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Background: Observational studies have suggested an association between 
gut microbiota and Alzheimer’s disease (AD); however, the causal relationship 
remains unclear, and the role of blood metabolites in this association remains 
elusive.

Purpose: To elucidate the causal relationship between gut microbiota and AD 
and to investigate whether blood metabolites serve as potential mediators.

Materials and methods: Univariable Mendelian randomization (UVMR) analysis 
was employed to assess the causal relationship between gut microbiota and AD, 
while multivariable MR (MVMR) was utilized to mitigate confounding factors. 
Subsequently, a two-step mediation MR approach was employed to explore 
the role of blood metabolites as potential mediators. We primarily utilized the 
inverse variance-weighted method to evaluate the causal relationship between 
exposure and outcome, and sensitivity analyses including Contamination 
mixture, Maximum-likelihood, Debiased inverse-variance weighted, MR-Egger, 
Bayesian Weighted Mendelian randomization, and MR pleiotropy residual sum 
and outlier were conducted to address pleiotropy.

Results: After adjustment for reverse causality and MVMR correction, class 
Actinobacteria (OR: 1.03, 95% CI: 1.01–1.06, p  =  0.006), family Lactobacillaceae 
(OR: 1.03, 95% CI: 1.00–1.05, p  =  0.017), genus Lachnoclostridium (OR: 1.03, 95% 
CI: 1.00–1.06, p  =  0.019), genus Ruminiclostridium9 (OR: 0.97, 95% CI: 0.94–
1.00, p  =  0.027) and genus Ruminiclostridium6 (OR: 1.03, 95% CI: 1.01–1.05, 
p  =  0.009) exhibited causal effects on AD. Moreover, 1-ribosyl-imidazoleacetate 
levels (−6.62%), Metabolonic lactone sulfate levels (2.90%), and Nonadecanoate 
(19:0) levels (−12.17%) mediated the total genetic predictive effects of class 
Actinobacteria on AD risk. Similarly, 2-stearoyl-GPE (18:0) levels (−9.87%), 
Octadecanedioylcarnitine (C18-DC) levels (4.44%), 1-(1-enyl-stearoyl)-2-oleoyl-
GPE (p-18:0/18:1) levels (38.66%), and X-23639 levels (13.28%) respectively 
mediated the total genetic predictive effects of family Lactobacillaceae on AD 
risk. Furthermore, Hexadecanedioate (C16-DC) levels (5.45%) mediated the total 
genetic predictive effects of genus Ruminiclostridium 6 on AD risk; Indole-
3-carboxylate levels (13.91%), X-13431 levels (7.08%), Alpha-ketoglutarate to 
succinate ratio (−13.91%), 3-phosphoglycerate to glycerate ratio (15.27%), and 
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Succinate to proline ratio (−14.64%) respectively mediated the total genetic 
predictive effects of genus Ruminiclostridium 9 on AD risk.

Conclusion: Our mediation MR analysis provides genetic evidence suggesting 
the potential mediating role of blood metabolites in the causal relationship 
between gut microbiota and AD. Further large-scale randomized controlled 
trials are warranted to validate the role of blood metabolites in the specific 
mechanisms by which gut microbiota influence AD.

KEYWORDS

gut microbiota, blood metabolites, Mendelian randomization, two-step Mendelian 
randomization, univariable Mendelian randomization, multivariable Mendelian 
randomization

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterized by cognitive impairment, memory decline, personality 
changes, and psychiatric symptoms. The pathology of AD typically 
involves the deposition of extracellular β-amyloid protein (Aβ), 
forming neuroinflammatory plaques, and the intracellular 
accumulation of hyperphosphorylated tau protein, leading to the 
formation of neurofibrillary tangles. These processes are 
accompanied by oxidative stress, inflammatory responses, ultimately 
resulting in neurotoxicity and neuroinflammation, leading to 
neuronal damage and severe cognitive impairment (Long and 
Holtzman, 2019). According to the World Alzheimer Report 2022, 
AD accounts for approximately 60–80% of all dementia cases 
(Gauthier et al., 2022), with nearly 55 million AD patients worldwide 
in 2019, a figure projected to rise to 139 million by 2050. However, 
the precise pathological mechanisms underlying the onset and 
progression of AD remain incompletely understood, and research 
into therapeutic modalities remains incomplete. Therefore, the 
exploration of alternative effective treatment approaches and drug 
targets holds significant importance in the prevention and 
treatment of AD.

The gut microbiota plays a pivotal role in human health. Mounting 
evidence suggests that it influences brain function and behavior via 
the microbiota-gut-brain axis, thereby contributing to the onset and 
progression of neurological disorders such as depression, Parkinson’s 
disease, and AD (Rogers et al., 2016). Intervention mechanisms may 
involve the modulation of brain inflammation pathways through 
inflammasome signaling (Wong et al., 2016) or the regulation of gene 
expression in the brain (Distrutti et al., 2014), thereby influencing 
neurodevelopment (Rogers et al., 2016). In addition to alterations in 
the composition and abundance of gut microbiota impacting AD, the 
gut microbiota can also influence AD by transferring metabolites to 
the brain via bidirectional communication along the gut-brain axis 
and regulating brain gene expression (Arentsen et al., 2017; Zou et al., 
2024). However, the specific correlation between AD onset and the gut 
microbiota remains incompletely elucidated, and the mechanisms 
underlying the role of metabolites in the interaction between AD and 
gut microbiota remain unknown. Therefore, there is an urgent need 
for a comprehensive and in-depth analysis of the effects of metabolite-
mediated gut microbiota on the genetic predisposition to and 
risk of AD.

Mendelian Randomization (MR) is a statistical analysis method 
grounded in Mendelian genetic principles and instrumental variables 
(IVs). It effectively reduces confounding factors by utilizing genetic 
data as intermediaries to explore causal relationships between 
exposure risk factors and outcomes (Davey Smith and Ebrahim, 
2003). Our objective here is to employ univariate Mendelian 
randomization (UVMR), multivariate Mendelian randomization 
(MVMR), and MR-based mediation analysis across two samples to 
dissect the causal impact of gut microbiota on AD and ascertain the 
mediating role of metabolites.

In selecting single nucleotide polymorphisms (SNPs) as IVs, 
several conditions must be met: (a) the relevance assumption, wherein 
each IV must be strongly associated with the exposure factor; (b) the 
independence assumption, meaning each IV must not be associated 
with other potential confounders; (c) the exclusion restriction, 
indicating each IV can only influence the outcome through the 
exposure factor.

2 Materials and methods

2.1 Ethical considerations

For this study, we adhered to a comprehensive “Strengthening the 
Reporting of Observational studies in Epidemiology-Mendelian 
Randomization (STROBE-MR) statement” (Skrivankova et al., 2021).

2.2 Study design

The design of our MR study is illustrated in Figure 1. Initially, 
we investigated the forward UVMR analysis between gut microbiota 
as exposure and Alzheimer’s disease (AD) as the outcome, and 
through reverse UVMR analysis between AD as exposure and gut 
microbiota as the outcome, we excluded gut microbiota with reverse 
causality (Figure 1A). The five positively associated gut microbiota 
identified were then adjusted using MVMR to obtain gut microbiota 
with a causal effect on AD (Figure 1B). Finally, employing a two-step 
method (Yuan et  al., 2022), we  explored the cumulative genetic 
predisposition impact of metabolites mediating the relationship 
between gut microbiota and AD risk. In the first step, gut microbiota 
and metabolites underwent conventional UVMR analysis to obtain 
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BETA1 (p < 0.05). In the second step, the metabolites obtained from 
the first step were subjected to MVMR analysis with gut microbiota 
to obtain BETA2 (p < 0.05). At this stage, the UVMR analysis between 
gut microbiota and AD yielded the total effect BETA, with the 
mediation effect represented by BETA1*BETA2 and the direct effect 
as BETA-BETA1*BETA2. The proportion of the mediation effect was 
calculated as BETA1*BETA2/BETA (Figure 1C).

2.3 Data sources

2.3.1 Alzheimer’s disease
The GWAS data for AD were obtained from the Psychiatric 

Genomics Consortium (PGC) database, derived from a three-stage 
Meta-Analysis led by Jansen et  al. (2019). This analysis included 
clinically diagnosed late-onset AD cases and proxy cases in European 
populations, confirming 29 risk loci and 215 potential pathogenic 
genes, thereby elucidating the genetic factors underlying AD.

2.3.2 Gut microbiota
Data on gut microbiota were sourced from the MiBioGen 

database, one of the most comprehensive host-genetic-microbiome 
association databases to date. This database comprises 24 population 
cohorts spanning 11 countries and multiple ethnicities, totaling 18,340 
participants (MiBioGen Consortium Initiative et al., 2018; Kurilshikov 
et al., 2021), all of whom are of European descent (Li et al., 2023).

2.3.3 Metabolites
The GWAS data for metabolites were obtained from 

metabolomic studies led by Chen et al. (2023). This study, based on 
the Canadian Longitudinal Study on Aging (CLSA) cohort, 
encompassed 8,299 individuals and analyzed 1,091 blood metabolites 
and 309 metabolite ratios. Among these metabolites, 850 were 

categorized as known metabolites, including lipids, amino acids, 
exogenous substances, nucleotides, cofactors, vitamins, 
carbohydrates, peptides, and energy, while the remaining 241 were 
classified as unknown metabolites. Given that many metabolites 
serve as substrates and products of enzyme-catalyzed reactions 
simultaneously, identifying the genetic determinants of substrate-to-
product ratios can provide insights into biological processes that 
cannot be  gleaned from studying individual metabolites alone. 
Consequently, a genome-wide association study was conducted on 
309 metabolite ratios to identify novel associations between genetic 
variations and metabolite ratios.

2.4 Instrumental variable selection

When employing gut microbiota as the exposure factor and AD 
as the outcome, stringent criteria were applied to IVs to ensure the 
stability of study data and the accuracy of results. These criteria were 
as follows: (a) IVs associated with gut microbiota at a genome-wide 
significance threshold of p < 1 × 10−5 (Cheng et al., 2024); (b) To meet 
the conditions of MR analysis, linkage disequilibrium (LD) analysis 
based on the European Thousand Genomes Project was conducted, 
requiring an R2 < 0.001 and LD = 10,000 kb for IVs; (c) To mitigate 
the potential impact of allele bias on the causal relationship between 
gut microbiota and AD, the strength of genetic variation serving as 
IVs was assessed using the F-statistic. Variants with an F-statistic 
≤10 were considered weak IVs, likely to bias the analysis results. 
Conversely, an F-statistic >10 indicated robust instrumental 
variables, hence IVs with an F-statistic less than 10 were excluded 
(Burgess et al., 2017). Additionally, for reverse MR analysis, IVs for 
AD were required to meet the following criteria: p < 5 × 10−8, 
R2 < 0.001, LD = 10,000 kb, and IVs with an F-statistic less than 10 
were similarly excluded (see Supplementary materials S1, S2).

FIGURE 1

Illustrates the MR study design flowchart (A) ① each IV significantly associated with exposure; ② each IV unaffected by confounding factors to reduce 
bias caused by LD; ③ each IV only influences the outcome through exposure; blue lines represent forward MR analysis between gut microbiota as 
exposure and AD as the outcome; red lines represent reverse MR analysis between AD as exposure and gut microbiota as the outcome. (B) Plot of 
MVMR analysis of positive bacteria versus AD; (C) Plot of metabolite-mediated mediator analysis of gut microbiota effects on AD.
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During the two-step mediation MR and MVMR analyses, 
instrumental variables for metabolites were subject to the following 
criteria: p < 1 × 10−5, R2 < 0.001, LD = 10,000 kb, and IVs with an 
F-statistic less than 10 were also excluded (see 
Supplementary material S3).

2.5 Statistical analysis

We obtained the required data from publicly available databases 
including PGC, MiBioGen, and Catalog GWAS. Subsequently, a 
bidirectional MR analysis was conducted to investigate the causal 
relationship between gut microbiota and AD, while simultaneously 
excluding gut microbiota with reverse causality concerning 
AD. Following this, MVMR was employed to adjust for gut microbiota, 
and finally, a two-step mediation MR analysis was performed to 
explore the cumulative genetic predisposition impact of human blood 
metabolites mediating the relationship between gut microbiota and 
AD risk. During the MR analysis, R (version 4.3.1) was primarily 
utilized, assisted by the “Two Sample MR” R package (version 0.5.7) 
(Mounier and Kutalik, 2023), “Mendelian Randomization” R package 
(version 0.9.0), and “BWMR” R package (version 0.1.1) (Zhao 
et al., 2020).

The coefficient of determination (R2) was employed to indicate the 
proportion of phenotypic variance explained by SNPs, calculated as 
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R2 represents the proportion of phenotypic variance explained by 
SNPs, and k denotes the number of SNPs included in the instrument 
(Palmer et  al., 2012). A threshold of F-statistic greater than 10 is 
commonly considered statistically significant, indicating that the 
causal relationship remains unbiased (Zuber et al., 2020).

In the UVMR analysis, we  initially employed the Inverse-
Variance Weighted (IVW) method to validate the effectiveness of 
all instrumental variables (IVs) and generate a weighted overall 
effect based on the magnitude of p-values (Brion et al., 2013). To 
ensure the robustness of IVW results and mitigate biases introduced 
by ineffective IVs, various supplementary MR analyses were 
conducted, including Contamination mixture, Maximum-
likelihood, Debiased inverse-variance weighted, MR-Egger, 
Bayesian Weighted Mendelian Randomization (BWMR), and MR 
pleiotropy residual sum and outlier (MR-PRESSO). Although 
Contamination mixture MR analysis does not remove outlier IVs, 
it operates under the assumption that effective IVs comprise the 
maximal subset of all IVs, thereby yielding more precise causal 
effects than IVW results (Burgess et  al., 2020). The Maximum-
likelihood MR analysis method accommodates both correlated and 
uncorrelated genetic variations. If fixed-effects models are 
inappropriate in IVW and substantial heterogeneity exists in the 
causal effects of different variables, Maximum-likelihood MR 
analysis employs a random-effects model to address the 
heterogeneity present (Burgess et  al., 2013). In instances where 

weak IVs are inevitable, Debiased inverse-variance weighted 
method is employed for MR analysis. This approach demonstrates 
robustness against many weak IVs and requires no pre-selection (Ye 
et al., 2021). BWMR considers the uncertainty associated with weak 
effects induced by multiple genes and detects outliers through 
Bayesian Weighted, thereby addressing violations of MR 
assumptions caused by multi-gene effects (Zhao et  al., 2020). 
Finally, we  conducted a series of sensitivity analyses, including 
MR-Egger regression, MR-PRESSO analysis, and Cochran’s Q-test. 
MR-Egger regression (Zhang et al., 2024) was utilized to detect 
directional pleiotropy by estimating the intercept term. If the 
p-value of the intercept is greater than 0.05, it indicates the absence 
of significant directional pleiotropy, thereby suggesting that the 
SNPs used do not influence the outcome variable through 
alternative pathways, thus supporting the robustness of our 
findings. The MR-PRESSO test (Lou et al., 2023) was employed to 
identify and correct for horizontal pleiotropy, not only detecting 
pleiotropic outliers but also adjusting the results by iteratively 
removing these outliers. Lastly, Cochran’s Q-test (Zheng X. et al., 
2023) was used to assess heterogeneity among the instrumental 
variables. A p-value less than 0.05 for the Q statistic indicates 
significant heterogeneity, necessitating the use of a random-effects 
model to adjust the results.

In MVMR, we  employed the Multivariable IVW method to 
ascertain the effectiveness of all IVs, thereby generating a weighted 
overall effect based on the significance of p-values (Brion et  al., 
2013). Additionally, Multivariable median-based estimation enabled 
precise assessment of causal relationships. Furthermore, 
Multivariable MR-Egger was utilized to evaluate whether genetic 
variations exhibit pleiotropy, affecting outcomes differing from zero 
on average. This approach involves directional pleiotropy tests, causal 
effect tests, and causal effect estimates, providing consistent estimates 
of causal effects under the weaker InSIDE assumption (Burgess and 
Thompson, 2017). Finally, Multivariable MR-Lasso was employed to 
introduce intercept terms for each genetic variation to extend the 
IVW model. This technique repositions genetic variations through 
regularized regression to identify effective instrumental variables, 
utilizing only these variables for IVW estimation of causal effects 
(Rees et al., 2019).

3 Results

3.1 Causal effects of gut microbiota on AD

Following the absence of significant heterogeneity as indicated by 
Cochran’s Q test, initial IVW results revealed the following 
associations: class Actinobacteria (OR: 1.03, 95% CI: 1.01–1.06, 
p = 0.006), family Lactobacillaceae (OR: 1.03, 95% CI: 1.00–1.05, 
p = 0.017), genus Lachnoclostridium (OR: 1.03, 95% CI: 1.00–1.06, 
p = 0.019), genus Ruminiclostridium9 (OR: 0.97, 95% CI: 0.94–1.00, 
p = 0.027), genus Ruminiclostridium6 (OR: 1.03, 95% CI: 1.01–1.05, 
p = 0.009), and genus Faecalibacterium (OR: 0.98, 95% CI: 0.95–1.00, 
p = 0.028). The results of the remaining four methods are illustrated in 
Figure 2 (see Supplementary material S4).

Simultaneously, in the sensitivity analysis, we performed MR-Egger 
regression, Cochran’s Q test, and MR-PRESSO test (Table 1), with all 
results remaining stable (see Supplementary material S4 for details).
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3.2 Causal effects of AD on gut microbiota

Regarding the causal effects of AD on gut microbiota, the IVW 
results are presented in Figure  3, with the remaining four 
supplementary methods provided in Supplementary material S4. 

Notably, genus Lachnoclostridium exhibited a reverse causality [BETA: 
−0.31, 95% CI: (−0.58, −0.04), p = 0.026] (Supplementary material S5).

Simultaneously, in the sensitivity analysis, we performed MR-Egger 
regression, Cochran’s Q-test, and MR-PRESSO test (Table 2), with 
nearly all results remaining stable, except for genus Lachnospira and 

FIGURE 2

Displays the causal effects of gut microbiota on AD as analyzed through UVMR.
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family Lachnospiraceae, which exhibited heterogeneity and horizontal 
pleiotropy. After the removal of outliers, no horizontal pleiotropy was 
observed (see Supplementary material S5 for details).

3.3 Causal effects of gut microbiota on AD 
(adjusted by MVMR)

After conducting both forward (where gut microbiota serves as 
exposure and AD as outcome) and reverse (where AD serves as 
exposure and gut microbiota as outcome) UVMR analyses and 
excluding reverse causality, gut microbiota with causal effects on AD 
were identified as follows: class Actinobacteria, family Lactobacillaceae, 
genus Ruminiclostridium9, genus Ruminiclostridium6, and genus 
Faecalibacterium. Subsequently, MVMR was employed to adjust these 
five types of gut microbiota. The results indicated that class 
Actinobacteria (OR: 1.02, 95% CI: 1.00–1.04, p = 0.013), family 
Lactobacillaceae (OR: 1.02, 95% CI: 1.01–1.04, p = 0.005), genus 
Ruminiclostridium9 (OR: 0.97, 95% CI: 0.95–0.99, p = 0.007), genus 

Ruminiclostridium6 (OR: 1.02, 95% CI: 1.00–1.04, p = 0.014), and genus 
Faecalibacterium (OR: 1.00, 95% CI: 0.98–1.02, p = 0.964).

Additionally, Multivariable MR-Lasso, Multivariable median-
based, and Multivariable MR-Egger were utilized as supplementary 
methods to further elucidate the findings, all of which demonstrated 
consistent stability (see Figure 4; Supplementary material S6).

3.4 Causal effects of gut microbiota on 
serum metabolites

The primary approach employed for this investigation was IVW, with 
results depicted in a volcano plot (see Figure 5; Supplementary material S7).

3.5 Causal effects of metabolites on AD

Levels of nonadecanoate (19:0), 2-stearoyl-GPE (18:0), X-23639, 
3-phosphoglycerate to glycerate ratio, and succinate to proline ratio 

FIGURE 3

Illustrates the causal effects of AD on gut microbiota analyzed through UVMR.

TABLE 1 Sensitivity Analysis of the causal effect of gut microbiota on AD.

Exposure Outcome MR egger regression Cochran’s Q MR-
PRESSO 

global test 
P

MR egger 
intercept

Intercept SE Intercept P Q Q df Q Pval

class.Actinobacteria

AD

−0.004 0.002 0.071 18.310 15 0.247 0.235

family.Lactobacillaceae 0.005 0.003 0.152 12.909 9 0.167 0.194

genus.Lachnoclostridium 0.000 0.003 0.982 13.195 12 0.355 0.378

genus.Ruminiclostridium9 0.001 0.004 0.879 7.386 8 0.496 0.514

genus.Ruminiclostridium6 0.002 0.002 0.406 16.425 15 0.354 0.391

genus.Faecalibacterium 0.000 0.002 0.853 7.594 9 0.576 0.667
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exhibit a positive correlation with the risk of AD. Conversely, 
levels of 1-ribosyl-imidazoleacetate, metabolonic lactone sulfate, 
octadecanedioylcarnitine (C18-DC), 1-(1-enyl-stearoyl)-2-
oleoyl-GPE (p-18:0/18:1), hexadecanedioate (C16-DC), indole-3-
carboxylate, X-13431, and alpha-ketoglutarate to succinate ratio 
demonstrate a negative correlation with the risk of AD (see Figure 6; 
Supplementary material S8).

3.6 Mediation of metabolites in the genetic 
prediction of gut microbiota and AD

Levels of 1-ribosyl-imidazoleacetate (−6.62%), metabolonic 
lactone sulfate (2.90%), and nonadecanoate (19:0) (−12.17%) 
respectively mediate the total genetic predictive impact of 
class Actinobacteria on the risk of AD (Figure  7; 
Supplementary material S9).

Levels of 2-stearoyl-GPE (18:0) (−9.87%), octadecanedioylcarnitine 
(C18-DC) (4.44%), 1-(1-enyl-stearoyl)-2-oleoyl-GPE (p-18:0/18:1) 
(38.66%), and X-23639 (13.28%) respectively mediate the total genetic 
predictive impact of family Lactobacillaceae on the risk of AD 
(Figure 7; Supplementary material S9).

Hexadecanedioate (C16-DC) levels (5.45%) mediate the total 
genetic predictive impact of genus Ruminiclostridium6 on the risk of 
AD (Figure 7; Supplementary material S9).

Indole-3-carboxylate levels (13.91%), X-13431 levels 
(7.08%), alpha-ketoglutarate to succinate ratio (−13.91%), 
3-phosphoglycerate to glycerate ratio (15.27%), and succinate to 
proline ratio (−14.64%) respectively mediate the total genetic 

predictive impact of genus Ruminiclostridium9 on the risk of AD 
(Figure 7; Supplementary material S9).

4 Discussion

In this genetic causal study, we have identified several common 
microbial taxa associated with an increased risk of AD. Specifically, 
we observed positive correlations between class Actinobacteria, family 
Lactobacillaceae, genus Lachnoclostridium, genus Ruminiclostridium6, 
and AD risk, while genus Ruminiclostridium9 showed a negative 
correlation with AD risk. Mediation analysis based on MR suggests 
that certain metabolites may serve as potential mediators of the causal 
relationship between these microbial taxa and AD. For instance, 
lactone sulfate may act as a potential mediator of the causal 
relationship between class Actinobacteria and AD, while 
Octadecanedioylcarnitine (C18-DC) and 1-(1-enyl-stearoyl)-2-
oleoyl-GPE (p-18:0/18:1) may serve as potential mediators of the 
causal relationship between family Lactobacillaceae and 
AD. Additionally, Hexadecanedioate (C16-DC) may act as a potential 
mediator of the causal relationship between genus Ruminiclostridium6 
and AD, and Indole-3-carboxylate and 3-phosphoglycerate to 
glycerate may serve as potential mediators of the causal relationship 
between genus Ruminiclostridium9 and AD.

The human gastrointestinal tract harbors the largest and most 
complex microbial ecosystem, comprising microorganisms and the 
host microenvironment, including tissues, cells, and metabolites. This 
system plays crucial roles in various physiological and pathological 

TABLE 2 Sensitivity Analysis of the causal effect of gut microbiota on AD.

Outcome Exposure MR egger regression Cochran’s Q MR-
PRESSO 
Global 
test P

MR-
PRESSO 
results 

distortion 
test P

MR egger 
intercept

Intercept 
SE

Intercept 
P

Q Q 
df

Q 
Pval

phylum.Actinobacteria

AD

−0.005 0.009 0.570 18.781 19 0.471 0.506

order.Erysipelotrichales −0.004 0.008 0.680 13.497 19 0.812 0.794

order.Coriobacteriales −0.002 0.010 0.848 23.628 19 0.211 0.233

genus.Senegalimassilia −0.001 0.014 0.967 16.037 18 0.590 0.609

genus.Roseburia 0.011 0.009 0.201 16.472 19 0.626 0.639

genus.LachnospiraceaeUCG004 0.001 0.011 0.958 22.133 19 0.278 0.293

genus.LachnospiraceaeNK4A136group −0.002 0.009 0.825 15.105 19 0.716 0.716

genus.Lachnospira 0.018 0.011 0.116 32.548 19 0.027 0.016 0.731

genus.Lachnoclostridium 0.001 0.009 0.879 17.045 19 0.587 0.578

genus.ChristensenellaceaeR.7group −0.013 0.009 0.161 11.616 19 0.901 0.863

genus.Alloprevotella 0.028 0.047 0.569 10.830 12 0.544 0.554

genus.Ruminococcustorquesgroup −0.006 0.009 0.524 16.903 19 0.596 0.632

genus.Eubacteriumhalliigroup −0.005 0.009 0.609 20.948 19 0.340 0.312

family.Lachnospiraceae 0.005 0.011 0.652 32.933 19 0.024 0.036 0.657

family.Erysipelotrichaceae −0.004 0.008 0.680 13.497 19 0.812 0.814

family.Coriobacteriaceae −0.002 0.010 0.848 23.628 19 0.211 0.211

class.Erysipelotrichia −0.004 0.008 0.680 13.497 19 0.812 0.788

class.Coriobacteriia −0.002 0.010 0.848 23.628 19 0.211 0.229
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processes such as metabolism, immune regulation, and endocrine 
modulation (Qu et  al., 2021). Mounting evidence suggests the 
involvement of the gut microbiota in the onset and progression of AD 
(Kesika et  al., 2021). Bacteria such as Helicobacter pylori, Borrelia 
burgdorferi, and Chlamydia pneumoniae have been implicated in AD 
susceptibility by promoting excessive phosphorylation of tau protein 
and elevating levels of pro-inflammatory bacteria (e.g., Escherichia/
Shigella) while reducing levels of anti-inflammatory gut microbes (e.g., 
Ruminococcus) (Cryan et al., 2019; Murray et al., 2022). Moreover, 
several experimental studies conducted in AD mice have reported 
increased abundance of Escherichia coli-Shigella and Desulfovibrio, 
accompanied by elevated levels of Enterobacteriaceae, Pseudomonas, 
and Clostridium, which promote amyloid-like protein deposition in 
the brain, microglial cell accumulation, inflammatory responses, and 
contribute to the pathogenesis of AD.

Our MR study indicates that the increase in Actinobacteria, 
Lactobacillaceae, Lachnoclostridium, and Ruminiclostridium6 is 
positively associated with the risk of AD, while a decrease in 
Ruminiclostridium9 is negatively associated with the risk of AD. These 
microbiota may influence the gut-brain axis by modulating gut 
permeability, the immune system, or metabolism, thereby contributing 
to the development and progression of AD (Zhuang et al., 2018). 
However, previous research (Zhuang et  al., 2018) has found a 
significant decrease in the abundance of Actinobacteria in AD 

patients. Additionally, Murray et  al. (2022) reported that 
Lactobacillaceae might play a role in neuroinflammation and cognitive 
function, although the precise mechanisms remain unclear. Another 
study Zou et  al. (2024) also suggested an association between 
Lactobacillaceae and cognitive impairment in AD patients. While our 
MR study found a negative correlation between Ruminiclostridium9 
and AD, and a positive correlation between Ruminiclostridium6 and 
AD, Kesika et al. (2021) indicated that Ruminiclostridium plays an 
important role in the gut microbiota, but its specific functions and 
effects may vary across different studies. These discrepancies might 
first arise from differences in study design. Our study employed MR 
methods, emphasizing the use of genetic instrumental variables, 
whereas Zhuang et al. (2018) study relied on cross-sectional data. 
Cross-sectional studies depend on observational data, comparing data 
from different groups or time points to identify associations. Such 
designs are susceptible to confounding factors, as they cannot 
completely rule out all potential confounders, making these data more 
prone to influence by environmental and lifestyle factors, such as diet 
and living conditions. These confounders are challenging to control in 
cross-sectional studies, but MR analyses can largely mitigate these 
issues. Furthermore, the subjects in different studies might vary in 
race, age, sex, and health status, potentially influencing the relationship 
between gut microbiota and AD. Our MR study primarily used data 
from European populations, possibly leading to ethnicity-specific 

FIGURE 4

Illustrates the causal effects of gut microbiota on AD analyzed through MVMR.
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results. For example, Zhuang et al. (2018) study focused on Chinese 
populations, which might exhibit different gut microbiota 
compositions and associations with AD. Variations in genetic 
background and lifestyle across races can affect the diversity and 
function of gut microbiota, resulting in different study outcomes. 
Additionally, the incidence of AD and the composition of gut 
microbiota might vary by age and sex. For instance, elderly 
populations might have distinct gut microbiota structures, and sex 
differences could influence the relationship between gut microbiota 
and AD (Zou et al., 2024). Lastly, differences in microbial sequencing 
technologies, data processing, and analysis methods across studies 
could contribute to varying results. While 16S rRNA sequencing and 
whole-genome shotgun sequencing are commonly used to sequence 
gut microbiota, 16S rRNA sequencing primarily identifies and 
classifies bacteria but offers lower resolution, making it difficult to 
accurately identify species and strains (Durazzi et  al., 2021). In 
contrast, whole-genome shotgun sequencing provides higher 
resolution data, identifying more microbial species and functional 
genes, but is costlier and more complex to analyze. Thus, studies may 

employ different data processing and analysis methods, such as OTU 
(operational taxonomic unit) clustering and ASV (amplicon sequence 
variant) analysis, which can impact the classification and abundance 
estimates of gut microbiota, leading to disparate results (Rausch 
et al., 2019).

It is now widely recognized that the gut microbiota plays a 
significant role in the development of AD. In addition to alterations in 
the composition and abundance of gut microbiota affecting AD, the 
interaction between the gut microbiota and the “brain-gut” axis can 
also impact the onset and progression of AD through the influence of 
biologically active metabolites (Zou et  al., 2024). Genera such as 
Streptomyces, Bacillus, and Clostridium, along with their metabolites 
such as short-chain fatty acids, tryptophan, and glutamate, undergo 
changes in AD, manifested by Aβ accumulation, neuronal damage, 
and synaptic dysfunction (Cryan et al., 2020; Gubert et al., 2020). For 
instance, quinolinic acid, a biologically active metabolite derived from 
tryptophan degradation, is upregulated in the brain tissues of AD 
patients due to its lipid peroxidation and neurotoxicity (Frausto et al., 
2021). Short-chain fatty acids, on the other hand, improve 

FIGURE 5

Depicts the volcano plot analysis of the causal effects of gut microbiota on metabolites, where black dots represent insignificance, red dots signify 
extreme significance (0  <  p  <  0.01), and blue dots indicate significance (0.01  <  p  <  0.05). (A) The effect of class.Actinobacteria on Human blood 
metabolites; (B) The effect of family.Lactobacillaceae on Human blood metabolites; (C) The effect of genus.Ruminiclostridium9 on Human blood 
metabolites; (D) The effect of genus.Ruminiclostridium6 on Human blood metabolites.
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FIGURE 7

Illustrates the causal effects of gut microbiota mediated by blood metabolites in the genetic prediction of AD.

FIGURE 6

Illustrates the forest plot analysis of the causal effects of metabolites on AD.
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hippocampal neuroprotection and plasticity and reduce Aβ plaques in 
AD models by activating G protein-coupled receptors (GPCRs) to 
stimulate enteroendocrine L cells to release glucagon-like peptide-1 
(GLP-1) (Dalile et al., 2019). Recent studies have demonstrated that 
vitamin D, gut microbiota, and their metabolites, short-chain fatty 
acids, synergistically regulate the immune system (Murdaca et al., 
2021, 2024; Murdaca and Gangemi, 2023). Specifically, butyrate not 
only enhances the expression of the vitamin D receptor (VDR) but 
also potentiates the differentiation-inducing effects of 
1,25-dihydroxyvitamin D3. The VDR plays a crucial role in the 
butyrate-mediated inhibition of NF-κB activation in human colon 
cancer cells (Malaguarnera, 2020). Furthermore, short-chain fatty 
acids and vitamin D exhibit a cooperative effect in enhancing the 
synthesis of host defense peptides (HDPs), which are integral 
components of the innate immune system with antimicrobial and 
immunomodulatory activities (Robinson et  al., 2018). Our MR 
mediation analysis suggests that lactone sulfate may be a potential 
driver of the causal relationship between class Actinobacteria and 
AD. Octadecanedioylcarnitine (C18-DC) and 1-(1-enyl-stearoyl)-2-
oleoyl-GPE (p-18:0/18:1) may similarly serve as potential drivers of 
the causal relationship between family Lactobacillaceae and 
AD. Hexadecanedioate (C16-DC) may act as a potential driver of the 
causal relationship between genus Ruminiclostridium6 and 
AD. Additionally, indole-3-carboxylate and the 3-phosphoglycerate to 
glycerate ratio may represent potential drivers of the causal 
relationship between genus Ruminiclostridium9 and AD.

Lactone sulfate is a steroid-like metabolite positively correlated with 
BMI, liver fat percentage, and visceral fat volume (Zheng R. et al., 2023). 
Although there is currently no direct literature linking lactone sulfate to 
AD, accumulating evidence suggests that dysregulation of endogenous 
steroid concentrations and their biosynthetic enzymes play significant 
roles in the pathogenesis of AD (Luchetti et  al., 2011; Pike, 2017). 
Studies have found that pregnenolone sulfate (PREGS) and 
dehydroepiandrosterone sulfate (DHEAS) are significantly lower in 
elderly AD patients compared to age-matched non-demented controls, 
particularly in the striatum, cerebellum, and hypothalamus, and 
negatively correlated with high levels of cortical Aβ and phosphorylated 
tau proteins (Weill-Engerer et al., 2002), where PREGS and DHEAS are 
types of steroids. Considering that PREGS and DHEAS belong to the 
steroid class, it can be inferred that lactone sulfate may be negatively 
correlated with AD. This is consistent with our MR study results, where 
class Actinobacteria showed a positive correlation with AD, and the 
gene-predicted lactone sulfate mediated proportion reached 2.90%. 
Therefore, it can be speculated that in the process of class Actinobacteria 
affecting the onset and progression of AD, lactone sulfate may serve as 
a protective factor and a target for preventing AD, helping to mitigate 
the excessive impact of class Actinobacteria on the development of AD.

Octadecenoylcarnitine is a form of acylcarnitine categorized as 
long-chain acylcarnitines due to its acyl group containing 14 to 20 
carbons, which is formed by the esterification of long-chain fatty acids 
ingested through diet (Dambrova et al., 2022). It plays a crucial role in 
transporting fatty acids into mitochondria in the human body (Reuter 
and Evans, 2012) and its levels variations serve as important indicators 
of inherited disorders of long-chain fatty acid metabolism, such as 
schizophrenia (Cao et  al., 2020) and ischemia–reperfusion injury 
(Liepinsh et al., 2016). Recent research (Horgusluoglu et al., 2022) has 
revealed novel metabolites and potential regulatory factors in AD 
through integrated multi-omics data analysis, demonstrating the 
association between short-chain acylcarnitines/amino acids and 

medium−/long-chain acylcarnitines with AD clinical outcomes, and 
identifying the involvement of ABCA1 and CPT1A in the regulation 
of acylcarnitines and amino acids in AD. Specifically, L-carnitine, 
acetyl-L-carnitine, and propionyl-L-carnitine may act on 
mitochondrial function and mobility changes in neurons induced by 
amyloid-β peptide 1–42 oligomers (AβOs) in different ways, thereby 
alleviating AD-related pathology (Mota et al., 2021). According to the 
results of our MR study, family Lactobacillaceae showed a positive 
correlation with AD, with the gene-predicted octadecenoylcarnitine 
mediated proportion reaching 4.44%. Therefore, it can be speculated 
that in the process of family Lactobacillaceae affecting the onset and 
progression of AD, octadecenoylcarnitine may serve as a protective 
factor and a target for preventing AD.

In this MR study, it was found that certain intermediate 
metabolites, such as 1-(1-enyl-stearoyl)-2-oleoyl-GPE (p-18:0/18:1), 
Hexadecanedioate (C16-DC), Indole-3-carboxylate, and the 
3-phosphoglycerate to glycerate ratio, have been relatively 
underexplored in their association with gut microbiota and 
AD. Therefore, these metabolites could be  considered novel 
intervention targets. By delving into their mechanisms of action and 
interaction networks, further exploration of their potential roles in the 
interplay between gut microbiota and AD onset and progression is 
warranted. This offers new avenues and potential for future research 
endeavors. Recent studies have highlighted the potential of 
extracellular vesicles (EVs) as non-invasive biomarkers for various 
diseases (Li et  al., 2018, 2019, 2020, 2021; Lai et  al., 2022). EVs, 
including exosomes and microvesicles, are nanosized endocytic 
vesicles secreted by most cell types, carrying a rich cargo of proteins, 
lipids, and various RNA species (Li et al., 2018). Among these, long 
RNA species such as messenger RNA (mRNA), circular RNA 
(circRNA), and long non-coding RNA (lncRNA) are of particular 
interest due to their stability and abundance in blood (Li et al., 2019). 
Research has shown that these long RNAs in EVs can reflect the 
physiological and pathological state of their cells of origin, making 
them promising candidates for disease biomarkers (Li et al., 2019). The 
exoRBase database, for instance, has compiled extensive RNA-seq data 
of exosomal RNAs from human blood, providing valuable resources 
for identifying molecular signatures in various diseases, including 
cancer (Li et al., 2018; Lai et al., 2022). Furthermore, extracellular 
vesicle long RNA (exLR) profiles have been used to distinguish cancer 
patients from healthy individuals with high diagnostic accuracy, 
suggesting their potential utility in non-invasive disease diagnostics 
(Li et al., 2019, 2021). Given the complex interplay between the gut 
microbiota and AD, and the potential role of blood metabolites as 
mediators, it is plausible that exLR could serve as valuable biomarkers 
for AD. By reflecting the alterations in gut microbiota and associated 
metabolic changes, exLR might offer a novel approach for early 
diagnosis and monitoring of AD progression.

Our MR study possesses both strengths and limitations. Firstly, 
we conducted, for the first time, a mediation analysis of human 
serum metabolites predicted by genes in relation to gut microbiota 
and AD, thus fundamentally overcoming limitations inherent in 
traditional observational studies, such as environmental 
confounding and reverse causality due to inadequate sample sizes. 
Secondly, we utilized GWAS data with an ample number of cases 
and excluded weak instrumental variables, thereby enhancing 
statistical power. Additionally, we performed sensitivity analyses 
and employed various statistical models for repeated analyses to 
elucidate different multivariate patterns, thereby strengthening the 
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evidence of our study findings. However, this MR study has several 
limitations. Firstly, the MR analysis is primarily based on European 
populations, and the findings may not be entirely applicable to 
other ethnic or regional groups. Differences in genetic background, 
environmental exposures, and lifestyle across various populations 
could affect the relationship between gut microbiota, metabolites, 
and AD, thus limiting the generalizability of the results. Secondly, 
potential confounding factors, such as comorbidities and 
medication use, were not fully accounted for. These factors might 
influence the relationship between metabolites and AD; for 
example, comorbidities could affect metabolite levels through 
shared metabolic pathways, and multiple comorbidities could lead 
to chronic low-grade inflammation, which may alter the gut 
microbiota composition and subsequently the metabolite profile, 
thereby contributing to AD development. Additionally, 
medications can indirectly influence gut microbiota and metabolite 
levels by altering inflammation status and oxidative stress. 
Moreover, we utilized AD data solely from PGC, which provides 
evidence for the association between gut microbiota, metabolites, 
and AD but lacks direct biological mechanism validation. Relying 
on a single data source or database may introduce bias, and cross-
validation with multiple data sources can enhance the credibility 
of the results. Future research should aim to overcome these 
limitations and explore the potential roles of metabolites in the 
influence of gut microbiota on AD development more 
comprehensively and deeply, thereby uncovering the mechanisms 
underlying the gut microbiota-metabolite-AD axis and providing 
novel insights and approaches for AD prevention and treatment. 
First, large-scale, long-term cohort studies should be conducted to 
improve the statistical power and reliability of the findings. These 
studies should include diverse regions and ethnicities to validate 
the generalizability of the results and to investigate the impact of 
regional and ethnic differences. Second, collaborative multi-center 
studies should be  undertaken to aggregate data from different 
sources, thereby increasing the sample size and data diversity, 
which would enhance the representativeness and generalizability 
of the findings. Third, confounding factors such as comorbidities 
and medication use should be  included, with multivariable 
adjustments made to minimize their interference. Sensitivity 
analyses should be performed to assess the stability of the results 
under different comorbidity and medication use scenarios. Finally, 
both in vitro and in vivo experiments should be  conducted to 
elucidate the biological mechanisms through which gut microbiota 
and metabolites influence AD.

5 Conclusion

In conclusion, our bidirectional two-sample mediation MR 
analysis provides genetic evidence indicating a positive correlation 
between class Actinobacteria, family Lactobacillaceae, genus 
Lachnoclostridium, genus Ruminiclostridium 6, and the risk of AD, 
while genus Ruminiclostridium 9 exhibits a negative correlation 
with AD risk. Lactone sulfate may serve as a potential driving 
factor for the causal relationship between class Actinobacteria and 
AD, while Octadecanedioylcarnitine (C18-DC) and 1-(1-enyl-
stearoyl)-2-oleoyl-GPE (p-18:0/18:1) could potentially drive the 
association between family Lactobacillaceae and AD. Additionally, 

Hexadecanedioate (C16-DC) might play a role in the relationship 
between genus Ruminiclostridium 6 and AD, whereas Indole-3-
carboxylate and 3-phosphoglycerate to glycerate may influence the 
association between genus Ruminiclostridium 9 and 
AD. Subsequent steps should involve further research extending 
the study population to East Asian or other regions to better 
delineate the potential role of human serum metabolites in the 
interplay between gut microbiota and AD. Future endeavors 
should entail the utilization of serum metabolomics to sample and 
analyze AD patients in randomized controlled trials using specific 
serum metabolites identified in this MR analysis, including lactone 
sulfate, Octadecanedioylcarnitine (C18-DC), 1-(1-enyl-stearoyl)-
2-oleoyl-GPE (p-18:0/18:1), Hexadecanedioate (C16-DC), Indole-
3-carboxylate, and 3-phosphoglycerate to glycerate. Moreover, 
macrogenomic sampling of AD patients in randomized controlled 
trials should be  conducted to validate the reliability and 
authenticity of our MR study results.
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