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Codon usage bias (CUB) has been described in viruses, prokaryotes, and

eukaryotes and has been linked to several cellular and environmental factors,

such as the organism’s growth temperature, gene expression levels, and

regulation of protein synthesis and folding. Most of the studies in this area

have been conducted in bacteria and higher eukaryotes, in some cases with

di�erent results. In this study, a comparative analysis of CUB in yeasts isolated

from cold and template environments was performed in order to evaluate

the correlation of CUB with yeast optimal temperature of growth (OTG), gene

expression levels, cellular function, and structure of encoded proteins. Among

the main findings, highly expressed ORFs tend to have a more similar CUB

within and between yeasts, and a direct correlation between codons ending in C

and expression level was generally found. A low correspondence between CUB

and OTG was observed, with an inverse correlation for some codons ending

in C. The clustering of yeasts based on their CUB partially aligns with their

OTG, being more consistent for yeasts with lower OTG. In most yeasts, the

abundance of preferred codons was generally lower at the 5′ end of ORFs, higher

in segments encoding beta strand, lower in segments encoding extracellular

and transmembrane regions, and higher in “translation” and “energymetabolism”

pathways, especially in highly expressed ORFs. Based on our findings, it is

suggested that the abundance and distribution of preferred and non-preferred

codons along mRNAs contribute to proper protein folding and functionality

by regulating protein synthesis rates, becoming a more important factor under

conditions that require faster protein synthesis in yeasts.

KEYWORDS

codon usage bias (CUB), relative synonymous codon usage (RSCU), preferred and non-

preferred codons, codon clusters, environmental yeasts

Introduction

Codon usage bias (CUB) has been described in viruses, bacteria, fungi, plants, and
animals (Hershberg and Petrov, 2008), and it has been proposed that it correlates with
various biological factors such as the GC content, gene expression levels, tRNA abundance,
gene translation initiation signals, and protein structure (Ikemura, 1985; Bulmer, 1991;
Hooper and Berg, 2000; D’Onofrio et al., 2002; Chen et al., 2004; Hershberg and
Petrov, 2008; Plotkin and Kudla, 2011; Parvathy et al., 2022). It has been proposed that
microorganisms with a wide range of habitats tend to have a higher variation of CUB,
which may help them to adapt efficiently to different conditions. On the other hand,
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microorganisms with similar phenotypic traits and that thrive
in similar environments tend to have a similar CUB (Botzman
and Margalit, 2011; Hart et al., 2018; Arella et al., 2021).
These tendencies were observed in a metagenomic study of
samples from different regions and substrates, including the sea,
farm soils, human gut, and acid mine drainage (Roller et al.,
2013). Microorganisms inhabiting cold regions have attracted
considerable attention in recent decades due to their important
ecological roles and potential in applied fields (Margesin, 2017),
and it has been suggested the existence of a distinct CUB pattern
for life in the cold. Comparison of coding sequences from
psychrophiles revealed a decreasing trend for GC-rich and G/C-
ending codons, while a preference for AGG (Ser) in thermophiles
and CAA (Val) in mesophiles and psychrophiles (Khan and Patra,
2018). In a comparative genomic analysis of 78 Cryobacterium

strains, a correlation between the CUB and growth temperature
was reported. Strains having maximum growth temperature of
20◦C or below tended to use synonymous codons ending in A
or T, while those with a maximum growth temperature above
20◦C preferred codons ending in G or C (Liu et al., 2020). A
similar trend was found in a genomic study of the psychrophilic
bacterium Pseudoalteromonas shioyasakiensis (Duan and Guo,
2021). A transcriptomic analysis of eight Antarctic yeasts revealed a
variation in CUB associated with their growth temperatures: yeasts
with growth temperatures below 20◦C preferred codons AAC
(Asn), GAG (Glu), CAC (His), ATC (Ile), AAG (Asn), and TTC
(Phe), while those with growth temperatures above 20◦C showed
a CUB similar to that of mesophilic yeasts (Baeza et al., 2022). A
preference for GGA (Gly) and CGA (Arg) has been described in
the yeast Mrakia psychrophila, which grows optimally at 12–15◦C
(Su et al., 2016).

A pronounced CUB has been reported in highly but not
in low expressed genes. Gene expression levels can be related
to translation efficiency, and mutational pressure and natural
selection have been proposed as the major forces driving CUB
through selection of “translationally superior” codons (dos Reis
et al., 2003; Goetz and Fuglsang, 2005; Klumpp et al., 2012;
Novoa and Ribas de Pouplana, 2012; Frumkin et al., 2018;
Liu, 2020; Iriarte et al., 2021). Furthermore, there is increasing
evidence of the impact of CUB on gene expression and protein
structure by influencing translation efficiency and accuracy, co-
translational protein folding, and mRNA stability (Higgs and
Ran, 2008; Shah and Gilchrist, 2010; Angov, 2011; Trotta, 2013;
Liu, 2020). Stable mRNAs in Saccharomyces cerevisiae, such as
those encoding enzymes involved in glycolysis and the large and
small cytosolic ribosomal subunit proteins, tend to have a higher
content of preferred codons (above 85% on average) and unstable
mRNAs, such as those encoding polypeptides involved in yeast
pheromone response and mitochondrial ribosomal proteins, have
a lower content of preferred codons (an average of about 45%;
Presnyak et al., 2015). Studies using cell-free translation systems
from Neurospora and Drosophila showed that CUB affects the
local translation elongation rates: optimal synonymous codons
accelerate elongation, while non-optimal codons deaccelerate
it, thereby affecting protein structure and function (Yu et al.,

Abbreviations: CUB, codon usage bias; OTG, optimal temperature of growth;

RSCU, Relative synonymous codon usage.

2015; Zhao et al., 2017). A genomic analysis of Neurospora

crassa, Escherichia coli, S. cerevisiae, Caenorhabditis elegans, and
Drosophila melanogaster showed that protein regions predicted to
be unstructured are commonly encoded by non-preferred codons,
while predicted structured regions are encoded by preferred ones
(Zhou et al., 2015). However, it has been described that alpha-
helices are mainly encoded by preferred codons and beta-strands
by non-preferred codons in E. coli (Thanaraj and Argos, 1996).

In this work, a comprehensive comparative CUB analysis
was conducted on 89 yeast strains from different species isolated
from diverse environments to evaluate its correlations with several
parameters, including gene expression levels, growth temperatures,
GC composition, response to cold stress, and some predicted
protein properties.

Methods

Yeast culture conditions

Phaffia rhodozyma strains were cultivated in YM or minimal
medium supplemented with 2% glucose or maltose and incubated
at 10, 15, 22, or 26◦C with 150 r.p.m. orbital shaking. Growth
was monitored by the optical density of the culture at 600 nm,
and growth rates were calculated from the exponential growth
phase. The temperature at which the yeast strain had the highest
growth rate was considered optimal. The four P. rhodozyma isolates
showed higher growth rates between 10 and 15◦C, and the optimal
growth temperature was 15◦C for isolates UCD 647-385, Av, and
VOH, and 10◦C for CBS 6938 (Supplementary Table 1). Data on
optimal temperature for growth for other yeasts were obtained
from previous works (Baeza et al., 2022) and databases such as
American Type Culture Collection (ATCC), Westerdijk Institute,
Institute for Systems Biology, National Collection of Yeast Cultures.

RNA-seq

P. rhodozyma isolates were grown until the stationary
phase in 100ml of different media at 22◦C, as indicated in
Supplementary Table 2. Cultures were centrifuged at 4,000 g for
5min, and total RNA was purified using TRIzol (Invitrogen). The
RNA samples having 260/280 and 260/230 >1.9 were stored in
50% ethanol with 0.3M sodium acetate and sent to Macrogen Inc.
for next-generation sequencing using the protocols and platforms
indicated in Supplementary Table 2. RNA integrity (RIN) was
determined at Macrogen Inc., and samples with RIN > 7 were
processed. Eleven transcriptomes were determined for the P.

rhodozyma isolates in this work, eight for strain UCD 67-385, and
three for the Chilean isolates VOH and AVHN2 (Loto et al., 2012).
The raw data statistics are indicated in Supplementary Table 2 and
are available at NCBI, BioProject accession number PRJNA966916.
The transcriptomes of the Antarctic yeast isolates were previously
described (Baeza et al., 2022), and the Sequence Read Archive
(SRA) of the transcriptomes of other yeast species (a total of
1,416 SRA files) were downloaded from the NCBI database. The
abbreviations, growth temperature, and codes of the SRA files of
yeast species used in this work are listed in Supplementary Table 3.
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Bioinformatic analysis

Contigs of at least 210 nt were assembled from each SRA using
Tadpole assembler 38.84 (plugin in Geneious prime v11), and the
expression levels of the ORFs in each yeast were determined by
mapping each SRA (RNAseq plugin in Geneious prime v11) and
expressed in reads per kilobase per million mapped reads (RPKM;
Mortazavi et al., 2008). The maximum RPKM value was considered
for contigs in yeast with multiple transcriptome data, and only
contigs with RPKM values ≥ 10 were included in the subsequent
analysis. The open reading frames (ORF) ≥ 210 nt in each contig
were predicted, translated in silico, and compared to KAAS—
KEGG Automatic Annotation Server (Moriya et al., 2007), using
the default parameters of GHOSTX (Suzuki et al., 2014) and gene
datasets for eukaryotes, and only annotated ORFs were considered
for further analysis. The secondary structures (alpha-helices, beta-
sheets, turns, and coils) and subcellular localization (cytoplasmic,
transmembrane, and extracellular) were predicted from translated
ORFs using the EMBOSS garnier plugin in Geneious prime v11
(Rice et al., 2000; Viklund and Elofsson, 2004).

Relative synonymous codon usage
calculation and comparative analysis

The calculation of RSCU was performed for each ORF in each
yeast as the ratio between the frequency of a codon and the expected
frequency if all synonymous codons were used equally. An RSCU
= 1 indicates that the codon usage pattern has no preference, while
an RSCU > 1 indicates that the codon has a preference. Codons
with RSCU ≥ 1.5 are classified as high-frequency codons, and
those found in the highest expressed ORFs (RPKM > 1,000) were
referred to as “preferred codons” in this work. Normality of the
data was tested using Llliefors, Kolmogorov_Smirnov, Anderson
Darling, and DÁgostino-K squared, all of which rejected normality;
therefore, comparative analyses were performed using the non-
parametric Kruskal-Wallis test and Dunn’s multiple comparisons.
Comparative analyses were performed for each codon between
ORFs grouped by parameter when appropriate. Five groups were
classified by expression level (L1, 10 ≥ RPKM ≤ 100; L2, 100 <

RPKM ≤ 300; L3, 300 < RPKM ≤ 500; L4, 50 < RPKM ≤ 1,000;
and L5, 1,000 < RPKM), eight groups according to % GC (gc1, 10
≥%GC≤ 20; gc2, 20 < %GC≤ 40; gc3, 40 < %GC≤ 60; gc4, 60 <

%GC≤ 80), and 22 groups according to predicted cellular pathways
as indicated in Table 1.

Results

Codon bias in yeasts and correlation with
growth temperature, expression levels, and
%GC

RSCU was calculated for each ORF, and codon values were
compared across yeasts. All codons showed a high percentage
of significant difference in RSCU values between yeast pairs,
ranging from 75% (CGG) to 93% (GAG and GTT; table in
Figure 1). The number of significantly different codons between

TABLE 1 List of abbreviations used in this work for cellular pathways.

Cellular pathway Abbreviation

Amino acid metabolism Aam

Biosynthesis of other secondary metabolites Boosm

Carbohydrate metabolism Cmet

Cell growth and death Cgad

Cell motility Cmom

Cellular community—eukaryotes Cc-e

Energy metabolism Em

Folding, sorting, and degradation Fsad

Glycan biosynthesis and metabolism Gbam

Lipid metabolism Lm

Membrane transport Mt

Metabolism of cofactors and vitamins Mocav

Metabolism of other amino acids Mooaa

Metabolism of terpenoids and polyketides Motap

Nucleotide metabolism Nm

Replication and repair Rar

Signal transduction St

Signaling molecules and interaction Smai

Transcription Transc

Translation Transl

Transport and catabolism Tac

Xenobiotics biodegradation and metabolism Xbam

yeast pairs varied from eight codons in C. albicans vs. C.

dubliniensis to 59 codons in 258 yeast pairs, such as Candida

auris vs.Moesziomyces aphidis, Candida haemuloni vs. Rhodotorula
toruloides, and Candida orthopsilosis vs. Tilletiopsis washingtonensis
(heatmap in Figure 1). The median number of different codons was
54, with an interquartile range of 8 (boxplot in Figure 1).

The RSCU values for each codonwere compared betweenORFs
grouped by expression level and by %GC within and between
yeasts. As shown in Figure 2, significant differences in RSCU
between groups increase on average as their difference in expression
level increases, being maximum between groups of ORFs with
RPKM values between 10 and 100 (L1) and those with RPKM
higher than 1,000 (L5; Figure 2A). Regarding %GC, minor RSCU
differences were found between the group with 1–20 %GC (gc1)
and the others, probably due to the low number of yeasts (15)
and ORFs (21–542) in this category. Among the other groups,
the average difference was variable in all yeasts analyzed, with the
highest differences between those with 41–60 %GC (gc3) and 61–
80 %GC (gc4), and the lowest between those with 21–40 %GC (gc2)
and 61–80 %GC (gc4; Figure 2D). When comparing RSCU values
between yeasts, higher similarities were found between highly
expressed groups, whether comparing the same or different groups
(Figures 2B, C). Regarding the %GC, the 41–60%GC group showed
the highest difference across yeasts. When comparing different
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FIGURE 1

Variation in synonymous codon usage among yeasts. The RSCU values of each codon in all ORFs were compared between di�erent pairs of yeasts.

The table shows the percentage of significant di�erences (p ≤ 0.05) for each codon in all comparisons. The number of significantly di�erent codons

between yeast pairs is shown in the heatmap, and their distribution is in the box plot. The full names of the species are listed in the Supplementary

Table 3.

%GC groups, the observed differences were similar, ranging from
48–50 %GC, except for the 1–20 %GC group (Figures 2E, F). These
results suggest that, between the two parameters analyzed, codon
usage appears to be more significantly influenced by the expression
level of genes than by their GC content.

Since the analysis based on the expression level groups gave
more consistent results, this parameter was selected for further
correlation analyses, including the yeast optimal temperature of
growth (OTG). In the analyses of correlations between RSCU
and OTG, considering only correlation values ≥ |0.4|, inverse
correlations were found for the codons GGA (Gly), AGG (Arg),

TTC (Phe), TCC (Ser), CGA (Arg), and GTC (Val), and direct
correlations for the codons ATT (Ile), TTT (Phe), and GTG
(Val) when considering the whole data set (Figure 3A). The same
tendency was observed in analyses of OTG values grouped by
expression level group, comparing the same or different expression
level groups, with additional inverse correlations for ATC (Ile)
and ACC (Thr). Regarding correlations between RSCU and
expression level, no correlations were observed when considering
the entire data set. However, when different expression level
groups were compared, direct correlations for GGG (Gly), ATA
(Ile), AGT (Ser), CTA (Leu), GTA (Val), GCA (Ala), TAT
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FIGURE 2

Variation in synonymous codon usage within and across yeasts considering the ORF expression level and %GC. The RSCU of each codon was

compared between ORFs grouped by their expression level and %GC within and between yeasts. Median and distribution of significant di�erences (p

≤ 0.05) between expression level groups within (A) and between (B, C) yeasts. Median and distribution of significant di�erences (p ≤ 0.05) between

%GC groups within (D) and between (E, F) yeasts. L1–L5 or gc1–gc4 correspond to the groups of ORFs classified by expression level or %GC from

lowest to highest.

(Tyr), ACA (Thr), and AAT (Asn) were observed in the highly
expressed groups.

When comparing the expression level groups in each yeast,
more codons having correlations to expression level were identified
(Figure 3B). Considering only correlations ≥ |0.5| found in most
yeasts (in at least 60 of them), direct correlations were detected for
ACC (Thr), GGT (Gly), GTC (Val), TTC (Phe), CAC (His), TAC
(Tyr), AAC (Asn), GAC (Asp), ATC (Ile), TCT (Ser), TCC (Ser),
GCT (Ala), GTT (Val), GCC (Ala), AAG (Lys), CAG (Gln), CTC
(Leu), CCA (Pro), GAG (Glu), ACT (Thr), and TGC (Cys). Inverse
correlations were found for GTG (Val), TTT (Phe), GCA (Ala),
GAT (Asp), CAT (His), ACG (Thr), AAT (Asn), AAA (Lys), GCG
(Ala), TAT (Tyr), GGA (Gly), ACA (Thr), AGT (Ser), GGG (Gly),
ATT (Ile), GGC (Gly), CGG (Arg), CCT (Pro), CTG (Leu), and
AGC (Ser). These results suggest some correlation between codon
usage and OTG in yeast, but it was less pronounced than expression
level, both in terms of codon numbers and correlation values.
Furthermore, the correlation between codon usage and expression
level was more noticeable when comparisons were made between
expression level groups within each yeast.

Similarity in codon usage among di�erent
yeasts

The yeasts were hierarchically clustered according to their
codon usage calculated from ORFs from the highest expressed
group (L5, RPKM >1,000, Supplementary Table 4), resulting in a
dendrogram with nine main groups (Figure 4). There were five
groups that contained at least 10 members from different yeast
genera that showed a similar OTG (Figure 4, boxplot). One group,
group 6, had only species of the genus Malassezia with an OTG
of 28–30◦C. Group 2 was the most numerous with 28 members,

the majority with OTG between 24 and 25◦C. Antarctic yeasts
with OTG of 22◦C (Candida sake andWickerhamomyces anomalus)
grouped with other 13 yeasts with OTG from 22 to 30◦C (group
3), while the Antarctic yeasts with OTG of 15 and 19◦C grouped
with other 12 yeasts with OTG mainly from 20 to 27◦C. Antarctic
yeast isolates M. gelida and P. rhodozyma, with the lowest OTG
values determined by our group, grouped with other cold-adapted
Mrakia species, and with Yarrowia species, corresponding to the
group with the lowest median for OTG (16◦C) of all groups. It
can be observed that mesophilic yeasts (OTG ≥ 20◦C) generally
group in ways that cannot be attributed only to their OTG. On
the other hand, although seven yeasts with the lowest OTG were
grouped with two mesophilic yeasts in group 8, they formed a
separate subgroup, suggesting a more similar codon usage among
psychrophilic yeasts.

Preferred codon content in cellular
pathways and regulated ORFs

The codons with an RSCU ≥ 1.5 calculated from highly
expressed ORFs (L5, RPKM >1,000, Supplementary Table 4) were
considered “preferred” in this work. The content of preferred
codons was calculated in each ORF, grouped according to the
cellular pathways in which the encoded protein was predicted
to be involved, and compared within each yeast. As shown
in Supplementary Figure 1 and summarized in Figure 5A, the
pathways with the highest percentage of preferred codons in
most yeasts were “translation,” ranging from 32% in Kockovaella

imperatae to 58% inNaumovozyma castellii (a median of 40%), and
“energymetabolism,” ranging from 30% inCoccidioides posadasii to
56% in Tilletiopsis washingtonensis (a median of 41%). When each
pathway was compared with the others, “translation” and “energy
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FIGURE 3

Correlation between synonymous codon usage and the yeast optimal temperature of growth or ORF expression level. A matrix was created

containing all combinations of yeast strains and expression level groups for each codon. The di�erences in the corresponding values of RSCU,

optimal temperature of growth, and expression level were calculated. These di�erences were used for principal component analysis (PCA) between

di�erent yeast strains (A) and within each yeast strain (B), as well as between the same or di�erent expression level groups. In (A), the color and size

of the circle represent the correlation values. In (B), the circle color corresponds to the correlation value, and its size represents the number of yeasts

with the corresponding correlation. L1–L5 correspond to the ORF expression level groups from lowest to highest.
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FIGURE 4

Hierarchical clustering of yeasts based on codon usage. Dendrograms were constructed considering the RSCU of codons calculated from the

highest expression level group of ORFs. The yeast abbreviation and optimal temperature of growth are indicated in the dendrograms (the full names

of the species are given in the Supplementary Table 3). Asterisks indicate yeasts isolated from Antarctica and P. rhodozyma isolates for which the

optimal temperature of growth was determined in this work. The box plot shows the distribution of the yeasts’ optimal temperature of growth in

each hierarchical group (1–9).

metabolism” were significantly different in the largest number of
yeasts (Figure 5B). In addition, when estimating the difference in
the percentage of preferred codons between each pathway vs. the
others with significant differences, these two pathways showed the
highest percentage of preferred codons (Figure 5C).

The content of preferred codons was also analyzed in ORFs
that were up- or down-regulated in Antarctic yeasts subjected to
cold stress and in P. rhodozymaUCD 67-385 cultivated on different
carbon sources (glucose or maltose). As shown in Figure 6A, the

distribution of the percentage of preferred codons and the median
in up- and down-regulated ORFs was similar in most of the yeasts
analyzed, except for C. sake in which down-regulated ORFs showed
a higher percentage of preferred codons than up-regulated ORFs.
When comparing the preferred codon content between up- and
down-regulated ORFs classified by cellular pathways, significant
differences were detected only in a few pathways (from one to
seven) in C. sake, P. glacialis, P. rhodozyma UCD 67-385, and W.

anomalus, with a generally lower percentage of preferred codons in
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FIGURE 5

Comparison of preferred codon content in cellular pathways. The content of preferred codons was calculated in each ORF classified according to its

predicted cellular pathway and compared across yeasts. (A) Distribution of the percentage of preferred codons considering all ORFs. (B) Number of

yeasts with significant di�erences between the compared cellular pathways. (C) Distribution of significant di�erences in the content of preferred

codons between a pathway and the others. The full names of the cellular pathways are listed Table 1.

up-regulated ORFs than in down-regulated ones, except for “signal
transduction” in P. glacialis (Figure 6B). Therefore, in general, there
is no difference in the content of preferred codons between up- and
down-regulated ORFs, at least under the conditions analyzed here.

Distribution of preferred codons in ORFs
and structural properties of coded proteins

The ORFs were fragmented in silico into non-overlapping
segments of 30 nt, and the percentage of preferred codons within
each segment was calculated and compared in each yeast. Figure 7A
shows the median differences in the percentage of preferred codons
between a single segment and the contiguous 20 downstream
segments for the first 5′ end 20 segments of the ORFs from all
yeasts. An evident lower content of preferred codons was observed
when comparing the first segments to the others, a tendency
that gradually decreased for the downstream segments and was
more pronounced in ORFs with higher expression levels. Figure 7B
shows the median difference in the percentage of preferred codons
between the first 5′ segment of the ORFs and the subsequent 20
segments in each yeast. In most yeasts, the first segments of the
ORFs had a lower percentage of preferred codons, which was more
noticeable in the groups of ORFs with higher expression levels.
This pattern was particularly pronounced in the P. rhodozyma

isolates, Moesziomyces sp., Moesziomyces aphidis, M. gelida, L.
creatinivorum, Lachancea thermotolerans, and M. frigida. These
results showed a general tendency for ORFs in the yeasts analyzed
here to have a lower content of preferred codons at the 5′ end, more
pronounced in highly expressed ORFs, which would imply a slower
translation start, as discussed below.

The secondary structures (beta-strands, alpha-helices, turns,
and coils) and subcellular localizations (cytoplasmic, extracellular,
and transmembrane) in the translated ORFs were predicted,
and the percentage of preferred codons in the corresponding

coding segments was calculated and compared in each yeast.
The percentage of preferred codons in all secondary structures
increased as the expression level of the ORF group increased.
In all expression level groups, the beta strand showed a higher
percentage of preferred codons than the other secondary structures
(Figure 8A), and no clear trend was observed between the alpha
helix with respect to coil and turn. The percentage of preferred
codons in subcellular localizations was lower in extracellular and
transmembrane than in cytoplasmic, a tendency that was more
pronounced in ORFs with higher expression levels (Figure 8A).
When comparing the categories in each yeast, the beta strand
does indeed show a higher percentage of preferred codons than
the other secondary structures at all expression levels; however,
the number of yeasts that showed significant differences in these
comparisons tended to decrease as the expression level of the
group increased (Figure 8B). In the case of subcellular localizations,
the cytoplasmic showed a higher content of preferred codons
than the other two, especially in the groups of ORFs with higher
expression levels (L4 and L5). However, only a small fraction of the
analyzed yeasts (between 7 and 22%) were the ones that showed
significant differences in these comparisons (Figure 8B). Thus, the
higher content of the preferred codon in predicted beta strands and
cytoplasmic proteins was the more consistent trend.

Discussion

In this work, the use of synonymous codons in different
yeasts was analyzed in relation to various factors including their
temperature of growth, gene expression levels, protein structure
and subcellular localization, and cellular pathways where proteins
would be involved. Our results showed that highly expressed ORFs
tend to have a more similar RSCU in both, within a yeast and
among different yeasts. These findings are consistent with the
significant bias observed in highly expressed genes, for which it has
been suggested that selective pressures would favor certain codons
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FIGURE 6

Codon preference content in regulated ORFs. (A) Percentage of preferred codons in upregulated (log2 ≥ 1) and downregulated (log2 ≤ −1) ORFs

after cold stress in Antarctic yeasts and after growth in two di�erent carbon sources (glucose or maltose), in P. rhodozyma 385 isolates. (B)

Di�erence in the percentage of up- minus down-regulated (% up-down) ORFs in cellular pathways that are significantly di�erent in each yeast.

FIGURE 7

Preferred codon content analysis along ORFs. The yeast ORFs were fragmented in silico into non-overlapping segments of 30 nt, and the percentage

of preferred codons in each segment was calculated. (A) The median di�erences in preferred codon content between a segment and the contiguous

downstream segments for the first 20 5′-end segments of the ORFs. (B) The median di�erences (color of circles; sizes of circles represent absolute

values of median) in preferred codon content between the first 5′-end segment and the 20 downstream segments in each yeast. Analyses were

performed using the entire data set (“All”) or subsets of ORFs classified by expression level (“L1–L5”). L1–L5 correspond to the ORF expression level

group from lowest to highest. See Supplementary Table 3 for the full names of yeasts.

to optimize the efficiency and speed of protein translation (dos Reis
et al., 2003; Goetz and Fuglsang, 2005; Klumpp et al., 2012; Novoa
and Ribas de Pouplana, 2012; Frumkin et al., 2018; Liu, 2020; Iriarte
et al., 2021). When analyzing the relationship between RSCU and
yeast OTG, correlations (ranging from |0.4| to |0.6|) were found

for 11 codons, eight inverse and three direct. Five of 16 codons
ending in C showed an inverse correlation, two of 14 codons ending
in A showed an inverse correlation, two of 16 codons ending in
T showed a direct correlation, and of the 13 codons ending in G,
one had an inverse correlation, and one had a direct correlation.
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FIGURE 8

Preferred codon content in ORF segments encoding secondary structures and subcellular localizations. The secondary structures and subcellular

localizations were predicted in the translated ORFs, and the percentage of preferred codons in the corresponding ORF segments was calculated in

each yeast. (A) Distribution of preferred codon percentage in each category in each ORF expression level group, considering data from all yeasts. (B)

Di�erence of preferred codon percentages between categories in each ORF expression level group in each yeast. Only the distribution of the

percentage di�erences between significantly di�erent categories (p ≤ 0.05) is shown in the box plot, and the number of yeasts in which significant

di�erences were found is given in parentheses. Alpha, alpha helix; Beta, beta strand; Cyto, cytoplasmic; Trans, transmembrane; Extra, extracellular.

L1–L5 correspond to the ORF expression level group from lowest to highest.

These findings are not consistent with the A/T preference at
the third codon position reported in prokaryotes growing at low
temperatures (Liu et al., 2020; Duan and Guo, 2021). However,
other work suggested that CUB could not be attributed to a selective
pressure related to the microorganism temperature for growth as
an unusual clustering based on CUB of an archaeal psychrophile
with thermophiles and hyperthermophiles was obtained (Lobry
and Necşulea, 2006). Regarding ORF expression levels, it has
been reported that highly expressed genes with low translation
rates are severely depleted in fast growing cells (Hausser et al.,
2019), which aligns with the hypothesis that highly expressed genes
would require a rapid translation elongation to minimize ribosome
sequestration and alleviate ribosome shortage (Yang et al., 2014). In

the yeasts studied in this work, stronger correlations (between |0.5|
and |0.8|) were observed between CUB and ORF expression levels.
These correlations were generally direct for C, especially for codons
varying only between C and T, and both inverse and direct for G,
being direct when the only possibility of variation was between
G and A. These findings do not align with results described in S.

cerevisiae, where genes with AT-rich codons had a faster translation
than GC-rich ones (Gardin et al., 2014).

CUB has also been related to cellular fitness, the lifestyle of
microorganisms, and their need to adapt efficiently to different
environments (Botzman andMargalit, 2011; Roller et al., 2013; Hart
et al., 2018; Arella et al., 2021). The yeasts selected for this study
were those for which transcriptomic and growth temperature data
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were available, either in databases or determined by us, resulting
in a collection of yeasts isolated from different locations and
substrates. For Antarctic yeasts and P. rhodozyma isolates, the
clustering of yeasts based on their CUB was generally consistent
with OTG, as those with higher OTG (22◦C) grouped with yeasts
with OTG around 25◦C, and those with lower OTG (19◦C or
below) clustered with other cold-adapted yeasts with OTG below
25◦C. However, this consistency was not observed in the clusters
of most of the other yeasts analyzed. In the case of Antarctic
yeasts and P. rhodozyma isolates, their OTG is consistent with
their growth rates (Baeza et al., 2021; Supplementary Table 1);
however, the growth rate is unknown for most of the yeasts
included in this work and could be one of the factors influencing
clustering, as yeasts with similar OTG may not have similar
growth rates.

The number of preferred codons (with RSCU ≥ 1.5 in highly
expressed ORFs) varied among yeasts from 12 to 25 (19 on
average), and codons such as ACC (Thr), TAC (Tyr), ATC (Ile),
AAG (Lys), TCC (Ser), and AAC (Asn) were preferred by most
yeasts. Among the predicted cellular pathways, “translation” and
“energy metabolism” were the ones whose associated ORFs had
the highest content of preferred codons in most yeasts. This is
an interesting result as it has been suggested that codon usage
bias in bacteria is likely to initially evolve in genes related to
the translation machinery rather than in other cellular functions,
thereby improving the efficiency of translation machinery, which
in turn significantly boosts the translation efficiency of other genes
(González-Serrano et al., 2022).

In transcriptomic studies of organisms such as S. cerevisiae,
Schizosaccharomyces pombe, and C. elegans subjected to various
stress conditions, an overrepresentation of codons read by rare
tRNAs was observed (Gingold et al., 2012). In the analysis of
Antarctic yeasts subjected to cold stress and of P. rhodozyma

UCD 67-385 cultured on different carbon sources in this work,
the percentage of preferred codons was similar in up and down
regulated ORFs. Although significant differences were found in the
content of preferred codons between up and down regulated ORFs
classified by metabolic pathways, generally lower in up regulated
ORFs, differences were found only in four yeasts in a few pathways
in each. These variable results are expected, as the stress response
in yeasts involves complex and extensive mechanisms, including a
global reduction of the cellular metabolism, activation of specific
stress response genes, and translational adaptation requiring a
coordinated balance between the tRNA epitranscriptome and
codon bias (Chan et al., 2018).

CUB has been implicated in the regulation of gene expression
and protein structure by influencing the translation efficiency
and accuracy, cotranslational protein folding, and mRNA stability
(Higgs and Ran, 2008; Shah and Gilchrist, 2010; Angov, 2011;
Trotta, 2013; Liu, 2020). The presence of “rare” codons at the
5′ end of mRNAs has been proposed to create a “slow ramp”
effect that reduces ribosome collisions along the coding sequence,
thereby preventing the detrimental activation of ribosome quality
control mechanisms dependent on colliding ribosomes (Tuller
et al., 2010; Verma et al., 2019). A general trend toward a
lower content of preferred codons at the 5′ end of ORFs was
observed in the yeasts analyzed in this study, which was more
pronounced in highly expressed than in low expressed ORFs,

supporting the “slow ramp” hypothesis and this effect would be
more relevant in genes under faster translation. Other aspects
that could be related to the content and distribution of preferred
codons along mRNAs include segments encoding structural or
functional regions of proteins or their subcellular localization. It
has been reported in N. crassa, E. coli, S. cerevisiae, C. elegans,
and Drosophila melanogaster that protein regions predicted to
be structured are mainly encoded by optimal codons, whereas
unstructured regions are encoded by non-optimal ones (Zhou et al.,
2015). However, in another study in E. coli it was found that
alpha helices are encoded mainly by optimal codons, while beta
strands and coils by non-optimal codons (Thanaraj and Argos,
1996). In addition, it has been reported in E. coli and some yeasts
that ORFs encoding membrane-associated proteins involved in
targeting, insertion, or interaction with other proteins, as well as
ORF regions encoding secondary structures of polypeptides, tend
to be rich in rare codon clusters (Zhang et al., 2009; Chartier et al.,
2012; Pechmann and Frydman, 2013; Fluman et al., 2014). In most
of the yeasts analyzed in this work, the ORF segments encoding
beta strands had a higher percentage of preferred codons than
those encoding alpha helices, coil, or turn, and those encoding
transmembrane protein segments or extracellular proteins had
a lower percentage than cytoplasmic. Several lines of evidence
support the existence of a balance between optimal and non-
optimal codons inmRNAs, including the presence of codon clusters
that would contribute to the regulation of global and local rates
of protein synthesis. It has been hypothesized that this balance
would help to generate translation pauses to ensure proper protein
folding, availability of free ribosomes for highly expressed ORFs
under rapid growth conditions, regulation of translation initiation,
and proper protein targeting (Chaney and Clark, 2015; González-
Serrano et al., 2022; Parvathy et al., 2022). For example, the
cross-pathway control protein 1 (CPC-1) gene from N. crassa,

has a non-optimal RSCU profile rich in NNU codons, which
was suggested to be important for maintaining a proper protein
structure and function (Lyu and Liu, 2020). Supporting this idea,
studies using cell-free translation systems from Neurospora and
Drosophila showed that while optimal synonymous codons can
enhance the translation elongation rate, non-optimal codons can
decelerate it, with consequential impacts on the structure and
function of proteins (Yu et al., 2015; Zhao et al., 2017).

Finally, assuming that highly expressed ORFs tend to be
translated faster, the findings from this work strongly suggest a
relationship between CUB and the rate of protein synthesis, which
in turn is related to cellular growth rate and gene expression levels
in yeasts. Regulation of protein synthesis rates contributes to proper
protein folding and subcellular targeting, where the abundance and
distribution of preferred and non-preferred codons along mRNAs
would play an important role, especially under conditions requiring
rapid protein synthesis in yeast.
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