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Objective: Pseudomonas aeruginosa has strong drug resistance and can 
tolerate a variety of antibiotics, which is a major problem in the management 
of antibiotic-resistant infections. Direct prediction of multi-drug resistance 
(MDR) resistance phenotypes of P. aeruginosa isolates and clinical samples by 
genotype is helpful for timely antibiotic treatment.

Methods: In the study, whole genome sequencing (WGS) data of 494 P. 
aeruginosa isolates were used to screen key anti-microbial resistance (AMR)-
associated genes related to imipenem (IPM), meropenem (MEM), piperacillin/
tazobactam (TZP), and levofloxacin (LVFX) resistance in P. aeruginosa by 
comparing genes with copy number differences between resistance and sensitive 
strains. Subsequently, for the direct prediction of the resistance of P. aeruginosa 
to four antibiotics by the AMR-associated features screened, we collected 74 
P. aeruginosa positive sputum samples to sequence by metagenomics next-
generation sequencing (mNGS), of which 1 sample with low quality was 
eliminated. Then, we constructed the resistance prediction model.

Results: We identified 93, 88, 80, 140 AMR-associated features for IPM, MEM, TZP, 
and LVFX resistance in P. aeruginosa. The relative abundance of AMR-associated 
genes was obtained by matching mNGS and WGS data. The top 20 features with 
importance degree for IPM, MEM, TZP, and LVFX resistance were used to model, 
respectively. Then, we used the random forest algorithm to construct resistance 
prediction models of P. aeruginosa, in which the areas under the curves of the 
IPM, MEM, TZP, and LVFX resistance prediction models were all greater than 0.8, 
suggesting these resistance prediction models had good performance.

Conclusion: In summary, mNGS can predict the resistance of P. aeruginosa by 
directly detecting AMR-associated genes, which provides a reference for rapid 
clinical detection of drug resistance of pathogenic bacteria.
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1 Introduction

Pseudomonas aeruginosa is a Gram-negative opportunistic 
bacterium that causes a variety of acute and chronic infections in 
humans. Due to its increasing incidence, high treatment difficulty, and 
high fatality rate, it is a major problem and focus of clinical treatment 
(Fernández-Barat et al., 2017; Reynolds and Kollef, 2021). The global 
burden report of bacterial anti-microbial resistance (AMR) in 2019 
pointed out that AMR poses a major threat to human health 
worldwide, especially the resistance of P. aeruginosa to multiple 
antibiotics (Murray et  al., 2022). With a relatively large bacterial 
genome, P. aeruginosa has good tolerance and adaptability to various 
environments, and has natural resistance to a variety of antibiotics 
(Klockgether et al., 2011), among which difficult-to-treat resistance 
P. aeruginosa (DTR-PA) urgently needs research and development of 
new antibiotics to deal with opportunistic infections caused by 
DTR-PA (Qin et al., 2022).

Rapid detection and elucidation of resistance mechanisms are 
essential for timely antibiotic treatment and monitoring of multi-drug 
resistance (MDR) P. aeruginosa. Nowadays, whole genome sequencing 
(WGS) has become an advanced method for detecting AMR (Maladan 
et al., 2021), while the clinical application of WGS is limited by high 
cost, high sample requirements, and technical analytical hurdles. The 
application of antibiotic susceptibility testing (AST) in the diagnosis 
of antimicrobial-resistant pathogens and their antibiogram is time-
consuming, cumbersome operation and has a low positive rate, which 
cannot meet the clinical needs (Shanmugakani et al., 2020; Hu and 
Zhao, 2023). Recently, metagenomics next-generation sequencing 
(mNGS) technology enables the identification of pathogens and 
AMR-associated genes directly from clinical samples based on its 
ability of the rapid diagnosis of unexplained infections (Yan et al., 
2021; Liu et al., 2023). Therefore, considering the complex resistance 
mechanisms and the high prevalence of variant-driven resistance of 
DTR-PA, it is feasible to predict resistance phenotypes of DTR-PA by 
detecting AMR-associated genes via mNGS.

In this study, mNGS was used to directly predict resistance to 
multiple antibiotics in P. aeruginosa, such as imipenem (IPM), 
meropenem (MEM), piperacillin/tazobactam (TZP), and levofloxacin 
(LVFX). First, AMR-associated genes of P. aeruginosa were screened 
according to the resistance genotype and phenotype of WGS and AST 
data. Then, we matched the AMR-associated genes from mNGS data 
of P. aeruginosa in clinical samples with the above genes to obtain the 
relative abundance of genes. Finally, the direct resistance prediction 
models for P. aeruginosa were constructed using random forest (RF) 
based on the relative abundance of AMR-associated genes.

2 Materials and methods

2.1 Genome and AMR phenotype collection 
of Pseudomonas aeruginosa strains

The NCBI NDARO database1 and reference (Liu et al., 2023) were 
performed for searching P. aeruginosa strains with both whole genome 

1 https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/

sequences and unambiguous resistance phenotypes to IPM, MEM, 
TZP, and LVFX. Referencing the previous research (Hu and Zhao, 
2023), low quality genomes were eliminated using a customized 
criterion developed with reference to NCBI genome exclusion rules. 
See the Supplementary Figure S1 for the filtering rules. After this 
filtering step, a total of 494 P. aeruginosa whole genomes were 
obtained, including 394 P. aeruginosa strains from NCBI NDARO 
database and 100 P. aeruginosa strains from the referenced study (Liu 
et al., 2023). Detailed information on the genomes of P. aeruginosa 
strains is displayed in Supplementary Table S1.

2.2 Curation of the Pseudomonas 
aeruginosa reference database and 
mapping

Prodigal v2.6.3 was used to predict the genes of the collected 
genome, and compare the predicted genes with eggNOG-mapper v2 
(Cantalapiedra et al., 2021) to get the gene name; finally the gene copy 
number was obtained from knowing number of gene names in 
bacterial genome (Supplementary Table S2). Subsequently, R language 
function t.test was applied to perform differential analysis on the 
resistance and sensitive groups of the same antibiotic. The obtained p 
values were corrected to q values using the R language function 
p.adjust (holm method). Genes with q-values <0.05 were regard as 
AMR-associated genes.

2.3 Patients, samples, and processing

A total of 74 P. aeruginosa positive sputum samples from 59 clinical 
patients were collected retrospectively from Peking University Shenzhen 
Hospital from February 2023 to September 2023. Our study has 
obtained the oral informed consent from all subjects, and approved by 
the Medical Ethics Committee of Peking University Shenzhen Hospital.

2.4 DNA extraction, sequencing, and 
quality control

DNA was extracted from each sample by using the FastPure Host 
Removal and Microbiome DNA Isolation Kit (Catalog No. DC501, 
Vazyme, China). Metagenomic sequencing was done on the MGI-200 
platform (BGI, Shenzhen, China) (50 bp of single-end reads for all 
samples). The real resistant samples and sensitive samples were 
combined respectively, and then Seqtk (v1.4) was used to randomly 
extract sequences from the real samples in equal proportions to obtain 
the simulated samples (Shen et al., 2016). Subsequently, the original 
sequencing file was filtered with fastp (v0.19.4) (Chen et al., 2018) to 
filter out low-quality sequences, and then the host decontamination 
was used by Bowtie2 (v2.3.5) with referencing human genome 
GRCh38 (Langmead and Salzberg, 2012).

2.5 Construction of predict model

As mentioned above, we  obtained 93, 88, 80, and 140 
AMR-associated genes for IPM, MEM, TZP, and LVFX, respectively. 
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Then, we  used RF to select the top  20 genes with the highest 
contribution to the model as features. Subsequently, top  20 
AMR-associated gene were trained by three machine learning 
methods, including RF, logistic regression, and support vector 
machine (SVM), to build resistance prediction models. All the models 
were carried out with the “caret 6.0.86” package (random forest 
version 4.6.14). Real resistance samples: real sensitive samples: 
simulated resistance samples: simulated sensitive samples were 
selected in equal proportion. The samples were randomly divided into 
the training set and the test set in a 1:1 ratio.

2.6 Analysis of the relative abundance of 
AMR-associated genes

Wilcoxon rank-sum test (p < 0.05) was used to compare the 
relative abundance of AMR-associated genes between resistance 
samples and sensitive samples. The R package “pheatmap 1.0.12” was 
used to draw a heatmap of the relative abundance of AMR-associated 
genes between resistance samples and sensitive samples. Violin 
diagram showed the top three AMR-associated genes between 
resistance samples and sensitive samples by the R Package 
“ggpubr 0.6.0.”

3 Results

3.1 Screening of key AMR-associated genes 
of Pseudomonas aeruginosa

The workflow of our study was presented in Figure 1. There 
was 400, 302, 247, and 257 P. aeruginosa strains resistant or 
sensitive to IPM, MEM, TZP, and LVFX, respectively. The total 
resistance rates of these strains to IPM, MEM, TZP, and LVFX 

were 77.75% (311/400), 71.52% (216/302), 51.42% (127/247), and 
77.43% (199/257), respectively. Regarding genetic characteristics, 
we obtained genes with significant differences in copy number 
between resistant and sensitive strain groups using t-test analysis. 
These AMR-associated genes with IPM, MEM, TZP, and LVFX 
resistance identified in P. aeruginosa isolates were summarized in 
Supplementary Table S3. In total, 93 gene associated with IPM 
resistance were obtained in P. aeruginosa isolates, including yebS, 
ymdF, stbD, hcnA, ydhM, yfjR, clsB, puuP3, yedA, moeB, katE, 
mmlH, MA20_16685, sod22, MA20_16,375, treS, MA20_16485, 
hcnB, spxB, and prhI, etc. Moreover, there were 88 AMR-associated 
genes with MEM resistance, 80 AMR-associated genes with TZP 
resistance and 140 AMR-associated genes with LVFX resistance in 
P. aeruginosa. See Supplementary Table S3 for detailed 
information. Then, we took the intersection of all AMR-associated 
genes, where HA62_05660, merA, merP were common 
AMR-associated genes with four antibiotics resistance 
(Supplementary Figure S2; Supplementary Table S4). Subsequently, 
we  chose top  20 AMR-associated genes with the highest 
contribution to the models as features by using random forest in 
the prediction models for IPM, MEM, TZP, and LVFX, respectively 
(Supplementary Table S5).

3.2 Selection of machine learning method

To obtain an appropriate machine learning method, we compared 
the performance of prediction models for the MEM resistance 
constructed by RF, logistic regression, and SVM. The results showed 
that the prediction models built by RF had the best performance of the 
prediction models with the maximum area under the curve 
(AUC > 0.85 in both the test cohort and training cohort) (Figure 2). 
Therefore, RF was performed for the construction of 
prediction models.

FIGURE 1

The flowchart of this study.
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3.3 Direct prediction of antibiotic 
resistance for Pseudomonas aeruginosa by 
mNGS

To directly predict resistance of P. aeruginosa to IPM, MEM, TZP, 
and LVFX from clinical specimens, we evaluated the applicability of 
mNGS to detect key AMR-associated genes. We  collected 74 
P. aeruginosa positive sputum samples and sent them for mNGS 
sequencing, of which one sample was eliminated due to quality 
problems. Subsequently, the AMR-associated genes in mNGS data 
were mapped with AMR-associated genes selected by machine 
learning to obtain their relative abundance. Then, according to the RF 
algorithms, we divided the samples into a test cohort and a training 
cohort in a 1:1 ratio to create the resistance prediction models for 
IPM, MEM, TZP, and LVFX, respectively. In the test cohort, the AUC 
of the IPM resistance prediction model was 0.885, with a sensitivity of 
0.741 and a specificity of 0.926 (Figure 3A). The AUC of the MEM 
resistance prediction model was 0.857, with a sensitivity of 0.667 and 
a specificity of 0.889 (Figure 3C). The AUC of TZP and LVFX reached 
0.823 (a specificity of 0.7 and sensitivity of 0.95), 0.848 (a specificity 
of 1 and a sensitivity of 0.682), respectively (Figures 3E,G). In the 
training set, the AUCs of the IPM, MEM, TZP, and LVFX resistance 
prediction models were 0.893, 0.888, 0.894, and 0.896, respectively 
(Figures 3B,D,F,H). Taken together, the resistance prediction models 
for IPM, MEM, TZP, and LVFX based on mNGS sequencing had good 
diagnostic performance.

3.4 Comparison of the relative abundance 
of the resistance genes between resistance 
and sensitive samples

We further compared the relative abundance of the resistance 
genes between resistance samples and sensitive samples. 

Supplementary Figures S3–S6 indicated the relative abundance of 20 
AMR-associated genes between resistance samples and sensitive 
samples from IPM, MEM, TZP, and LVFX, respectively. The violin 
diagrams showed the relative abundance of the top three genes with 
most significant difference in resistance samples and sensitive samples 
(Figures  4A–D). For example, for the IPM resistance prediction 
model, the abundance of merE, tniQ, and mmIH in resistant samples 
was higher than in sensitive samples (p < 0.05, Figure 4A), suggesting 
that these genes were positively associated with IPM resistance. For 
the MEM resistance prediction model, the abundance of aadA4, rhsA, 
and tniR in resistant samples was higher than in sensitive samples 
(p < 0.05, Figure 4B), indicating these genes were positively associated 
with MEM resistance. For the TZP resistance prediction model, 
compared with the sensitive samples, the abundance of mmH and 
MA20-16375 was increased in resistant samples (p < 0.05, Figure 4C). 
Similarly, the abundance of fabH, IspA, and rfbE was higher in 
resistant samples (p < 0.05, Figure  4D) in the LVFX resistance 
prediction model, comparing to sensitive samples. These findings 
demonstrated the relative abundance of the AMR-associated genes 
between resistance samples and sensitive samples could influence the 
resistance or sensitivity of P. aeruginosa to antibiotics.

4 Discussion

In recent years, due to the abuse of antibiotics, the resistance of 
P. aeruginosa has increased greatly, resulting in MDR and extensive 
drug resistance strains often appear in clinical treatment, which brings 
great difficulties to the clinical treatment of patients (Lister et al., 2009; 
Chegini et  al., 2020; Tenover et  al., 2022). However, the complex 
mechanism of drug resistance hindered genotype-to-phenotype 
prediction of P. aeruginosa (Poole, 2002; Fajardo et al., 2008). In view 
of this, we explored the applicability of WGS and mNGS in the direct 
prediction of IPM, MEM, TZP, and LVFX resistance of P. aeruginosa. 

FIGURE 2

Performance of prediction models constructed by different machine learning methods.
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Briefly, using the available WGS data of P. aeruginosa, 20 
AMR-associated genes with IPM, MEM, TZP, and LVFX resistance 
were identified, respectively. Subsequently, we  constructed IPM, 
MEM, TZP, and LVFX resistance prediction models based on the 
results of mNGS sequencing. The AUCs of IPM, MEM, TZP, and 
LVFX resistance prediction models were all greater than 0.8, indicating 
that our prediction models had good performance in predicting 
resistance of P. aeruginosa to antibiotics.

Several previous studies have explored the performance of WGS 
in predicting P. aeruginosa resistance phenotypes (Khaledi and 
Weimann, 2020; Kim and Greenberg, 2020; Cortes-Lara et al., 2021). 
Most of these studies focused on DNA sequences of gene presence or 
absence and gene variant (Hyun and Kavvas, 2020; Kim and 
Greenberg, 2020; Cortes-Lara et  al., 2021). However, the model-
building processes of the models constructed are cumbersome. 
Additionally, the predictive value of AMR-related gene signatures in 
P. aeruginosa needs to be  further verified. The drug resistance 
mechanism of P. aeruginosa mainly involved the outer membrane 
channel protein OprD gene (Chevalier et al., 2017), the aminoglycoside 
modifying enzyme gene (Thacharodi and Lamont, 2022), the β-lactam 
coding gene (Doss et al., 2004), and the 16S rRNA methylase gene 
(Yokoyama et  al., 2003). Liu et  al. (2023) have constructed the 
resistance prediction models for P. aeruginosa by detecting deletion or 
mutation sites of these genes. In our study, genes with significant copy 
number differences between resistant strains and sensitive strains were 
regarded as candidate AMR-associated genes associated with IPM/
MEM/TZP/LVFX resistance. The candidate AMR-associated genes 
were used to build corresponding resistance prediction models by RF 
algorithms. For example, AMR-associated genes in TZP resistance 
prediction model are ymdF, stbD, hcnA, yebS, etc. The ymdF played a 
role in flagellum-dependent motility regulation of P. aeruginosa 

(Oguri et al., 2019). Flagellum motility plays an active role in many 
biological functions of bacteria, such as the formation of bacteria-host 
symbiosis, pathogenicity, and antibiotic resistance (Raina et al., 2019; 
Wadhwa and Berg, 2022). In the pathogenic process of Acinetobacter 
baumannii, flagellar dysfunction can significantly reduce its virulence 
(Corral et al., 2021). Moreover, ymdF as PA2146 homologs contributes 
to biofilm formation and drug tolerance in Escherichia coli, Klebsiella 
pneumoniae, and P. aeruginosa (Kaleta et al., 2022; Kaleta and Sauer, 
2023), indicating ymdF plays an important role in TZP resistance for 
P. aeruginosa. In addition, stbD is a key component of IncFIB-4.1/4.2 
single-replicon plasmids that influences bacterial resistance to 
antibiotics (Xu et  al., 2022). The toxin-antitoxin system is widely 
present in pathogenic microorganisms, which promotes the formation 
of MDR bacteria by regulating several important cellular processes in 
cells (Bernard and Couturier, 1992; Lewis, 2010). stbD/E-pEP36 has 
reported to be  a functional toxin-antitoxin hybrid module 
(Unterholzner et al., 2013), indicating stbD/E-pEP36 contributed to 
P. aeruginosa resistance to TZP. The high pathogenicity of P. aeruginosa 
is attributed to its production of multiple virulence factors and its 
resistance to several antimicrobials, among which sodium 
hypochlorite (NaOCl) is widely used because of its strong antibacterial 
effect. However, hydrogen cyanide derived from hcnA acts as a 
scavenger molecule that can quench the toxic effects of NaOCl, 
thereby contributing to P. aeruginosa resistance to NaOCl (da Cruz 
Nizer et  al., 2023). The above information indicated that these 
AMR-associated genes were significant for P. aeruginosa resistance to 
TZP. Besides, uspA is a common AMR-associated gene in IPM and 
MEM resistance models. Universal stress proteins (USPs) are generally 
overexpressed in a variety of pathogens under various environmental 
stresses, among which uspA has been identified as a potential drug 
target against MDR-E. coli (Kvint et al., 2003). Furthermore, inhibition 

FIGURE 3

The resistance prediction models of Pseudomonas aeruginosa. The IPM resistance prediction of P. aeruginosa in the test set (A) and the training set (B). 
The MEM resistance prediction of P. aeruginosa in the test set (C) and the training set (D). The TZP resistance prediction of P. aeruginosa in the test set 
(E) and the training set (F). The LVFX resistance prediction of P. aeruginosa in the test set (G) and the training set (H).
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of UspA function in bacteria can improve the MDR resistance 
problem of bacteria (Bandyopadhyay and Mukherjee, 2022), 
suggesting the management of uspA could affect carbapenem 
resistance of P. aeruginosa. FabH inhibitors are new targets and novel 
antimicrobial agents to overcome bacterial resistance (Castillo and 
Pérez, 2008). In our study, fabH is an AMR-associated genes with high 
contribution in LVFX resistance model. FabH is a key enzyme 
responsible for fatty acid biosynthesis, which is essential for many 
pathogens (Yuan et al., 2012). According to research findings, the 
activity ratio of fabH/fabF was the main determinant of antibiotic 
susceptibility of pathogens (Parsons et  al., 2015), suggesting that 
focusing on the fabH/fabF activity ratio in P. aeruginosa could predict 
resistance to LVFX.

Different from other drug resistance models (Khaledi and 
Weimann, 2020; Hu and Zhao, 2023; Liu et  al., 2023), we  have 
screened AMR-associated genes by comparing the copy number of 
genes in the antibiotic resistance group and the sensitive group. 
Metagenomic studies have shown that copy number variation in the 
human microbiome is common and affects human health (Greenblum 
et al., 2015; Zeevi et al., 2019). The study have found that an increase 
in the copy number of antibiotic resistance genes (ARGs) on the 
multi-copy plasmid promoted the high expression of ARGs, thereby 

increasing drug resistance (Yao et al., 2022). Several recent studies 
have reported the relationship between gene duplication and bacterial 
resistance in clinical antibiotic-resistant strains by measuring copy 
number of resistant gene (Duvernay et al., 2011; McGann et al., 2014; 
Chirakul et al., 2019; Anderson et al., 2020). Besides, a new research 
demonstrated that ARG duplication could be an effective mechanism 
for the evolution of antibiotic resistance (Maddamsetti et al., 2024). 
These above studies indicated that measuring copy number changes 
of ARG in antibiotic-resistant isolates is very important for studying 
microbial resistance. In our study, AMR-associated genes in 
P. aeruginosa were identified by comparing genes with copy number 
differences between resistance strains and sensitive strains. 
Subsequently, four resistance models constructed by AMR-associated 
genes had good performance, which provide a new molecular 
resistance analysis tool for predicting antimicrobial resistance.

The detection of antimicrobial resistance mainly relies on the 
traditional drug susceptibility test, which has some shortcomings such 
as time-consuming and inappropriate empirical treatment. Therefore, 
a more rapid antibiotic sensitivity test is urgently needed to effectively 
reduce antibiotic resistance and improve clinical treatment. Given the 
widespread use of mNGS and its ability to directly identify 
AMR-associated genes from a variety of clinical samples, mNGS holds 

FIGURE 4

Comparison of the relative abundance of top three AMR-associated genes for the IPM (A), MEM (B), TZP (C), and LVFX (D) resistance of Pseudomonas 
aeruginosa between resistant samples and sensitive samples.
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great potential for rapid detection of AMR (Hoang et al., 2021; Ruppé 
et al., 2022). Hu and Zhao (2023) reported that the average reporting 
time of the NGS-based AST for clinical samples was 19.1 h, which 
effectively shortened the reporting time of traditional drug sensitivity 
detection technology. In our study, we  identified AMR-associated 
genes in P. aeruginosa by comparing genes with copy number 
differences between resistance strains and sensitive strains. Then, 
P. aeruginosa positive sputum samples were sequenced by mNGS 
method, and AMR-associated genes in mNGS were mapped with 
AMR-associated genes selected by machine learning to obtain their 
relative abundance, thereby constructing the resistance prediction 
models with great performance (AUCs >0.8). Here, we have effectively 
demonstrated the great applicability of mNGS in the prediction of 
P. aeruginosa to four commonly used antibiotics (IPM, MEM, TZP, 
and LVFX) based on key AMR-associated features selected and 
prediction models constructed.

There are certain challenges with the mNGS method. First, the high 
cost of mNGS is a great challenge for the future extensive application of 
mNGS. Second, the comprehensive application of mNGS is limited by 
high host DNA content, nucleic acid contamination, complex 
interpretation of mNGS data, and the depth of sequencing. Third, as a 
new detection method, the positive result of mNGS represents the 
nucleic acid fragment of a certain pathogen detected in clinical specimens.

5 Conclusion

In this study, we  first proposed genes with significant copy 
number differences between resistant strains and sensitive strains were 
associated with resistance of P. aeruginosa. These key AMR-associated 
genes and the prediction models can be used for mNGS to directly 
predict the resistance of P. aeruginosa in clinical samples, which have 
guiding significance for the clinical management of DTR-PA.
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