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Editorial on the Research Topic

Applications of bioinformatics, machine learning and risk analysis for

microbial food safety

Food safety remains a global concern as foodborne illnesses persist, stemming from

various microorganisms like norovirus, hepatitis A, Salmonella, E. coli, and mycotoxin-

producing fungi. The advent of sequencing, bioinformatics, and big data technologies

opens new avenues in addressing food safety challenges. Innovative strategies, driven by

bioinformatics, machine learning, and risk analysis, are enhancing the detection, diagnosis,

prediction, and prevention of foodborne disease outbreaks. These advancements offer

valuable recommendations to mitigate microbial food safety hazards.

The Research Topic features four noteworthy papers focusing on machine learning

methods and bioinformatics techniques. These papers explore aflatoxins prediction, non-

targeted metabolomics of moldy wheat, eae-positive Shiga toxin-producing Escherichia

coli, and microbial communities in fresh produce. Each contributes to the evolving

landscape of computational technologies in ensuring food safety on an international scale.

Aflatoxin, produced by fungi in corn, poses health risks for humans and livestock.

Branstad-Spates et al. focused on developing a Gradient BoostingMachine (GBM) learning

model to predict aflatoxin (AFL) contamination in Iowa corn, aiming to enhance food

and feed safety. T The model incorporates historical corn contamination, meteorological,

satellite, and soil data from Iowa, the leading corn-producing state in the US. Assessing

two risk thresholds (20- and 5-ppb) with a 90–10% training-to-testing ratio for 2010,

2011, 2012, and 2021, independently validated in 2020, the GBM model achieved 96.77%

accuracy for a 20-ppb threshold and 90.32% for a 5-ppb threshold, despite limited

sensitivity to high AFL contamination events. Influential factors identified include the

August satellite-derived vegetative index, aflatoxin risk indices in May and July, latitude,

and soil-saturated hydraulic conductivity. Developing annual AFL predictive models

proves practical for grain handling, emphasizing proactive measures critical for hazard

management and optimizing the nation’s corn crop safety and efficiency (Branstad-Spates

et al.).
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Gao et al. addressed the challenge of ensuring wheat safety,

a staple for global populations, focusing on the pervasive issue

of mildew affecting wheat quality during its growth, production,

and storage. Rapidly identifying moldy wheat is complex due

to intricate microbial metabolites. Using ultraperformance liquid

chromatography—quadrupole time-of-flight mass spectrometry

(UPLC-QTOF-MS) and chemometrics, the study established a

non-targeted PCA model with a compounds database of authentic

wheat samples. This model efficiently discriminates between moldy

and normal wheat. Employing orthogonal projection to latent

structures-discrimination analysis (OPLS-DA) with optimized

parameters, the study accurately identified moldy wheat, even at

5% (w/w) adulteration levels. Unique biomarkers for moldy wheat

were extracted, demonstrating the efficacy of combining chemical

information with the PCA model. This research introduces a

powerful method for screening wheat safety, contributing to the

wellbeing of individuals relying on wheat as a dietary staple (Gao

et al.).

Vorimore et al. sought to create a precise model for predicting

highly pathogenic Shiga toxin-producing Escherichia coli (STEC) in

complex E. coli samples. Utilizing genome-wide machine learning,

they considered E. coli’s genomic diversity, stratifying STEC and

E. coli pathogroups based on serotype and virulence factors.

The focus was on identifying biomarkers for characterizing eae-

positive STEC associated with severe human conditions. With

a dataset of 1,493 E. coli genome sequences and 1,178 Coding

Sequences (CDS), eight classification algorithms selected six key

CDS. Machine learning models, tuned and validated, demonstrated

the capability to identify enterohemorrhagic E. coli (EHEC) using

only these six genes in complex samples like milk metagenomes.

These biomarkers show potential for clear EHEC characterization

in diverse E. coli strain mixtures and raw milk metagenomes,

offering insights into food safety and public health (Vorimore

et al.).

Townsend et al. investigatedmicrobial communities in 18 food-

handling distribution centers (DCs) across the United States using

16S amplicon sequencing on 317 environmental surface swabs.

Significant diversity variations were observed among individual

DCs, with top genera including Carnobacterium_A, Psychrobacter,

Pseudomonas_E, Leaf454, and Staphylococcus. Four samples

containing Listeria amplicon sequence variants correlated with

positive Listeria microbiological samples. Cold-tolerant bacteria

were prevalent in DC environmental samples. Differential

abundance analysis revealed higher levels of Carnobacterium_A,

Psychrobacter, and Pseudomonas_E in Listeria-positive samples.

Microbiome composition varied significantly based on DC, season,

and general sampling location. This research highlights potential

pathogen presence and variations in microbial dynamics within

food-related DCs, contributing to our understanding of microbial

ecology in these environments (Townsend et al.).
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