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Sepsis is a syndrome precipitated by immune dysregulation in response to 
infection, and represents a pivotal factor in global mortality attributed to 
diseases. The recent consensus delineates sepsis as a perilous state of organ 
dysfunction arising from the host’s maladaptive reaction to infection. It masks 
the complexity and breadth of the immune mechanisms involved in sepsis, which 
is characterized by simultaneous hyperinflammation and immunosuppression. 
Sepsis is highly correlated with the dysregulation of immune response, which 
is mainly mediated by various immune cells and their interactions. This 
syndrome can lead to a plethora of complications, encompassing systemic 
inflammatory response, metabolic disturbances, infectious shock, MODS, and 
DIC. Furthermore, more research studies have been conducted on sepsis in the 
past few years. The pathological characteristics of sepsis have been improved 
or treated by targeting signaling pathways like NF-B, JAK–STAT, PI3K-Akt, and 
p38-MAPK. Combined drug therapy is better than single drug therapy for sepsis. 
This article will review the latest progress in the pathogenesis and treatment of 
sepsis.
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1 Introduction

Sepsis denotes a critical impairment of organ function caused by the dysregulated response 
to infection, posing a substantial challenge not only to clinicians but also to scientific 
researchers (Gyawali et al., 2019). Inflammatory response, tissue injury, important organ 
failure, and pathological thrombosis are the main and typical pathophysiological changes in 
sepsis, indicating infection in the body. Numerous cytokines are released, including TNF-α, 
interleukins, prostaglandins, and so on (Jacobi, 2002). At the same time, laboratory tests show 
an increase in white blood cell count, CRP and PCT, elevated lactate levels, and abnormal 
coagulation function (Fulton et  al., 2024). Moreover, the pathogenesis of sepsis remains 
inadequately understood, potentially attributed to an exaggerated inflammatory reaction and 
immune suppression stemming from the dysregulation of the reaction to infection (Nedeva 
et al., 2019). The most common symptoms are fever, elevated heart rate, and hypotension, 
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which may progress to shock, multiple organ failure, and DIC, which 
are life-threatening (Cawcutt and Peters, 2014).

It is worth noting that prompt recognition and treatment of sepsis 
are crucial for patient prognosis. Even without a clear diagnosis, 
initiating anti infection therapy may reduce the incidence rate of 
sepsis (Sivapalan and Stæhr Jensen, 2015) Because of the different 
causes and symptoms of sepsis, each patient with sepsis should 
undergo personalized treatment according to their needs, clinical 
characteristics, and other parameters in the treatment plan. The aim 
of treatment is to enhance the patient’s quality of life and avert 
potential complications (Vincent et  al., 2022). Many treatment 
strategies, including antibiotics, vasoactive drugs, glucocorticoids, and 
immunomodulatory drugs, are first-line treatments for sepsis, but 
often need to be paired with other treatment strategies to further 
improve the clinical symptoms of sepsis (Schmoch et al., 2024).

We summarize the potential molecular mechanisms underlying 
the pathophysiology of sepsis and the interactions between different 
cells. In addition, we  also summarize the latest developments in 
potential biomarkers and therapeutic drugs for sepsis, with a view to 
providing clinicians and researchers with better ideas and current 
research progress.

2 Pathogenesis of sepsis

Sepsis is a syndrome of systemic inflammatory response triggered 
by infection, with nearly all types of infections capable of causing 
sepsis. Bloodstream sepsis is a severe infection where pathogens 
induce systemic inflammatory response through the circulation of 
blood (Kargaltseva et al., 2022). Moreover, sepsis can also stem from 
local infectious foci, such as pulmonary infections, abdominal 
infections, urinary system infections, surgical complications, and 
other sites that are in communication with the external environment 
or harbor bacteria themselves (Xie et al., 2020). Bloodstream sepsis 
often presents with severe inflammatory symptoms such as high fever 
and chills, progresses rapidly, and carries a high mortality rate (López-
Cortés et  al., 2017). On the other hand, sepsis arising from local 
infections may exhibit different symptoms and prognosis depending 
on the infected site (Mendoza et al., 2022).

The primary etiology of sepsis includes bacterial, fungal, and viral 
infections (Grondman et al., 2020). Bacteria are the most common 
cause of sepsis and are mainly divided into Gram-positive and Gram-
negative bacteria. Gram-positive bacteria are more prevalent in North 
America and Europe, while Gram-negative bacteria are more common 
in Asia (Vincent et al., 2006;Vincent et al., 2009; Sakr et al., 2018). The 
main bacteria responsible for sepsis are Staphylococcus aureus (Gram-
positive) and Escherichia coli (Gram-negative) (Vincent et al., 2009; 
Sakr et al., 2018). Viral sepsis has a lower incidence compared to 
bacterial sepsis, but the high occurrence of viral culture-negative 
sepsis suggests that there may be many undiagnosed cases of viral 
sepsis (Lin et  al., 2018). The most common viral pathogens are 
influenza and dengue viruses in tropical regions, both of which can 
cause seasonal outbreaks, with newborns, children, pregnant women, 
the elderly, and immunocompromised patients being at risk (Dawood 
et al., 2012). Fungal sepsis has a higher incidence than viral sepsis but 
is much lower than bacterial sepsis (Vincent et al., 2006, 2009; Sakr 
et al., 2018). The main fungal pathogen in sepsis is Candida albicans, 
which is associated with a relatively high mortality rate (Delaloye and 

Calandra, 2014). Although parasitic infections (<1%) can lead to 
sepsis, the estimated prevalence within this etiological subclass 
remains extremely rare (Sakr et al., 2018; Kwizera et al., 2021). The 
microbiology of sepsis patients can also be classified based on the 
source of infection, including community-acquired (infections 
acquired outside of the hospital or any healthcare facility) and 
hospital-acquired (patients who were infection-free upon admission 
but developed an infection 48 h or more after admission), with 
hospital-acquired sepsis being more severe and associated with a 
higher mortality rate (Westphal et al., 2019).

Sepsis is characterized by two main phases: the hyperimmune 
phase and the immunosuppressive phase, initiated by the actions of 
various immune cells triggering a series of immune responses (Nedeva 
et al., 2019). COVID-19, caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), involves the invasion of host cells by the 
virus, leading to failure of host immune recognition. Instead of 
mounting an effective antiviral immune response upon invasion, the 
host develops sepsis due to an excessive inflammatory response and 
suppression of SARS-CoV-2-specific immune reactions (Wang et al., 
2022). During the initial hyperinflammatory phase, the upregulation 
of pro-inflammatory cytokines released by inflammatory cells, along 
with the activation of the complement and coagulation systems, leads 
to excessive inflammation, culminating in a cytokine storm and 
multiple organ dysfunction syndrome (MODS). At this juncture, there 
is a predominance of neutrophils, activation of lymphocytes, 
macrophages, and dendritic cells (Chousterman et  al., 2017). 
Concurrently or subsequently, there is an increase in the release of 
anti-inflammatory cytokines and co-inhibitory molecules, a decrease 
in HLA-DR expression, immune cell death, and regulatory cell 
proliferation, resulting in immunosuppression (Hotchkiss et al., 2013). 
Sepsis-induced immunosuppression stems from both innate and 
acquired immune dysfunctions, characterized by the release of anti-
inflammatory cytokines, immune cell death, T cell exhaustion, and 
excessive generation of immune regulatory cells, including regulatory 
T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) (Liu 
et al., 2022). In sepsis, immunosuppression is closely related to cell 
anergy, endotoxin tolerance, or immune cell exhaustion. The 
diminished expression of human leukocyte antigen-DR (HLA-DR) 
and the upregulation of immune checkpoint molecules, such as 
programmed cell death protein 1 (PD-1), T cell immunoglobulin and 
mucin domain-containing protein-3 (TIM-3), as well as B and T 
lymphocyte attenuator (BTLA), further exacerbate 
immunosuppression (McBride et al., 2020). Metabolic alterations have 
emerged as an important driver of immunosuppression inpsis. Studies 
on the metabolism of T cells in septic patients have revealed changes 
in the mTOR pathway, leading to an inability to induce glyysis, 
oxidative phosphorylation, and ATP production. As a result, the lack 
sufficient energy, impairing not only their functionality but also 
diminishing their prolifer capacity (Appiah et al., 2021). Furthermore, 
endotoxin tolerance is considered a mechanism of immunosuppression 
in sepsis. Endotoxin tolerance refers to a reduced responsiveness of 
cells to endotoxin (lipopolysaccharide, LPS) stimulation after prior 
exposure to endotoxin (Liu et  al., 2019). The primary features of 
endotoxin tolerance include the downregulation of inflammatory 
mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1β 
(IL-1β), C-X-C motif chemokine 10 (CXCL10), and the upregulation 
of anti-inflammatory cytokines like IL-10 and transforming growth 
factor-beta (TGF-β). Therefore, endotoxin tolerance is often regarded 
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as a regulatory mechanism by the host against excessive inflammation, 
holding therapeutic significance (López-Collazo and del Fresno, 
2013). As septic patients transition into the phase of 
immunosuppression, disruptions in immune cell functionality ensue, 
leading to a rapid progression of their condition and a substantial 
escalation in mortality rates (Boomer et al., 2011).

3 The role of immune cells in sepsis

3.1 The role of neutrophils in sepsis

In the early stages of infection, the innate immune system is 
immediately activated, with neutrophils being the primary phagocytes 
to migrate from the bloodstream to the infection site (Kovach and 
Standiford, 2012). Neutrophils migrate to the site of infection guided 
by signals from receptors and chemotactic factors, where they 
efficiently engulf and eradicate pathogens by releasing reactive oxygen 
species, antimicrobial proteins, and NETs. Moreover, they can release 
inflammatory mediators to enhance the immune response. In the 
context of sepsis, neutrophils are particularly pivotal (Shafqat et al., 
2023; Zhang et  al., 2023). At this time, a significant influx of 
neutrophils is observed in the bloodstream, accompanied by inhibited 
apoptosis and extended half-life, consequently leading to an elevated 
neutrophil count (as shown in Figure 1). Microorganisms and their 
products entering the bloodstream can stimulate the large and rapid 
increase of peripheral blood neutrophils, which can lead to the 
depletion of the bone marrow neutrophil storage pool and the release 
of immature cells into the blood (Mare et  al., 2015). Immature 

neutrophils have low recognition and phagocytic ability, cannot 
effectively remove pathogens, and their poor deformability is more 
likely to accumulate in capillaries, causing vascular occlusion, tissue 
hypoxia, and organ damage (Drifte et al., 2013). Cytokines like TNF-α, 
IL-1β, IL-6, IL-17, and bacterial components can activate G-CSF to 
promote neutrophil differentiation. Inhibiting the CXCR4/CXCL12 
signal axis, G-CSF can promote proliferation and differentiation of 
CD34+ myeloid progenitors and migration of mature neutrophils 
from the bone marrow (Delano et al., 2011). Moreover, in individuals 
with severe sepsis, the significant increase of Mcl-1 can inhibit the 
apoptosis of neutrophils and promote their life span to increase several 
times (Milot et  al., 2012). Bacterial lipopolysaccharide (LPS) and 
complement 5a (C5a) can also prolong the life of neutrophils through 
the following pathways. As LPS and C5a activate ERK1/2, PI3K, and 
downstream Akt pathways in neutrophils, phosphorylation of Bad 
inhibits mitochondrial cytochrome C release and reduces apoptosis 
(Paunel-Görgülü et al., 2012). Furthermore, C5a can reduce neutrophil 
apoptosis by increasing Bcl-XL expression and reducing Bim 
expression (Guo et  al., 2006). In addition, LPS can inhibit the 
migration and cleave of MNDA, thereby preventing the degradation 
of Mcl-1 by proteasome (Fotouhi-Ardakani et  al., 2010). The 
prolonged life of neutrophils can enable them to perform more 
complex activities in tissues, such as helping to eliminate inflammation 
or triggering adaptive immune responses, but their persistent presence 
in tissues may also cause tissue and organ damage.

Over-activated neutrophils produce a large number of bactericidal 
substances. A variety of complex physiological mechanisms cooperate 
to fight infections, leading to immune disorders and systemic 
inflammatory responses, and further inducing coagulation 

FIGURE 1

Role of Neutrophils in Sepsis. When microorganisms or their products enter the bloodstream, they stimulate the bone marrow to release neutrophils, 
causing an increase in neutrophils in peripheral blood. LPS and C5a can activate the ERK1/2 and PI3K-AKT pathways to inhibit neutrophil apoptosis. LPS 
can also inhibit MNDA cleavage, leading to upregulation of Mcl-1 to suppress neutrophil apoptosis. Furthermore, C5a can upregulate Bcl-xL to 
suppress Bim expression, thereby inhibiting neutrophil apoptosis. The heightened liberation of neutrophils and reduced apoptosis enable them to more 
effectively combat pathogens by generating neutrophil extracellular traps (NETs) and releasing cytokines. However, when neutrophils are excessively 
activated, it may lead to severe consequences such as MODS, DIC, and immune suppression.
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dysfunction and tissue damage (Alves-Filho et  al., 2008). Over-
activated neutrophils infiltrate and accumulate in important organs, 
producing a large number of ROS through respiratory burst and 
releasing bactericidal substances through degranulation, directly or 
indirectly causing damage to important tissues and organs (Sikora 
et  al., 2021). The generation of oxygen free radicals produced by 
respiratory burst will cause dysfunction of the mitochondrial 
transmembrane substance transport system, and the most important 
is to form calcium overload. And calcium overload destroys the steady 
state of Ca2+ concentration inside and outside the cell, resulting in a 
large number of Ca2+ accumulation in the mitochondria, making 
cells unable to maintain normal function, resulting in mitochondrial, 
cell, and tissue dysfunction (Mohsin et al., 2021). Additionally, many 
pro-inflammatory factors and anti-inflammatory factors release 
induced ROS, leading to an imbalance of oxidation–reduction states 
in the body, causing oxidative stress reactions and eventually causing 
organ malfunction. The increased production of ROS may also 
damage the function of vascular endothelial cells throughout the body, 
increase vascular permeability, damage mitochondrial function, and 
eventually cause organ and system dysfunction in individuals with 
sepsis (Lu et al., 2022). In addition, neutrophils can capture and clear 
non-phagocytosed pathogens through the production of NETs. NETs 
are a unique form of cell death in neutrophils, where they release DNA 
fibers and granules containing antimicrobial proteins to form a 
web-like structure that ensnares and kills pathogens (Zhang et al., 
2023). During the early stage of sepsis, NETs can form a physical 
barrier that facilitates the capture and clearance of pathogens, 
preventing their spread and inhibiting the progression of sepsis. 
However, as the disease progresses, NETs may cause tissue damage, 
enhanced autoimmunity, and the formation of blood vessel thrombi. 
This may be attributed to NETs acting as damage-associated molecular 
patterns (DAMPs), activating the TLR9 receptor to initiate the 
inflammatory response, promoting the infiltration of inflammatory 
cells into tissues or organs, and exacerbating tissue damage (Song 
et al., 2015). Histones are important antimicrobial components of 
NETs that can also be cytotoxic to endothelial cells, causing endothelial 
cell damage and affecting microvascular perfusion. They can also 
promote the generation of thrombin, activate platelets, and inhibit 
anticoagulants, thereby promoting disseminated intravascular 
coagulation (DIC) and thrombosis formation (Denning et al., 2019). 
Neutrophils, through the NET-platelet-thrombin axis, contribute to 
an increased production of NETs, leading to an increased incidence 
and mortality rate of sepsis (Allison, 2017). Additionally, the excessive 
activation of inflammasomes through the Caspase-1-dependent 
classical pyroptosis pathway induces cell death, causing a massive 
release of IL-1β and IL-18. Neutrophils infiltrate non-specific organs 
including liver and kidney, causing the release of inflammatory 
mediators from damaged cell membranes, thereby amplifying the 
inflammatory response, accelerating the progression of sepsis, and 
causing severe tissue injury and organ dysfunction (Liu and Sun, 
2019). By the end of sepsis, neutrophils are exhausted, and their 
migration and function are abnormal, so that neutrophils cannot 
reach the infection site to control the infection, but accumulate in 
important organs and cause serious damage (Alves-Filho et al., 2008). 
ICAM-1 is an adhesion molecule expressed on vascular endothelial 
cells binds to β2 integrins induced on the surface of neutrophils, is a 
key molecule in mediating neutrophil rolling adhesion (Dixit et al., 
2011). In sepsis, affinity between ICAM-1 and β2 integrins is 

enhanced, leading cellular rigidification, inducing vascular occlusion 
and tissue hypoxic injury, which is a significant factor in organ failure. 
The overexpression of ICAM-in non-specific organ endothelial cells 
may also be a primary cause of organ tissue damage and functional 
disruption induced by sepsis (Zhao et al., 2014). Abnormal autophagy 
and pyroptosis can promote the formation of NET, cause neutrophil 
membrane damage and release of numerous pro-inflammatory 
cytokines, and further expand inflammatory response (Zhu et al., 
2022). Furthermore, the circulation of immature neutrophils and the 
emergence of suppressive subsets not only aid in the efficient 
eradication of infection and hinder the activation and efficacy of other 
cells like lymphocytes, thereby fostering the development of 
subsequent immunosuppression (Parthasarathy et al., 2023).

3.2 The role of macrophages in sepsis

Macrophages are the most crucial innate immune cells and 
antigen-presenting cells, possessing high plasticity (Locati et al., 2020). 
On one hand, they initiate the innate immune response by recognizing 
risk factors in the microenvironment; on the other hand, they 
modulate host immune responses through differential polarization, 
forming a multidimensional phenotypic spectrum in response to 
microenvironmental changes. Therefore, macrophages play a 
significant role in regulating host immune balance and inflammatory 
responses in sepsis (Chen et al., 2021). The primary known phenotypes 
are inflammatory or classically activated (M1-like) macrophages and 
healing or alternatively activated (M2-like) macrophages. Each of 
these polarized macrophage states has distinct functions, and only 
when they are in balance can the host’s immune homeostasis 
be maintained (Shapouri-Moghaddam et al., 2018). In the early stages 
of sepsis, M1-like macrophages can be activated by individual Th1 
cytokines (TNF-α and IFN-γ) or pathogen-associated molecular 
patterns (such as LPS) (Liu et al., 2014; Shapouri-Moghaddam et al., 
2018). Recent studies indicate that Caveolin-1 and oxidized 
low-density lipoprotein also play essential roles in M1-like 
macrophage polarization (Sivanantham et al., 2023; Wu et al., 2024). 
M1-like macrophages highly express CD68, CD80, CD86, major 
histocompatibility complex (MHC)-II, inducible nitric oxide synthase 
(iNOS), and Toll-like receptor (TLR) 4 (Atri et  al., 2018). They 
increase MHC-II expression by binding to co-stimulatory molecules 
(CD80 and CD86) and promoting cytotoxic adaptive immunity. The 
high levels of iNOS in M1-like macrophages contribute to nitric oxide 
synthesis (Vogel et al., 2014). M1-like macrophages secrete a large 
number of chemokines (CCL5 and CXCL5) to attract natural killer 
cells, neutrophils, and activated T cells (Atri et al., 2018). Additionally, 
M1-like macrophages produce a significant amount of 
pro-inflammatory cytokines (IL-6, IL-12, IL-23, and IL-1β), reactive 
oxygen intermediates, and reactive nitrogen intermediates to eliminate 
host pathogens (Qin et al., 2012). Generally, M1-like macrophages 
exhibit potent cytotoxic activity, capable of killing pathogens, clearing 
aberrant endogenous tissues and cells in the immune 
microenvironment, promoting matrix degradation, and anti-tumor 
activity (Liu et al., 2021). However, prolonged M1-like macrophage 
polarization or its enhancement can lead to tissue, organ, and immune 
cell damage (Chen et al., 2021; Wang et al., 2023). In contrast, during 
the late stage of sepsis, M2-like macrophages can be activated by Th2 
cytokines (IL-4 and IL-13), TGF-β, IL-10, glucocorticoids, and 
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immune complexes (Huang et  al., 2018). M2-like macrophages 
express high levels of C-type lectin (CD206) and scavenger receptor 
(CD163). They promote the secretion of chemokines (CCL17 and 
CCL18) to recruit eosinophils, basophils, Th2, and regulatory T cells, 
exhibiting an anti-inflammatory cytokine spectrum, producing high 
levels of IL-10, resistin-like alpha (Fizz1), IL-1 receptor antagonist, 
and TGF-β (Shrivastava and Shukla, 2019). Therefore, M2-like 
macrophages participate in immune regulation, promote angiogenesis, 
tissue remodeling, and inflammation suppression (Yunna et al., 2020). 
Thus, targeted modulation of macrophage polarization and phenotypic 
alterations as an adaptation to the microenvironment may be  an 
effective therapeutic approach for treating sepsis (Jin et al., 2022).

3.3 The role of T cells in sepsis

Innate immune cells, beyond their role in phagocytosis and 
pathogen clearance, can also process pathogens to generate specific 
antigens and induce adaptive immune responses (Qiu et al., 2019). T 
lymphocytes, specifically, hold a pivotal position in adaptive immune 
responses (as shown in Figure  2). Mature T lymphocytes, upon 
entering the bloodstream, recognize antigens from major 
histocompatibility complex molecules through surface antibodies. 
Upon activation and proliferation, they exert their biological functions 

to eliminate most pathogens (Kasten et al., 2010). TH1 cells enhance 
the phagocytic activity and bactericidal capacity of macrophages by 
secreting cytokines like IFN-γ and TNF-α, promoting inflammation 
and cellular immune responses (Romagnani, 1999). CD8+ T cells 
identify and eradicate infected cells (Kumar, 2018a). CD4+, CD25+ 
regulatory T cells modulate immune responses, suppress inflammatory 
reactions, or prevent damage to self-tissues by the immune system 
(Siqueira-Batista et  al., 2012). However, excessive activation of T 
lymphocytes can result in the release of substantial quantities of 
pro-inflammatory mediators, such as IFN-γ, causing excessive 
inflammation and exacerbating tissue and organ damage. Excessive 
inflammation triggers anti-inflammatory mechanisms, leading to the 
production of anti-inflammatory mediators like TGF-β and IL-10 to 
balance the inflammatory response, resulting in immune suppression 
characterized by lymphocyte apoptosis and functional inhibition 
(Yadav and Cartin-Ceba, 2016). When sepsis persists, the patient’s 
immune function continues to be  impaired, leading to profound 
immune suppression and entering a state of immune paralysis. This 
can cause sustained organ dysfunction and lead to recurrent infections, 
even life-threatening conditions (Yang et  al., 2014). Research has 
shown the depletion of T lymphocyte is a major characteristic of 
immune suppression in sepsis, and there are several mechanisms 
underlying T lymphocyte depletion in sepsis. The first mechanism 
involves the overexpression of cell surface negative co-stimulatory 

FIGURE 2

Role of T Cells in Sepsis. Upon microbial invasion, antigen-presenting cells activate T cells, leading to cellular immune reaction. TH1 cells enhance 
phagocytic activity and bactericidal capacity of macrophages, promote inflammatory reactions, and cellular immune responses by producing 
cytokines like IFN-γ and TNF-α. CD8+ T cells can recognize and eliminate the infected cells. CD4+ and CD25+ regulatory T cells can inhibit 
inflammatory response and prevent immune system from damage to their own tissues. However, when T cells are excessively activated, it can activate 
anti-inflammatory mechanisms, leading to immune suppression and T cell exhaustion. T cell exhaustion is predominantly linked to the excessive 
expression of inhibitory co-stimulatory receptors on the cell membrane, an upsurge in the proportion of Tregs, activation of the hypothalamic–
pituitary–adrenal axis and sympathetic nervous system, heightened expression of calcium-sensitive receptors, and diminished levels of IL-7.
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factors like PD-1, BTLA, CTLA-4, Tim-3, and LAG-3. These factors 
inhibit the activation, proliferation, or induction of apoptosis in T 
lymphocytes, resulting in T lymphocyte depletion. The expression 
level of cell surface negative co-stimulatory factors is directly 
associated with the severity of sepsis (Gao et al., 2015; Lange et al., 
2017; Lou et al., 2020; Nakamori et al., 2020; Huang et al., 2022). The 
second mechanism involves an increased percentage of Tregs. Tregs 
exert immunomodulatory effects in both innate and adaptive 
immunity and can induce apoptosis in other lymphocytes. Moreover, 
the expression of PD-1 on Treg cells is directly related to the severity 
of sepsis (Liu et al., 2017). Additionally, activation of the hypothalamic–
pituitary–adrenal axis causes elevated cortisol concentration, which 
bind to glucocorticoid receptors and exert anti-inflammatory effects. 
This results in decreased lymphocyte activity and apoptosis (Briegel, 
2002). Stimulation of the sympathetic nervous system causes 
heightened catecholamine, activation of beta-adrenergic receptors, 
elevated IL-10 secretion, reduced TNF-α secretion, increased release 
of anti-inflammatory agents, diminished release of pro-inflammatory 
agents, as well as reduced T lymphocyte activity, proliferation, and 
apoptosis (Kanczkowski et al., 2016). Other factors, such as increased 
expression of the CaSR, are also related to T lymphocyte apoptosis in 
sepsis (Wu et  al., 2015). IL-7 play a crucial role in lymphocyte 
proliferation and maturation. Research has found that of IL-7 levels 
diminish in individuals with sepsis, resulting in a reduction in T 
lymphocyte count, with the degree of decline correlating with the 
severity of sepsis (de Roquetaillade et  al., 2018). Therefore, 
comprehending the influence of T lymphocytes on the immune 
function of sepsis patients and monitoring changes in T lymphocytes 
can provide a better understanding of the patient’s immune status and 
effectively guide clinical interventions (Yuan et al., 2013).

In addition, other immune cells also contribute to the body’s 
immune defense. For example, dendritic cells capture and process 
pathogens and present their surface antigens to T lymphocytes 
(Kumar, 2018b). B-cells promote plasma cell production of antibodies 
to neutralize extracellular toxins (Dong et al., 2023). Furthermore, the 
interplay among diverse immune cells is a crucial element in the 
immune response (as shown in Figure 3), including interactions like 
those between neutrophils and T cells. In addition to antigen 
presentation, neutrophils also have a regulatory effect on lymphocytes. 
In sepsis, IFN-γ can induce neutrophils to express PD-L1, and through 
the PD-L1 signaling pathway, negatively regulate lymphocytes, inhibit 
their proliferation, activation and release of inflammatory cytokines, 
and promote lymphocyte apoptosis (Langereis et al., 2017). It can also 
bind to CD80, competitively obstructing the interaction between 
CD80 and its ligands, consequently impeding the T cell activation 
pathway (Sun et al., 2021). In sepsis, neutrophils can also affect the 
normal cell cycle of T cells by secreting arginase 1, decomposing 
L-arginine, so that T cells stay in the G0-G1 cycle, resulting in T cell 
dysfunction (Munder et  al., 2006). Moreover, certain neutrophil 
subpopulations can impede T cell proliferation through Mac-1, 
suppress the release of IFN-γ, and hinder the activity of T cells (Pillay 
et al., 2012). During inflammation, T helper (Th) cells differentiate into 
Th1 cells and Th2 cells, with the equilibrium between the two factions 
crucial for preserving immune equilibrium (Iwasaka and Noguchi, 
2004). IL-12 and IL-4 secreted by neutrophils induce naive CD4 + T 
cells to differentiate into Th1 and Th2 subtypes, respectively. In sepsis, 
the amount of IL-4 derived from Th2 is more, and the balance between 
Th1 and Th2 is imbalanced, presenting an immunosuppressive state 

(Yoon et al., 2017). T lymphocytes can also activate and enhance the 
function of neutrophils by secreting cytokines such as IFN-γ, or inhibit 
the activity of neutrophils by secreting TGF-β, IL-10 (Huang et al., 
2022). These interaction and regulation mechanisms are crucial for 
maintaining immune balance and preventing excessive inflammatory 
response. In sepsis, the imbalance of the immune system can culminate 
in an unbridled inflammatory reaction and MODS, so it is important 
to investigate the interaction and regulation mechanisms between 
immune cells (Figure 4).

4 The role of cytokines in sepsis

Cytokines constitute a vast group of relatively diminutive proteins 
(<40 kDa) pivotal in cellular signaling, being generated and discharged 
primarily to facilitate intercellular communication. Cytokines bind to 
specific receptors on different cell types, inducing activation, 
proliferation, or migration of target cells. They can be categorized into 
several groups, including chemokines, interleukins, TNF, interferons, 
and growth factors (Jarczak and Nierhaus, 2022). In sepsis, the most 
extensively studied cytokines are TNF-α and IL-1, which can activate 
target cells and stimulate the production of additional cytokines. 
Other important cytokines in sepsis include IL-6, IL-8, IL-12, IFN-α, 
G-CSF, and IL-10 (Chousterman et al., 2017).

TNF is mainly produced by macrophages and lymphocytes. When 
its concentration reaches a certain threshold, it disrupts the balance of 
inflammatory reactions, leading to the development of sepsis. There 
has been significant progress in understanding the mechanism by 
which TNF causes sepsis, focusing on its ability to induce oxidative 
damage, abnormal calcium distribution in cells, and activation of 
caspases (Lendak et  al., 2018). TNF-α has the capacity to trigger 
enzymes like NADPH oxidase and nitric oxide synthase, culminating 
in the overproduction of reactive oxygen species. The excessive 
accumulation of these oxygen free radicals can lead to oxidative 
damage, which can damage cell membranes, proteins and DNA 
(Blaser et al., 2016). Furthermore, TNF-α has the capacity to facilitate 
the depletion of intracellular reducing agents like glutathione and 
glutathione peroxidase, consequently amplifying the magnitude of 
oxidative harm (Glosli et  al., 2002). TNF-α can also promote the 
release of calcium ions and inhibit their efflux, leading to elevation of 
intracellular calcium levels. High levels of intracellular calcium can 
deplete calcium ions within the endoplasmic reticulum, culminating 
in endoplasmic reticulum stress and abnormalities in protein folding 
(Duncan et al., 2010). Additionally, high levels of calcium ions can also 
activate inflammation signaling pathways such as phospholipase A2 
and protein kinase C (Dada and Sznajder, 2011). Binding of TNF-α to 
its receptors can activate signaling pathways like NF-κB and MAPKs, 
which ultimately activate the caspase-8 and caspase-3, triggering a 
cascade of apoptosis. Early intervention to block the signaling 
pathways responsible for inflammatory transmission and inhibition 
and neutralization of TNF-α have significant implications for the 
management of sepsis in clinical individuals (Li and Jiang, 2023).

IL-1β, recognized as a cytokine catabolin, belongs to the IL-1 family, 
comprising 11 genes, and is generated following the activation of the 
inflammasome, notably NLRP3. IL-1β serves as a pivotal early cytokine 
in immune modulation and inflammatory reactions, predominantly 
synthesized by activated monocytes/macrophages, and assumes a 
significant role in tissue injury (Li and Jiang, 2023). It has great potential 
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in mediating pathological damage, such as activating T cells, stimulating 
cell production of PGI2, IL-1, IL-6, promoting B cell growth, inducing 
adhesion molecule expression in endothelial cells, stimulating matrix 
metalloproteinases and plasminogen activator production in synovial 
cells, inducing bone resorption, and synthesis of acute phase proteins in 
the liver (Ge et  al., 2019). The collective action of these functions 
exacerbates systemic inflammatory response, and research has 
demonstrated that levels of IL-1β are elevated in sepsis non-survivors in 
comparison to survivors, indicating a relationship between heightened 
IL-1β levels and sepsis outcomes (Cao et  al., 2023). The study of 
inflammatory mediators has always been an important pathological and 
physiological aspect in the development of sepsis, as their levels and 
changes directly reflect the occurrence, development, and prognosis of 
sepsis (Wang et al., 2018). In recent years, the role of cytokines in the 
pathogenesis of sepsis-induced organ damage has gained increasing 
attention from researchers. Targeted therapies directed against 
inflammatory pathways hold great promise in fundamentally preventing 
the occurrence and progression of sepsis-induced organ damage.

Some clinical trials have sought to treat sepsis by obstructing 
certain facets of the inflammatory response, such as tumor necrosis 
factor and interleukin-1, which are specific inhibitory targets, but the 
results have often been unsatisfactory. These trials were initiated on 
the basis of preclinical studies that suggested their efficacy (Takeyoshi 

et al., 2005). Three pieces of evidence support the notion of cytokine 
suppression. Firstly, patients with elevated levels of cytokines are more 
predisposed to mortality. Secondly, experimental animal models 
indicate that blocking cytokines can ameliorate outcomes. Thirdly, 
injecting purified recombinant cytokines leads to organ damage and 
mortality in experimental animals (Remick, 2003). Since the inception 
of these trials, several other facets of the inflammatory response have 
been unearthed, with potential new targets including interleukin-18 
and HMG-1 (Deng et al., 2022). Nevertheless, prior to commencing 
new clinical trials, careful consideration must be  given as to why 
previous interventions proved futile. The concept of blocking 
individual elevated cytokines may be overly simplistic for addressing 
the intricate issues of sepsis. As patients traverse through various 
stages of the septic response, there may be appropriate intervals to 
inhibit multiple cytokines, while at other times, enhancing the 
immune response may be more fitting (Hotchkiss and Karl, 2001).

5 Mechanisms of endothelial cell 
damage

The main manifestations of sepsis are hypotension, MODS, and 
DIC. The key pathogenesis of sepsis is endothelial cell injury 

FIGURE 3

Immune cell response following bacterial infection. Neutrophils and macrophages are activated after bacterial infection. Neutrophils regulate T cells by 
releasing IL-2, IL-4, and promote inflammation by releasing TNF-α, IL-1β. Macrophages engulf pathogens through phagocytosis and present them to T 
cells via the MHC II pathway, promoting the differentiation of TH0 to TH1. TH1 cells activate CTL by secreting IL-2 and promote antibody production 
by plasma cells through the secretion of IF-γ, neutralizing extracellular toxins. Source from: Figdraw.
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(Semeraro et al., 2012). When endothelial cells are damaged, fluid 
leakage from the blood vessels leads to hypotension, ischemia in 
important organs causes dysfunction, and activation of coagulation 
factors leads to thrombosis. Impaired endothelial cell junctions and 
degradation of glycocalyx are key features of endothelial cell injury in 
sepsis (An, 2009). The connecting structures between endothelial cells 
are divided into three types: adherent junctions, tight junctions, and 
gap junctions. These junction complexes play pivotal roles in 
maintaining tissue integrity, regulating vascular permeability, 
facilitating leukocyte extravasation, and promoting angiogenesis. 
When a large number of inflammatory mediators act on endothelial 
cells, endothelial cell junctions become impaired and vascular 
integrity is disrupted (Wallez and Huber, 2008). Glycocalyx is 
composed of membrane-bound domains containing core proteins 
(such as proteoglycans and glycoproteins bound to oligosaccharides) 
and plasma proteins (such as albumin and anticoagulants). In the 
physiological state, its structure and composition remain intact. 
However, under pathological factors like TNF-α, oxidized lipoprotein, 
lipopolysaccharide, ischemia/reperfusion, hyperglycemia, or 
inflammatory stimulation, glycocalyx undergoes degradation and 
shedding (Foote et al., 2022). Studies have shown that the thickness 
and integrity of endothelial cell glycocalyx decrease under exposure 
to lipopolysaccharide and TNF-α (Beurskens et al., 2020). During the 
progression of sepsis, pro-inflammatory cytokines frequently trigger 
the activation of mast cells, resulting in the degranulation of mast cells 
and subsequent liberation of cytokines, histamine, proteases, 
heparinases, and other glycocalyx-degrading elements. This process 
damages the endothelial glycocalyx and alters endothelial cell 
permeability (Becker et  al., 2015). On the other hand, glycocalyx 

shedding exposes integrin and selectin, leading to increased leukocyte 
adhesion and exudation, endothelial and tissue inflammation, 
increased vascular permeability, making exudate, albumin and other 
solutes enter the intercellular space, aggravating tissue edema and 
reducing blood pressure (Lipowsky, 2018). When the integrity of the 
blood vessel wall is compromised and stimulated by various 
microorganisms and their metabolites, endotoxins, inflammatory 
cytokines, and complement, tissue factor (TF) can be expressed and 
released by endothelial cells, neutrophils, monocytes, eosinophils, and 
platelets (Schouten et al., 2008). Upon entering the bloodstream, it 
activates factor VII and forms a TF/VIIa complex. This complex 
subsequently activates factor X, catalyzing the conversion of 
prothrombin into thrombin. Through an expanding positive feedback 
mechanism, extensive microvascular thrombosis is formed 
(Konigsberg et al., 2001). During states of inflammation, the body 
employs three crucial anticoagulant pathways: AT, APC, and TFPI 
(Okajima, 2001). Under normal physiological conditions, t-PA and 
u-PA released by endothelial cells serve as primary drivers of 
fibrinolysis, converting plasminogen to plasmin to break down and 
eliminate fibrin clots. Simultaneously, endothelial cells can produce 
the plasminogen activator inhibitor-1 (Grulich-Henn and Müller-
Berghaus, 1989). In sepsis, although the levels of t-PA and u-PA 
increase, but TNF-α and IL-1 may increase the expression of PAI-1, 
leading to an overall fibrinolysis inhibition (Oszajca et  al., 2008). 
Furthermore, the breakdown of other bodily barriers can also 
contribute to the progression of sepsis, such as the blood–brain 
barrier, peritoneal barrier, and others (Grigor'ev et al., 2006; Gao and 
Hernandes, 2021). Damage to epithelial cells can also lead to sepsis. 
Epithelial cells line the surfaces of various organs and mucous 

FIGURE 4

Ferroptosis in sepsis. In the pathogenesis of sepsis, abnormalities in iron metabolism, lipid peroxidation, dysregulation of the redox system, and 
decreased ferritin levels may lead to cellular metabolic disturbances. This disruption further triggers phospholipid peroxidation, resulting in ferroptosis 
of cells, ultimately culminating in organ dysfunction. Source from: Figdraw.
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membranes in the body, such as the respiratory tract, digestive tract, 
and genitourinary tract. Damage to epithelial cells can allow pathogens 
to enter the body, triggering infection and subsequent progression to 
sepsis (Subramanian et al., 2020; Guo et al., 2022; Wang et al., 2024).

6 Ferroptosis in sepsis

Ferroptosis is a cell death process that is intracellularly iron-
dependent and involves lethal lipid peroxidation reactions, 
encompassing iron overload, ROS generation, and increased levels of 
polyunsaturated fatty acids in phospholipids. This leads to loss of cell 
membrane integrity, disruption of lipid cross-linking affecting normal 
cell membrane function, and oxidative damage to macromolecules 
and cell structures, ultimately resulting in cell death (Jiang et  al., 
2021). The mechanism may involve inhibition of cellular uptake of 
cysteine, leading to decreased intracellular glutathione (GSH) and 
inactivation of glutathione peroxidase 4 (GPX4), causing an imbalance 
in the body’s redox system, accumulation of excessive lipid peroxides, 
and triggering cell death (Chen et al., 2021). Morphological features 
include increased cytoplasmic and lipid peroxides, presence of 
mitochondria smaller than normal in the cytoplasm, with condensed 
and elevated membrane density, reduced cristae, and rupture of the 
mitochondrial outer membrane (Wang et al., 2020). Intense stress 
during sepsis can lead to metabolic disturbances in ions, lipids, and 
energy (Wasyluk and Zwolak, 2021). Dysregulation of iron 
homeostasis in the body may result in iron accumulation and 
abnormal distribution, leading to iron-dependent cell death. Under 
physiological conditions, excess Fe2+ in cells is oxidized to Fe3+ and 
stored in ferritin (Tang et al., 2021). However, during sepsis, infection 
stimulates the upregulation of nuclear receptor coactivator 4 
(NCOA4), which specifically recognizes ferritin, initiating ferritin 
autophagy, releasing a large amount of Fe3+, elevating intracellular 
free iron concentration, and promoting iron-dependent cell death 
(Wu et al., 2022). Patients with sepsis can also significantly increase 
ROS levels through the Fenton reaction, where ROS reacts with 
polyunsaturated fatty acids (PUFAs) to form toxic lipid peroxides that 
cause iron-dependent cell death (Du et al., 2023). Under physiological 
conditions, the body also produces ROS and other oxidants, which are 
promptly reduced to harmless substances by the body’s reductive 
system. However, during sepsis, immune system dysregulation leads 
to imbalance in the reductive system, causing lipid peroxidation 
disturbances and triggering iron-dependent cell death (Su et al., 2019). 
Furthermore, during infection, the body produces a large number of 
inflammatory factors such as IL-6, which inhibits hepcidin production 
in the liver, leading to increased iron concentration in the blood (Li 
and Wang, 2023). Iron is a crucial catalyst that promotes oxidative 
stress reactions, generating large amounts of reactive oxygen species. 
Excessive production of reactive oxygen species can result in extensive 
cell death, leading to organ dysfunction and multi-organ failure (Li 
et  al., 2020). Additionally, hyperferritinemia can increase the 
production of inflammatory mediators and suppress the generation of 
anti-inflammatory mediators, causing damage to self-tissues through 
excessive inflammatory reactions (Li et al., 2020; Sun et al., 2020). 
Studies have shown a significant correlation between elevated serum 
iron levels, infection markers, lipid peroxidation levels, and increased 
long-term mortality and incidence of cognitive impairment in sepsis 
patients (Lan et  al., 2018). Therefore, reducing intracellular iron 

deposition, alleviating inflammatory reactions and lipid peroxidation 
levels, and blocking the signaling pathways related to iron-dependent 
cell death may provide new insights into the treatment of sepsis (Li 
et al., 2020). Increasing evidence suggests that iron ions play a crucial 
role in anti-inflammation and sepsis, and the effects of drugs targeting 
iron-related molecules, such as iron ion inhibitors, in sepsis are 
gradually being confirmed (Xl et al., 2022).

7 Progress in the treatment of sepsis

Currently, the clinical treatment of sepsis mainly includes fluid 
resuscitation, early antimicrobial therapy, and comprehensive 
therapies such as vasopressors, glucocorticoids, and antimicrobial 
peptides (Srzić et al., 2022; Wang and Zhang, 2023). Due to the critical 
role of immune regulation in sepsis, immunotherapy holds great 
promise and has made significant achievements in the field of 
oncology. Immunotherapy for sepsis mainly focuses on cytokine 
modulators, immune checkpoint inhibitors, and anti-apoptosis agents 
to promote proliferation of immune cells (Liu et al., 2022; Wang and 
Zhang, 2023). Animal studies have shown promising results for IL-7 
and PD-L1, while research on GM-CSF and IFN-γ is ongoing. 
Cytokine modulators regulate the inflammatory response by 
promoting pro-inflammatory cytokines or inhibiting anti-
inflammatory cytokines (Heming et al., 2016). Lipopolysaccharide 
combined with IFN-γ can inhibit macrophage autophagy, promote 
macrophage activation, facilitate bacterial clearance, and improve 
survival (Patoli et al., 2020). Immune checkpoint inhibitors, such as 
PD-1/PD-L1, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), 
and indoleamine 2,3-dioxygenase, have been well-established for anti-
tumor immunotherapy and hold great potential for sepsis treatment 
(Zhang et al., 2021; Liu et al., 2022). PD-1/PD-L1 blockade can restore 
the function of neutrophils, monocytes, T cells, and natural killer 
(NK) cells in sepsis-induced immunosuppression (Chen and Zhou, 
2021). The CTLA-4 pathway is involved in neutrophil-mediated T cell 
dysfunction in sepsis, and CTLA-4 antibody 33 can improve survival 
and T cell function in septic mice (Sun et al., 2021). IL-7 induces 
IFN-γ secretion, promotes T cell proliferation, and inhibits apoptosis 
(de Roquetaillade et  al., 2018). GM-CSF and G-CSF enhance the 
production of granulocytes and macrophages, suppress cytokine 
storm, and maintain lung physiology, showing promise as 
immunomodulators for sepsis with immune paralysis (Venet and 
Monneret, 2018). As sepsis progresses rapidly, shortcomings in 
immunomodulatory therapy should be noted. Immunotherapy for 
tumors may lead to significant immune toxicities, including skin 
reactions, endocrine disorders, hepatic and renal damage, 
gastrointestinal toxicity, pneumonia, and rare neurologic and cardiac 
toxicities (Wesley et  al., 2021). Patients with sepsis are prone to 
experience more severe adverse reactions once they develop these 
toxicities (Fessas et al., 2020). Furthermore, the use of antibiotics for 
sepsis treatment may reduce the efficacy of immunomodulators, thus 
necessitating further research to enhance immunotherapy for sepsis 
(Gopalakrishnan et al., 2020).

Gene therapy is regarded as one of the most promising new methods 
for treating diseases (Hattori et al., 2018). Numerous signaling pathways 
implicated in the inflammatory cascade of sepsis have been elucidated, 
encompassing NF-κB, JAK/STAT, PI3K/Akt/mTOR, and p38/MAPK 
(Xu and Chu, 2022). Inhibiting signaling pathways and the expression 
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of downstream genes has emerged as a burgeoning field in sepsis 
treatment. However, numerous challenges still need to be overcome.

The NF-κB signaling pathway is a classic pathway for studying 
the pathogenesis of sepsis. NF-κB serves as a pivotal mediator of the 
inflammatory response and holds significant importance for the 
development of sepsis (Brown and Jones, 2004). When inactive, 
NF-κB can associate with inhibitory protein inhibitor of κB (IκB) 
subunits in the cytoplasm, thereby liberating the IκB kinase complex 
to impede NF-κB’s binding affinity for nuclear receptors, consequently 
hindering its migration into the nucleus (Mulero et  al., 2019). 
Nevertheless, upon stimulation, the IκB kinase complex becomes 
activated, phosphorylating specific sites and lifting the constraint on 
NF-κB, thus promptly facilitating its translocation into the nucleus 
and causing the swift release of cytokines like TNF-α, IL-1, IL-6, 
forming an inflammatory storm (Prescott et al., 2021). Meanwhile, a 
large amount of inflammatory cytokines can also interact with the 
NF-κB pathway, creating a feedback loop (Kawai and Akira, 2007). 
Additionally, NF-κB can regulate apoptosis-related genes, including 
inhibiting the anti-apoptotic factors Bcl-2 and Bcl-xL and enhanced 
the pro-apoptotic factors Bax and Caspase (Wu et al., 2021). Excessive 
activation of the NF-κB pathway and massive apoptosis of 
macrophages can aggravate the inflammatory response and organ 
damage, which is a key reason for the high mortality rate in sepsis 
(Qiu et  al., 2019). Therefore, by targeting the NF-κB pathway, 
regulating the activity of immune cells like macrophages and 
reducing the levels of NF-κB-driven cytokines like TNF-α, and IL-1, 
it is plausible to effectively attenuate the inflammatory reaction in 
sepsis and decrease mortality rates among patients (Li et al., 2023). 
The following are inhibitors that target the NF-κB pathway to treat 
sepsis (as shown in Table 1) (Huang et al., 2021; Bahuguna et al., 
2022; Fang et al., 2023; Hibbert, 2023; Shan et al., 2023; Zhang et al., 
2023; Liu et al., 2024).

The JAK/STAT pathway is an intricate signaling cascade that is 
subject to regulation by a myriad of factors. It plays a crucial role in the 
pathogenesis of sepsis by participating in the signal transduction of 
various cytokines and forming a network effect. Due to its unique 
strength and persistence, the regulatory factors can affect the JAK/
STAT pathway from different angles and different target points (Morris 
et al., 2018). JAKs are members of the Janus soluble tyrosine kinase 
family associated with receptors without intrinsic kinase activity. The 
family includes four members: JAK1, JAK2, JAK3, and Tyk2 (Agashe 
et al., 2022). JAK3 is mainly restricted in hematopoietic cells, while 
JAK1, JAK2, and Tyk2 are more widely distributed and involved in 
signal transduction of various cytokines and hormones such as 
interferon-7 (IFN-7), interleukin (IL), and growth factors (Kisseleva 
et al., 2002). TNF-α and IL-6 serve not only as markers for assessing the 
severity and prognosis of sepsis but also as pivotal early inflammatory 
mediators driving organ dysfunction and mortality (de Bont et al., 
1994). In the early stage of infection, cascade reactions are further 
promoted by the release of cytokines, which accelerate the acute phase 
inflammatory response of the body, leading to neutrophil adhesion to 
endothelial cells, activation of the coagulation system, causing the 
eventual onset of sepsis (Chen et al., 2023). The activation of STAT3 is 
intricately linked to the release of IL-6 during the acute phase response 
triggered by endotoxin (Greenhill et al., 2011). The HMGB-1 is a novel 
late inflammatory mediator implicated the pathogenesis of sepsis. It is 
an important inflammatory factor causing endotoxin-induced death, 
has a wide range of extracellular inflammatory effects, and can 
accelerate the further development of sepsis by inducing and amplifying 
pro-inflammatory factors (Nogueira-Machado and de Oliveira Volpe, 
2012). Research has shown that the JAK/STAT pathway is highly 
activated during sepsis, and the expression of HMGB-1 mRNA in 
tissues is significantly enhanced and shows sustained expression (Kim 
et  al., 2009). Therefore, inhibiting the activation of the JAK/STAT 
pathway can significantly reduce the cascading reaction of 
inflammatory responses after severe infection. Below are JAK/STAT 
pathway inhibitors that have been clinically used, but their therapeutic 
effects on sepsis have not been fully demonstrated (as shown in Table 2) 
(Li et al., 2020; Verra et al., 2023; Zhang et al., 2023).

The PI3K/AKT signaling pathway is currently the only known 
autophagy-inhibiting signaling transduction pathway, which has been 
confirmed in many studies related to tumors and metabolic diseases. 
Existing research has also confirmed that this pathway is involved in 
the regulation of expression of various inflammatory factors in sepsis 
(Tian et  al., 2023). PI3K is a lipid kinase that widely exists in the 
cytoplasm of various mammalian cells. After receiving signals from 
tyrosine kinases and G protein-coupled receptors on the cell surface, it 
recruits the regulatory subunit p85 in close proximity to the plasma 
membrane. Upon binding with the p85 subunit, the p110 subunit 
catalyzes the transformation of phosphatidylinositol 4,5-bisphosphate 
(PIP2), a substrate within the membrane, into phosphatidylinositol 
3,4,5-trisphosphate (PIP3). Then, PIP3 binds to the N-terminal PH 
domain of AKT, triggering the relocation of AKT from the cytoplasm 
to the cellular membrane. With the assistance of PDK1 and PDK2, 
AKT is phosphorylated at the threonine phosphorylation site (Thr308) 
and the serine phosphorylation site (Ser473), culminating in its 
activation (Ersahin et al., 2015). mTOR, a serine/threonine protein 
kinase, is evolutionarily conserved and activates AKT. Activated AKT 
can phosphorylate mTOR, enhancing its activity. mTOR has at least 
two different catalytic subunits in different complexes, mTORC1 and 
mTORC2 (Kim and Guan, 2015). Currently, it is believed that activated 

TABLE 1 Inhibitors of the NF-κB signaling pathway.

Drugs Significant References

Astragaloside

Dimethyl Fumarate

glucocorticoid

MG-132

Paeoniflorin

Vitamin C

N-acetyldopamine dimer

Inhibition of IKK

Inhibition of IKK

Induce IKB to inhibit 

NF-κB pathway

Ubiquitin proteasome 

inhibitor

Inhibition of NF-κB 

expression

Inhibits the activity of 

NF-κB

Inhibits the activity of 

NF-κB

Dada and Sznajder 

(2011)

Li and Jiang (2023)

Wang et al. (2018)

Takeyoshi et al. (2005)

Cao et al. (2023)

Remick (2003)

Ge et al. (2019)

TABLE 2 Drugs targeting signaling pathways for sepsis.

Drugs Targeted Reference

Tofacitinib

Ruxolitinib

Baricitinib

Dexmedetomidine

curcumin

Rosavin

Astaxanthin

JAK1 and JAK3

JAK1 and JAK2

JAK1 and JAK2

AKT

mTOR

MAPK

MAPK

Lipowsky (2018)

Schouten et al. (2008)

Konigsberg et al. (2001)

Wang et al. (2024)

Guo et al. (2022)

Li and Wang (2023)

Li et al. (2020)

https://doi.org/10.3389/fmicb.2024.1415274
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2024.1415274

Frontiers in Microbiology 11 frontiersin.org

mTOR exerts autophagy-regulating effects through two pathways. One 
is the direct phosphorylation of autophagy proteins, as mTOR can 
phosphorylate various autophagy proteins, blocking the dimerization 
reaction of ULK1 and hindering the formation of induced 
autophagosomes, thereby inhibiting autophagy (Al-Bari and Xu, 2020). 
The other is that mTOR serves as a convergence point for multiple 
signaling pathways. It has the ability to integrate nutrient and growth 
factor signals and regulate the cell’s life cycle by promoting transcription 
and translation (Yang et al., 2022). Interventions targeting different 
components of the autophagy pathway and modulating the activity of 
signaling pathways at different stages of the disease may become new 
therapeutic approaches and breakthroughs for treatment. mTOR is a 
relatively easily regulated target that has been discovered in tumors and 
other disciplines. Inhibiting mTOR can effectively activate autophagy, 
and vice versa (Xu et al., 2020). Currently, PI3K-AKT–mTOR signaling 
pathway inhibitors are mainly utilized for cancer treatment, and more 
research is needed for their application in sepsis treatment (as shown 
in Table 2) (Chen et al., 2022; Rattis et al., 2022).

The MAPK family is a serine/threonine protein kinase that exists in 
most mammalian cells. It catalyzes the reversible protein 
phosphorylation and activates the cascade kinase reaction, with a highly 
conserved molecular structure (Kim and Choi, 2010). The four isoforms 
of the p38 MAPK family are activated by dual phosphorylation at 
threonine (T) and tyrosine (Y) sites by MAPK kinases (MKKs). The two 
sites are separated by one amino acid and form a TGY motif activation 
loop, further activating downstream cytokines and regulating 
physiological processes such as inflammation, apoptosis, and oxidative 
stress (Cuadrado and Nebreda, 2010). Research has shown that the p38 
MAPK pathway can regulate the immune cells to release 
pro-inflammatory cytokines. For example, activated p38 MAPK 
promotes monocytes to release IL-1 and TNF-α, neutrophils to release 
IL-8 (Liu et al., 2007). In the cytoplasm, activated p38 MAPK promotes 
the biosynthesis of TNF-α by upregulating the expression of MAPK-
activated protein kinases 2 and 3 proteins (Haddad and Land, 2002). 
During sepsis, tissue cells are in a stressed state, and the p38 MAPK 
pathway is easily activated by inflammatory mediators, heat shock, or 
reactive oxygen species (ROS). ROS can activate downstream cytokines 
by coupling with Grb2, thereby participating in the activation of the p38 
MAPK signaling pathway (Qin et  al., 2023). p38 MAPK indirectly 
activates H3 by phosphorylating MSK1 downstream, and H3 is involved 
in chromatin formation by binding to DNA in the nucleus. Excessive 
phosphorylation of H3 can cause chromatin condensation and cell cycle 
arrest, thereby promoting apoptosis (Kikuchi et al., 2013). p38 MAPK 
can also lead to the accumulation of p53 beyond a certain threshold, 
triggering apoptosis by phosphorylating the Ser15 site of p53 (Roy et al., 
2018). In summary, the p38 MAPK pathway regulates the progression 
of sepsis by modulating oxidative stress, the release of inflammatory 
mediators, and apoptosis. Therefore, inhibiting the activity of the p38 
MAPK pathway may become a novel therapeutic approach to treat 
sepsis (Bauquier et al., 2020). Inhibitors of the p38 MAPK pathway are 
mainly used to treat cancer, and the drugs for sepsis are still under 
investigation (as shown in Table 2) (Cai et al., 2021; Gao et al., 2023).

8 Conclusion

Here, we summarize the pathophysiological mechanisms and 
treatment strategies of sepsis, which until now has not been clearly 
understood because it is indeed complex and individually varies 
greatly. Numerous studies have shown that sepsis, as a 
multifactorial disease, is closely related to interactions between 
immune cells, inflammatory factor storm, endothelial cell injury, 
and ferroptosis. Molecular biology presents intriguing prospects 
for sepsis management, offering the potential to impede sepsis 
progression by targeting the signaling pathways implicated in its 
inflammatory cascade. However, it is crucial for researchers to 
enhance their comprehension of the intricate interplay among 
these fundamental mechanisms and characteristics. Therefore, 
ongoing and future research is needed to elucidate the relationship 
between root causes, inducements, and clinical treatment of 
sepsis, which may develop new therapeutic concepts with more 
scientific and clinical value.
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