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Background: An escalating body of clinical trials and observational studies 
hints at a plausible link between gut flora and postpartum depression (PPD). 
The definitive causal dynamics between these two entities remain shrouded in 
ambiguity. Therefore, in this study, we  employed the two-sample Mendelian 
randomization approach to ascertain the causal link between gut microbiota 
and PPD.

Methods: Summary-level GWAS data related to the human gut microbiota were 
obtained from the international consortium MiBioGen and the Dutch Microbiome 
Project (species). For PPD, GWAS data were derived from the FinnGen biobank, 
consisting 57,604 cases and 596,601 controls. The inverse variance weighted 
method (IVW) as the cornerstone of our analytical approach. Subsequent to this, 
a comprehensive suite of tests for pleiotropy and heterogeneity were conducted 
to ensure the reliability and robustness of our findings.

Results: We identified 12 bacterial taxa associated with the risk of PPD. 
Veillonellaceae, Ruminococcaceae UCG 011, Bifidobacterium adolescentis, 
Paraprevotella clara, Clostridium leptum, Eubacterium siraeum, Coprococcus 
catus exhibited an inversely associated with the risk of PPD. Alphaproteobacteria, 
Roseburia, FamilyXIIIAD3011group, Alistipes onderdonkii, Bilophila wadsworthia 
showed a positive correlation with the risk of PPD.

Limitations: The GWAS data derived from the MiBioGen consortium, DMP, and 
FinnGen consortium, may introduce selection bias. Moreover, the data primarily 
originates from European populations, hence extrapolating these results to 
diverse populations should be approached with caution. The etiological factors 
behind PPD remain enigmatic, alluding to the existence of potential undisclosed 
confounders.

Conclusion: Based on this MR analysis, we found a causal relationship between 
certain gut microbial communities and PPD. Future clinical studies can further 
explore the treatment of PPD through the combined use of microorganisms. This 
not only offers insights into the pathogenesis of PPD but also lays the foundation 
for utilizing gut microbiota as biotherapeutics in treating neurological disorders.
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1 Introduction

Postpartum depression (PPD) represents a grave mental health 
concern, typically manifesting within a week to several weeks 
following childbirth. Beyond the evident physical and psychological 
toll on the mother, PPD has far-reaching implications for the child, 
potentially hampering their emotional, behavioral, cognitive, and 
intellectual trajectory in ways that can span their lifetime (Josefsson 
et al., 2002; Sohr-Preston and Scaramella, 2006; van der Waerden 
et al., 2017). Globally, it’s estimated that 10–15% of new mothers 
grapple with PPD, although the prevalence fluctuates across regions 
(Palumbo et al., 2017). Alarmingly, the prevalence is heightened in 
developing nations. Countries with the lowest incidence rates of PPD 
include: Singapore (3%), the Netherlands (8%), the United States 
(8.4%), and Switzerland (11%). Countries with higher incidence rates 
include: Chile (38%), South Africa (37%), Turkey (28%), and China 
(21.4%) (Hahn-Holbrook et al., 2017; Liu et al., 2022).

The human gut is a bustling microcosm, In the case of an 
average adult weighing 70 kg, the gut microbiota comprises 
approximately 3.8 × 1013 microorganisms, collectively possessing 
genomic content that dwarfs our own by over 100-fold (Gill et al., 
2006; Sender et al., 2016). The human gut microbiota is composed 
of four major phyla: Firmicutes, Bacteroidetes, Proteobacteria, 
and Actinobacteria (Eckburg et al., 2005). In some cohort studies, 
compared to healthy controls (HC), patients with Major 
Depressive Disorder (MDD) exhibit higher abundances of 
Bacteroidetes, Proteobacteria, and Actinobacteria (Jiang et al., 
2015). In patients with PPD, a relatively lower abundance of the 
Firmicutes phylum is observed (Zhou et al., 2020). A burgeoning 
body of evidence points to intricate bidirectional communication 
between our brains and gut, with the microbial denizens and 
their metabolic by-products playing pivotal roles. This intricate 
dialogue is called the brain-gut-microbiota axis (Mayer et  al., 
2014; Cryan et  al., 2019). In patients with depression, the 
homeostasis of the gut microbiota is disrupted, leading to 
impaired gut function. This, in turn, results in intestinal barrier 
dysfunction and various inflammatory responses (Liu et  al., 
2023). These inflammatory responses are correlated with the 
pathogenesis of depression. The brain-gut axis is bidirectional, 
with the vagus nerve being the primary regulatory pathway 
between the brain and the gut microbiota. Some studies suggest 
that subdiaphragmatic vagotomy may reduce inflammatory 
responses, thereby alleviating depressive symptoms (Zhang et al., 
2020; Pu et al., 2021). Clinically, vagal nerve stimulation (VNS) 
is an FDA-approved neuromodulation therapy for the treatment 
of severe treatment-resistant depression (TRD). VNS increases 
the levels of serotonin (5-hydroxytryptamine, 5-HT) and 
norepinephrine, and through the anti-inflammatory pathway of 
the vagus nerve, it reduces systemic inflammatory responses, 
thereby improving depressive symptoms (Kamel et  al., 2022). 
Short-chain fatty acids (SCFAs) act as intermediary products 
between the gut microbiota and the brain, primarily including 
acetate, propionate, and butyrate. SCFA produced by gut 
microbiota inhibit histone deacetylases and activate G-protein-
coupled receptors, influencing systemic physiological responses 
(Tan et al., 2014). Among these, propionate can reduce levels of 
γ-aminobutyric acid (GABA), and the indoleamine serotonin 

(El-Ansary et  al., 2012). During pregnancy, alterations in the 
GABA(A) receptor may increase neuronal excitability in the 
brain. However, the sharp decrease in neuroactive steroids in the 
brain after childbirth has a causal relationship with the expression 
of GABA(A) receptors in the hippocampus. This dynamic could 
contribute to the development of postpartum neurological and 
psychiatric disorders (Maguire et al., 2009). Regulating the gut 
microbiota can improve intestinal barrier function, reduce 
systemic inflammatory responses, and increase the abundance of 
beneficial bacteria in the gut. This enhances their ability to 
produce beneficial metabolites such as SCFAs and GABA, which 
have positive effects on alleviating and treating postpartum 
depression (Ramsteijn et al., 2020; Tian et al., 2021).

Mendelian Randomization (MR), rooted in epidemiology, 
leverages single nucleotide polymorphisms (SNPs) identified in 
genome-wide association studies (GWAS) as instrumental 
variables (IVs) to estimate the causal relationship between 
exposure factors and disease outcomes. These SNPs are 
genetically associated with the exposure factors but are not 
influenced by confounding factors and reverse causation. The 
advantage of MR is that these instrumental variables are 
predetermined conceptually, greatly minimizing the impact of 
potential confounders and reverse causality (Ellervik et al., 2019). 
Recent studies have applied MR to analyze the causal relationship 
between psychiatric disorders and the gut microbiome. 
Actinobacteria, Bifidobacterium, Ruminococcus1, and 
Streptococcaceae have been associated with MDD (Chen et al., 
2022), Prevotellaceae with autism spectrum disorder, 
Betaproteobacteria with bipolar disorder (Ni et al., 2021). Despite 
the presence of symptomatic and genetic parallels between PPD 
and MDD, substantial disparities in their etiology and treatment 
methodologies are evident (Jairaj and Rucker, 2022).

Therefore, this study aims to use the MR method to analyze the 
potential causal relationships between various levels of gut 
microbiota and PPD, to explore the differences in the gut 
microbiota between PPD and MDD, and other psychiatric 
disorders, thus providing new insights into treatment approaches 
for PPD.

2 Materials and methods

2.1 Mendelian randomization analysis

MR provides one method for assessing the causal nature of some 
exposures (Smith and Ebrahim, 2003; Lawlor et  al., 2008). In 
epidemiological research, MR harnesses genetic variants as 
instrumental variables (IVs) to decipher the causal interplay between 
exposure and its consequent outcome (Bowden and Holmes, 2019).

To perform an MR study, three main assumptions must be fulfilled 
(Konig and Greco, 2018). (1) There must be  a strong correlation 
between the genetic variant and the exposure; (2) the genetic 
instrument is independent of potential confounders of the exposure-
outcome association; (3) the genetic variant should be solely associated 
with the outcome through the exposure, without being influenced by 
other confounders (Haycock et al., 2016; Konig and Greco, 2018; Hirtz 
et al., 2022).
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2.2 Study design

In this research design, gut microbiota SNPs are taken as the 
exposure variable, and PPD is considered as the outcome variable. 
Figure 1 illustrates the detailed flowchart.

2.3 Data source

Summary-level GWAS data related to the human gut microbiota 
from the international consortium MiBioGen (Kurilshikov et  al., 
2021) and the Dutch Microbiome Project (DMP) (Lopera-Maya et al., 
2022). GWAS summary-level data on PPD were obtained from the 
FinnGen biobank, comprising a total of 67,205 individuals of 
European ancestry, including 7,604 cases, 59,601 controls. The detailed 

descriptions of exposure and outcome, including the data source are 
presented in Table 1.

2.4 Selection of instrumental variable

To ensure the accuracy and reliability of the causal effect between 
gut microbiota and PPD, we  adopt the following quality control 
methods to select microbiota-related IVs:

 1 Based on previous experience and to obtain more comprehensive 
results, we select IVs with a significance threshold of p < 10−5.

 2 To rule out the influence of linkage disequilibrium on the 
results, we used PLINK software with threshold values set at 
clump_kb = 5,000 and clump_r2 = 0.001.

FIGURE 1

Overview of the analysis process of the causal relationship between the gut microbiota and PPD through MR analysis.

TABLE 1 Information of the data source for gut microbiota and PPD.

Variables Consortium Traits Sample size nSNPs nTaxa Websites

Exposure

MiBioGen

Phylum

18,340

9

https://mibiogen.gcc.rug.nl/

menu/main/home

Class 16

Order 20

Family 35

Genus 131

DMP Species 8,208 105

https://dutchmicrobiomeproject.

molgeniscloud.org/menu/main/

home

Outcome FinnGen PPD 67,205 16,376,275 https://www.finngen.fi/en
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 3 To ensure that SNPs for exposure and outcome are influenced 
by the same alleles, we  are excluding palindromic SNPs 
from IVs.

 4 The first assumption of MR can be  directly validated by 
calculating the F-statistic. An F-statistic greater than 10 
indicates the absence of weak instrument bias (F for a single 
SNP equals β2/SE2) (Hirtz et al., 2022).

2.5 Mendelian randomization methods

In the current study, all analyses were performed using R 
software version 4.3.2, utilizing the “Mendelian-Randomization” 
package. Five popular MR methods were used: Inverse-variance 
weighted (IVW), MR-Egger, weighted median estimator, simple 
modal-based estimation, and the weighted mode method. Each 
statistical method operates under its own set of methodological 
assumptions. The IVW method estimates the overall causal effect of 
an exposure on an outcome by performing a weighted average of the 
effects of multiple genetic variants. This approach assumes the 
absence of horizontal pleiotropy (Burgess et al., 2013). The MR-Egger 
assumes the presence of pleiotropy in >50% of SNPs (Bowden et al., 
2015). When less than 50% of the information comes from invalid 
IVs, the weighted median estimator offers a consistent estimate of 
causal effects (Bowden et al., 2016). While the modal-based estimate 
(MBE) has a weaker ability to detect causal effects, it relaxes 
instrumental variable assumptions and requires a smaller sample 
size (Hartwig et  al., 2017). Under different methodological 
assumptions, IVW results are more reliable in the absence of 
heterogeneity and pleiotropy. In the presence of heterogeneity but 
no pleiotropy, the WM method is more reliable. When pleiotropy 
exists, the MR-Egger method performs better (Burgess and 
Thompson, 2017).

To satisfy the third assumption of MR and ensure the accuracy 
and stability of the results, further sensitivity analysis was conducted:

 1 Cochran’s Q test is used to quantify the heterogeneity between 
SNPs. A p-value less than 0.05 indicates significant 
heterogeneity (Bowden et al., 2019).

 2 MR-PRESSO and MR-Egger regression tests are employed to 
detect potential horizontal pleiotropic effects. If the intercept 
term is significant, it means the existence of horizontal 
multiplicity. Compared to MR-Egger, MR-PRESSO offers 
higher accuracy (Verbanck et al., 2018).

 3 The leave-one-out sensitivity analysis is adopted to assess the 
stability of the results.

3 Results

3.1 Instrumental variables selection

Detailed information for 3,509 IVs is presented in 
Supplementary Table S1 (p-value < 1e−5). These IVs are categorized 
into 9 phyla (121 SNPs, range 10–18), 20 orders (275 SNPs, range 
5–19), 16 classes (219 SNPs, range 8–22), 33 families (438 SNPs, range 

5–21), 119 genera (1,511 SNPs, range 3–26), 105 species (945 SNPs, 
range 1–17). The F-statistic of each IV was greater than 10 
(Supplementary Table S1).

3.2 Two-sample MR

We employed IVW as the primary analysis method for MR. The 
results indicate an association between the risk of PPD and 13 
genetically predicted bacterial taxa (Figure  2). The results are 
presented in Table 2.

Using the IVW method as the primary analysis, the results 
indicated that 13 bacterial taxa were associated with the risk of PPD 
when the significance level was less than 0.05. Specifically, the 
following taxa were inversely associated with the risk of PPD: 
Clostridiales vadin BB60 group, Veillonellaceae (at family level); 
Ruminococcaceae UCG 011 (at genus level); Bifidobacterium 
adolescentis, Paraprevotella clara, Clostridium leptum, Eubacterium 
siraeum, Coprococcus catus (at species level). Whereas the following 
taxa may be associated with a higher risk of PPD: Alphaproteobacteria 
(at class level); FamilyXIIIAD3011 group, Roseburia (at genus level); 
Alistipes onderdonkii, Bilophila wadsworthia (at species level) 
(Figure 2; Table 2). The scatter plots (Supplementary Figure S1) and 
forest plots (Supplementary Figure S2) of the above results 
demonstrate the stability of the findings.

Table 3 shows that the instrumental variable of Clostridiales vadin 
BB60 group has a significant heterogeneity with the outcome by 
Cochran’s Q test (p < 0.05), and the others were no significant 
heterogeneity identified among the SNPs (p > 0.05).

Table 4 shows that there was no demonstrated pleiotropy detected 
in the MR Egger test (p < 0.05). MR-PRESSO suggests that Clostridiales 
vadin BB60 group has horizontal pleiotropy with outcome (p = 0.04, 
Table 3). According to the findings of the leave-one-out analysis, no 
SNPs were found to have affected causal association 
(Supplementary Figure S3).

4 Discussion

Our MR analysis further illuminated a nominal causal bond 
linking PPD with 13 distinct microbial taxa. To ensure the 
transparency and completeness of our Mendelian Randomization 
study report, we  adopted the STROBE-MR guidelines 
(Supplementary Table S2). STROBE-MR is a set of reporting 
guidelines specifically designed for Mendelian Randomization studies, 
consisting of 20 items. We have provided the complete STROBE-MR 
checklist in the appendix for readers’ reference.

Observational research findings indicate a decrease in the 
abundance of the Faecalibacterium genus in patients with PPD (Zhou 
et al., 2020), a phenomenon that aligns with the negative correlation 
we  observed with Ruminococcaceae UCG 011 through our MR 
analysis. Ruminococcaceae portray a noticeable reduction in 
individuals with pronounced depression (Radjabzadeh et al., 2022). In 
the realm of animal studies, they exhibit a positive association with 
vital sugar metabolic cascades, such as gluconeogenesis, glycolysis, 
and the pentose phosphate trajectory (Zhang et al., 2019). Given that 
obesity is one of the comorbidities of depression, we hypothesize that 
it might indirectly affect PPD. Within Ruminococcaceae, 
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Faecalibacterium prausnitzii is one of the main bacteria in the human 
gut and converts acetate to butyrate through the butyryl-CoA: acetate 
CoA-transferase (Duncan et  al., 2002). This mechanism could 
potentially account for the diminished abundance of the 
Faecalibacterium genus observed in patients with PPD.

Previous MR studies on the gut microbiota and MDD indicated 
that the Actinobacteria class, Bifidobacterium genus, and 
Ruminococcus1 genus had a protective effect against MDD (Chen 
et al., 2022). This aligns with our findings for Ruminococcaceae UCG 
011 (OR 0.845, 95%CI 0.757–0.944) and Bifidobacterium adolescentis 
(OR 0.853, 95%CI 0.761–0.956). Bifidobacterium, the most common 
microbe within Actinobacteria in the human gut, is also a widely-used 
probiotic. A study demonstrated that Bifidobacterium can alleviate 
depression and gut-related diseases by altering the gut microbiota and 
its tryptophan metabolism (Tian et al., 2022). Postpartum, women 
experience an increase in the abundance of Bifidobacterium, a change 
that may also enhance the production of short-chain fatty acids, 
thereby aiding in the establishment and refinement of the neonatal gut 
microbiota environment (Qin et al., 2022). Given the symptomatic 
similarities between PPD and MDD, Bifidobacterium may also have 
the potential to treat or prevent PPD.

Research has shown that good mental health in mothers can 
reduce anxiety and mitigate stress responses, which is crucial for the 
successful delivery and upbringing of offspring (Hillerer et al., 2011). 
The hippocampus, a limbic structure involved in emotion and 
cognition, plays a critical role in these processes. Within the 

hippocampus, brain-derived neurotrophic factor (BDNF) and its 
receptor, TrkB (tyrosine kinase receptor B), are directly involved in 
various physiological functions of the central nervous system, such as 
neuronal survival, synaptic plasticity, and learning and memory 
(Leibrock et  al., 1989; von Bohlen und Halbach, 2010). During 
pregnancy, if a mother is subjected to chronic stress or chronic 
restraint stress (CRS), the expression of BDNF and TrkB in the 
hippocampus can be significantly reduced. This reduction is believed 
to be  one of the contributing factors to the high incidence of 
depression during pregnancy and postpartum (Ye et  al., 2011). 
Notably, repeated restraint stress in the final week of pregnancy can 
induce depressive-like behaviors in mothers (O'Mahony et al., 2006).

The administration of Bifidobacterium adolescentis in mice 
subjected to CRS not only reduces anxiety and depressive-like 
behaviors and increases BDNF expression levels, but also reverses the 
dysbiosis of the gut microbiota induced by CRS (Guo et al., 2019). 
Additionally, Bifidobacterium longum has been shown to significantly 
reduce depressive-like behaviors in the forced swim test (FST) and 
decrease anxiety-like behaviors in the open field test (OFT) (Savignac 
et  al., 2014). The combined use of Bifidobacterium longum and 
Lactobacillus helveticus has been found to alleviate symptoms of 
anxiety and depression in healthy individuals (Radford-Smith and 
Anthony, 2023).

Within the MR assessment, particular bacterial groups, 
Veillonellaceae (OR 0.819, 95%CI 0.715–0.939), Paraprevotella clara 
(OR 0.902, 95%CI 0.825–0.987), Clostridium leptum (OR 0.849, 

FIGURE 2

Forrest plot results from MR between the gut microbiota and PPD risk.
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TABLE 2 Full result of MR estimates for the association between gut microbiota and PPD.

Level Bacterial taxa Method nSNP Bate SE OR (95% CI) p-value

Class Alphaproteobacteria

MR Egger

7

0.595 0.358 1.812 (0.898–3.656) 0.158

Weighted median 0.177 0.121 1.194 (0.943–1.513) 0.142

Inverse variance weighted 0.196 0.096 1.216 (1.008–1.468) 0.041

Simple mode 0.165 0.178 1.179 (0.832–1.671) 0.390

Weighted mode 0.181 0.170 1.198 (0.86–1.671) 0.327

family
Clostridiales vadin BB60 

group

MR Egger

15

−0.010 0.257 0.99 (0.598–1.639) 0.970

Weighted median −0.200 0.099 0.819 (0.675–0.994) 0.043

Inverse variance weighted −0.188 0.093 0.829 (0.691–0.994) 0.043

Simple mode −0.226 0.141 0.798 (0.606–1.051) 0.131

Weighted mode −0.208 0.121 0.813 (0.641–1.03) 0.108

family Veillonellaceae

MR Egger

19

−0.258 0.141 0.773 (0.586–1.019) 0.085

Weighted median −0.234 0.105 0.791 (0.644–0.971) 0.025

Inverse variance weighted −0.199 0.070 0.819 (0.715–0.939) 0.004

Simple mode −0.334 0.173 0.716 (0.51–1.005) 0.069

Weighted mode −0.270 0.123 0.764 (0.6–0.973) 0.042

genus FamilyXIIIAD3011 group

MR Egger

13

−0.078 0.427 0.925 (0.401–2.134) 0.859

Weighted median 0.234 0.120 1.263 (0.999–1.598) 0.051

Inverse variance weighted 0.213 0.091 1.237 (1.036–1.478) 0.019

Simple mode 0.309 0.208 1.362 (0.906–2.048) 0.163

Weighted mode 0.301 0.184 1.352 (0.943–1.938) 0.127

genus Roseburia

MR Egger

14

0.472 0.297 1.604 (0.896–2.872) 0.138

Weighted median 0.234 0.138 1.264 (0.965–1.655) 0.088

Inverse variance weighted 0.211 0.097 1.235 (1.021–1.493) 0.030

Simple mode 0.207 0.243 1.23 (0.764–1.981) 0.410

Weighted mode 0.240 0.223 1.271 (0.82–1.969) 0.302

genus
Ruminococcaceae UCG 

011

MR Egger

8

0.230 0.279 1.258 (0.728–2.175) 0.442

Weighted median −0.158 0.078 0.854 (0.733–0.994) 0.042

Inverse variance weighted −0.168 0.056 0.845 (0.757–0.944) 0.003

Simple mode −0.152 0.111 0.859 (0.692–1.068) 0.213

Weighted mode −0.145 0.111 0.865 (0.696–1.074) 0.231

species
Bifidobacterium 

adolescentis

MR Egger

10

−0.109 0.220 0.896 (0.583–1.379) 0.632

Weighted median −0.144 0.080 0.866 (0.741–1.012) 0.070

Inverse variance weighted −0.159 0.058 0.853 (0.761–0.956) 0.006

Simple mode −0.086 0.130 0.917 (0.711–1.184) 0.524

Weighted mode −0.112 0.113 0.894 (0.716–1.115) 0.346

Species Paraprevotella clara

MR Egger

12

0.154 0.186 1.166 (0.81–1.679) 0.428

Weighted median −0.102 0.062 0.903 (0.8–1.02) 0.099

Inverse variance weighted −0.103 0.046 0.902 (0.825–0.987) 0.025

Simple mode −0.205 0.122 0.815 (0.641–1.035) 0.121

Weighted mode −0.203 0.116 0.816 (0.65–1.025) 0.108

Species Alistipes onderdonkii

MR Egger

7

−0.085 0.451 0.919 (0.379–2.225) 0.859

Weighted median 0.093 0.119 1.097 (0.87–1.385) 0.434

Inverse variance weighted 0.183 0.088 1.201 (1.011–1.427) 0.038

Simple mode 0.038 0.188 1.039 (0.719–1.501) 0.845

Weighted mode 0.036 0.193 1.037 (0.71–1.515) 0.858

(Continued)
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95%CI 0.724–0.996), Eubacterium siraeum (OR 0.854, 95%CI 0.741–
0.984), Coprococcus catus (OR 0.796, 95%CI 0.656–0.965), emerged as 
potentially protective entities.

Veillonellaceae, as non-fermentative microbes, distinguish 
themselves with their propensity to modulate the enzymatic activity 
of methylmalonyl-CoA decarboxylase, thereby playing a pivotal role 
in fatty acid metabolism. Noteworthy is their marked depletion in 
autism-afflicted individuals, potentially influencing lactate 

fermentation and specific short-chain fatty acid synthesis (Gronow 
et al., 2010; Wang et al., 2023). They also show a negative correlation 
with psychological stress (Ma et al., 2023).

Paraprevotella clara can reduce the levels of trypsin in the colon, 
thereby decreasing the likelihood of developing inflammatory bowel 
diseases, while also offering protection against certain viral infections 
in the colon (Li et al., 2022). Intestinal inflammation may reduce gut 
permeability, leading to the translocation of microbes originally 

TABLE 2 (Continued)

Level Bacterial taxa Method nSNP Bate SE OR (95% CI) p-value

Species Clostridium leptum MR Egger 6 0.191 0.438 1.211 (0.513–2.857) 0.685

Weighted median −0.107 0.079 0.899 (0.77–1.049) 0.177

Inverse variance weighted −0.163 0.081 0.849 (0.724–0.996) 0.044

Simple mode −0.094 0.111 0.91 (0.732–1.131) 0.435

Weighted mode −0.064 0.109 0.938 (0.757–1.161) 0.580

Species Eubacterium siraeum MR Egger 12 −0.421 0.328 0.656 (0.345–1.249) 0.229

Weighted median −0.101 0.090 0.904 (0.757–1.079) 0.265

Inverse variance weighted −0.158 0.072 0.854 (0.741–0.984) 0.029

Simple mode −0.053 0.168 0.948 (0.683–1.317) 0.757

Weighted mode −0.050 0.147 0.951 (0.713–1.27) 0.741

Species Coprococcus catus MR Egger 4 −0.344 0.388 0.709 (0.331–1.516) 0.469

Weighted median −0.256 0.126 0.774 (0.605–0.99) 0.041

Inverse variance weighted −0.229 0.099 0.796 (0.656–0.965) 0.020

Simple mode −0.271 0.168 0.763 (0.548–1.061) 0.206

Weighted mode −0.289 0.150 0.749 (0.558–1.005) 0.149

Species Bilophila wadsworthia MR Egger 6 0.116 0.226 1.123 (0.721–1.748) 0.636

Weighted median 0.163 0.100 1.177 (0.967–1.432) 0.104

Inverse variance weighted 0.168 0.081 1.183 (1.01–1.385) 0.038

Simple mode 0.157 0.130 1.17 (0.908–1.508) 0.280

Weighted mode 0.161 0.133 1.175 (0.905–1.525) 0.280

TABLE 3 The heterogeneity results from the Cochran’s Q test.

No Level Bacterial taxa MR-Egger IVW

Q p value Q p value

1 Class Alphaproteobacteria 0.866 0.973 2.202 0.900

2 Family Clostridiales vadin BB60 group 24.069 0.031 25.092 0.034

3 Family Veillonellaceae 14.444 0.635 14.673 0.684

4 Genus FamilyXIIIAD3011 group 7.184 0.784 7.671 0.810

5 Genus Roseburia 11.678 0.472 12.547 0.483

6 Genus Ruminococcaceae UCG 011 4.993 0.545 7.110 0.418

7 Species Bifidobacterium adolescentis 6.022 0.645 6.077 0.732

8 Species Paraprevotella clara 9.865 0.452 11.879 0.373

9 Species Alistipes onderdonkii 3.482 0.626 3.848 0.697

10 Species Clostridium leptum 9.267 0.055 10.847 0.055

11 Species Eubacterium siraeum 13.926 0.176 14.865 0.189

12 Species Coprococcus catus 0.803 0.669 0.898 0.826

13 Species Bilophila wadsworthia 1.168 0.883 1.229 0.942
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present in the intestinal tract into the peripheral circulation, thereby 
disrupting normal brain function and affecting specific behaviors 
(D'Mello et al., 2015). This is consistent with our research findings that 
Paraprevotella clara exhibits a negative correlation with PPD.

Due to a lack of experimental studies, the mechanisms by which 
Clostridium leptum, Coprococcus catus, and Eubacterium siraeum affect 
PPD remain unclear. In a survey study of 1,070 patients with depression, 
Coprococcus was found to be  nearly depleted in individuals with 
depression. Coprococcus possesses biosynthetic pathways related to 
dopamine synthesis and participates in the synthesis of GABA, 
improving the quality of psychological life (Valles-Colomer et al., 2019). 
Clostridium leptum is associated with glucose metabolism (Palmnas-
Bedard et al., 2022), leading us to speculate that Clostridium leptum may 
be related to GABA produced during the body’s glucose metabolic 
processes. However, this hypothesis has not yet been validated.

Five positive results were identified: Alphaproteobacteria (OR 
1.216, 95%CI 1.008–1.468), Roseburia (OR 1.235, 95%CI 1.021–
1.493), FamilyXIIIAD3011group (OR 1.237, 95%CI 1.036–1.478), 
Alistipes onderdonkii (OR 1.201, 95%CI 1.011–1.427), Bilophila 
wadsworthia (OR 1.183, 95%CI 1.01–1.385). A surge in 
Alphaproteobacteria’s presence typically heralds a perturbation in the 
gut’s ecological equilibrium (Litvak et al., 2017). Previous research 
insights spotlight Rhodospirillaceae, a member of the 
Alphaproteobacteria phylum, underscoring its positive correlation 
with the genesis of Alzheimer’s disease (Zhou et al., 2021). Therefore, 
we infer that an increase in the abundance of Alphaproteobacteria 
may signal changes in the gut ecological environment, thereby 
affecting the normal growth of other bacterial communities and the 
composition of their metabolic products.

Roseburia stands as a significant regulator in the realms of gut 
microbiota ecology, immune modulation, and neurological afflictions. 
Within this genus, five species notably dominate: Roseburia intestinalis, 
R. hominis, R. inulinivorans, R. faecis, and R. cecicola (Tamanai-Shacoori 
et  al., 2017). Of these, R. intestinalis holds a particular distinction, 
constituting between 0.9 and 5.0% of the entire microbial community 
and acting as the chief butyrate producer (Hold et al., 2003). In an 
insightful study, colitis-afflicted rats treated with R. intestinalis 
demonstrated a diminished display of anxiety and depressive-like 

symptoms. The underlying mechanism could be R. intestinalis’ influence 
on 5-hydroxytryptamine (5-HT) expression in colonic regions. As a 
neurotransmitter, 5-HT plays a pivotal role in mediating the gut-brain 
axis, influencing brain functionality (Xu et  al., 2021). While the 
abundance of R. intestinalis is lower in patients with depression 
compared to the healthy population (Zheng et al., 2016), other studies 
have shown a higher abundance of R. intestinalis in patients with MDD 
compared to healthy individuals (Jiang et al., 2015). These findings 
highlight that while Roseburia does play a role in neurological diseases, 
its interaction mechanisms are intricate. Furthermore, Reserpine can 
inhibit the central nervous system’s regular functions by altering 
catecholamines and 5-HT levels in brain tissues, leading to depressive 
behaviors (Yan et al., 2023). Taking into account Roseburia’s position as 
a positive determinant in our MR analysis, it’s plausible to hypothesize 
that an overabundance of Roseburia might interfere with levels of 
serotonergic depression markers like 5-HT, thereby affecting the 
functionality of the nervous system.

An increase in the abundance of Bilophila wadsworthia can 
disrupt hippocampal synaptic plasticity, neurogenesis, and gene 
expression. Ketogenic diets and hypoxic environments can alter the 
abundance of Bilophila wadsworthia, thereby impairing cognitive 
behavior (Olson et al., 2021). However, some studies have found that 
ketogenic diets can increase GABA levels. Currently, there is no 
definitive clinical data to indicate whether ketogenic diets can improve 
or exacerbate PPD (Wlodarczyk et al., 2021).

Alistipes onderdonkii is a relatively new bacterium identified to 
increase in abundance under conditions of high stress or prolonged 
fatigue. PPD often involves extended periods of battling fatigue or 
stress. The increase in Alistipes decreases serotonin availability and 
disrupts the gut-brain axis (Parker et al., 2020).

Previous research has conducted numerous analyses on the 
association between the gut microbiome and psychiatric disorders. 
Although PPD shares certain symptomatic and genetic similarities 
with other mental health conditions, the pathogenesis of PPD is 
influenced by multiple factors, particularly fluctuations in hormone 
levels. Therefore, our MR analysis has the potential to reveal more 
causal relationships, paving the way for future research into bacterial 
biosensor detection and therapeutic interventions for related diseases.

TABLE 4 Pleiotropy results from Egger intercept and PRESSO analysis.

No Level Bacterial taxa Egger p value PRESSO p value

1 Class Alphaproteobacteria 0.300 0.91

2 Family Clostridiales vadin BB60 group 0.470 0.04

3 Family Veillonellaceae 0.638 0.743

4 Genus FamilyXIIIAD3011 group 0.500 0.855

5 Genus Roseburia 0.370 0.502

6 Genus Ruminococcaceae UCG 011 0.196 0.501

7 Species Bifidobacterium adolescentis 0.820 0.756

8 Species Paraprevotella clara 0.186 0.414

9 Species Alistipes onderdonkii 0.572 0.700

10 Species Clostridium leptum 0.455 0.098

11 Species Eubacterium siraeum 0.431 0.228

12 Species Coprococcus catus 0.788 0.803

13 Species Bilophila wadsworthia 0.818 0.956
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This study possesses several strengths and limitations. Employing 
the MR method to analyze the causal relationship between PPD and 
the gut microbiota minimizes interference from confounding factors. 
Techniques such as MR-PRESSO and MR-Egger were utilized to 
eliminate the effects of horizontal pleiotropy and heterogeneity, 
ensuring the accuracy of the results. This study refined the 
classification of the gut microbiome down to the species level, making 
the results more comprehensive and detailed compared to previous 
research. However, the study also has its limitations; the GWAS data 
derived from the MiBioGen consortium, DMP, and FinnGen 
consortium, may introduce selection bias. Moreover, the data 
primarily originates from European populations, hence extrapolating 
these results to diverse populations should be  approached with 
caution. The etiological factors behind PPD remain enigmatic, 
alluding to the existence of potential undisclosed confounders. 
Despite employing various methods for sensitivity analysis, the impact 
of horizontal pleiotropy could not be fully assessed. Lastly, in vitro 
experimental validation was not conducted. In future studies, we will 
strengthen the functional validation through related experiments to 
further substantiate our research findings.

In conclusion, with the continuous development of medical 
statistical techniques and the refinement of GWAS data, future studies 
should focus on the integrated development of multiple disciplines 
and omics, exploring complex diseases, genetic variations, and 
environmental changes at various levels of interaction.
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