather than on picornaviruses. There 
is still much to be learned about the interaction of type IV IRES with host 
factors or even other RNA elements. Nowadays, characterizing its high-
order organization of RNA structure, in conjunction with the recognition 
of IRES–protein interaction network, is the greatest challenge to unveil 
how these specialized RNA structures function during viral replication.
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