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Objectives: The objective of this study is to investigate the indirect causalities 
between gut microbiota and sleep disorders.

Methods: In stage 1, we utilized 196 gut microbiota as the exposure factor and 
conducted a two-sample univariable Mendelian randomization (MR) analysis on 
five sleep disorders: insomnia, excessive daytime sleepiness (EDS), sleep-wake 
rhythm disorders (SWRD), obstructive sleep apnea (OSA), and isolated REM sleep 
behavior disorder (iRBD). In stage 2, we validated the MR findings by comparing 
fecal microbiota abundance between patients and healthy controls through 16S 
rDNA sequencing. In stage 3, we explored the indirect pathways by which the 
microbiota affects sleep, using 205 gut microbiota metabolic pathways and 9 
common risk factors for sleep disorders as candidate mediators in a network 
MR analysis.

Results: In stage 1, the univariable MR analysis identified 14 microbiota 
potentially influencing five different sleep disorders. In stage 2, the results from 
our observational study validated four of these associations. In stage 3, the 
network MR analysis revealed that the Negativicutes class and Selenomonadales 
order might worsen insomnia by increasing pain [mediation: 12.43% (95% CI: 
0.47, 24.39%)]. Oxalobacter could raise EDS by disrupting adenosine reuptake 
[25.39% (1.84, 48.95%)]. Allisonella may elevate OSA risk via obesity promotion 
[36.88% (17.23, 56.54%)], while the Eubacterium xylanophilum group may lower 
OSA risk by decreasing smoking behavior [7.70% (0.66, 14.74%)].

Conclusion: Triangulation of evidence from the MR and observational study 
revealed indirect causal relationships between the microbiota and sleep 
disorders, offering fresh perspectives on how gut microbiota modulate sleep.
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1 Introduction

According to the International Classification of Sleep 
Disorders-Third Edition (ICSD-3), sleep disorders encompass 
common conditions such as insomnia, excessive daytime 
sleepiness (EDS), sleep-wake rhythm disorders (SWRD), 
obstructive sleep apnea (OSA), and isolated rapid eye movement 
sleep behavior disorder (iRBD) (Sateia, 2014). These disorders 
contribute to enduring gastrointestinal, psychological, and 
neurological issues, with certain subtypes recognized as potential 
precursors to neurodegenerative diseases (Grundgeiger et  al., 
2014; Dauvilliers et al., 2018; Hyun et al., 2019), posing significant 
health burdens. Therefore, identifying the risk factors and 
potential mechanisms of these diseases is crucial for 
targeted therapy.

Previous studies have illuminated the influential role of the gut 
microbiota in sleep disorders via the brain-gut axis (Wang et al., 
2022). During this process, the microbiome can synthesize specific 
metabolites, regulate immune and inflammatory responses, and 
impact the functions of the enteric and vagal nerves to alter sleep 
dynamics. While the results from these studies have shown significant 
heterogeneity, we believe that three main factors have limited the 
robustness of past conclusions. (1) Numerous factors such as diet, 
medication, smoking, alcohol consumption, chronic diseases, 
environmental factors, and circadian rhythms can simultaneously 
influence gut microbiota and sleep (Chang and Kao, 2019; Hasan and 
Yang, 2019; Sen et al., 2021), leading to substantial confounding bias 
that is difficult to control. (2) The bidirectional interaction between 
gut microbiota and sleep complicates the interpretation of 
correlations found in observational studies (Neroni et al., 2021). (3) 
The challenges associated with collecting and preserving gut 
microbiome samples and the high costs of sequencing have resulted 
in small sample sizes in previous studies, further limiting the 
replicability of the findings.

Mendelian randomization (MR), which integrates genome-
wide association study (GWAS) summary data to form strong 
instrumental variables for causal inference (Emdin et al., 2017), 
addresses these limitations effectively. The MR approach relies 
on GWAS data, which typically encompasses a large sample size. 
Methodologically, the strength of MR lies in its effective 
reduction of confounding biases and reverse causation (Sekula 
et  al., 2016). Therefore, we  believe that the MR method can 
effectively overcome the principal limitations of previous studies, 
making it ideal for exploring relationships between microbiota 
and disease.

However, previous MR studies examining the relationship 
between gut microbiota and sleep have several shortcomings: (1) They 
did not investigate the impact of the microbiota on less common sleep 
disorders, such as SWRD and iRBD. (2) Previous research lacks 
non-MR result validation, failing to meet the criteria for triangulation 
of evidence (Burgess et al., 2019). (3) There was no exploration of how 
the microbiota influences sleep disorders.

Therefore, in our study, in stage 1, we  conducted two-sample 
univariable MR (UVMR) analyses, to explore the impact of the 
microbiota on sleep disorders (such as insomnia, EDS, SWRD, OSA, 
and iRBD). In stage 2, we  carried out an observational study to 
externally validate the UVMR findings. In stage 3, we selected 205 gut 

microbiota metabolic pathways and 9 common risk factors for sleep 
disorders as candidate mediators, to investigate the potential 
mechanisms through which the microbiota indirectly affects sleep.

2 Methods

2.1 Study design

Our study consisted of three stages (Figure  1). In stage 1, 
we explored the impact of the gut microbiome on sleep disorder 
incidence using UVMR analysis. In stage 2, we sequenced the 16S 
rDNA of fecal samples from patients with various sleep disorders and 
healthy subjects (HCs), comparing microbiome abundance between 
groups as the external validation for UVMR results. In stage 3, 
we used network MR to examine potential mediators of microbiome 
effects on sleep disorders, calculating mediation effects. Using GWAS 
summary statistics from predominantly European-descendant 
cohorts, this research adhered to the STROBE-MR guidelines 
(Skrivankova et al., 2021) (Supplementary Table S1) and the three 
core assumptions of the MR analysis (Davies et al., 2018), with ethical 
approval and informed consent detailed in the cited 
GWAS publications.

2.2 Data sources for Mendelian 
randomization

2.2.1 Exposures
Our research utilized gut microbiome data from the large-scale 

GWAS meta-analysis by the MiBioGen consortium (Kurilshikov 
et  al., 2021), encompassing 16S rRNA gene sequencing and 
genotyping data from 18,340 participants across 24 independent 
cohorts. Given that both the mediators and outcomes in our study 
pertained to the European population, we selected gut microbiome 
data exclusively from European descendant from the Integrative 
Epidemiology Unit (IEU) database (sample size = 14,306, Table 1). In 
the MiBioGen study, microbiota was categorized into 257 
classifications, with 211 suitable for microbial quantitative trait locus 
(mbQTL) analysis. In our study, we only selected 196 named gut 
microbiota as the exposure factors, encompassing 9 phyla, 16 classes, 
20 orders, 32 families, and 119 genera.

2.2.2 Candidate mediators
To explore the potential indirect causalities, we endeavored to 

identify probable mediators lying in the pathway between gut 
microbiota and sleep disorders. Candidate mediators must meet two 
criteria: (1) they are recognized as risk factors for sleep disorders, and 
(2) they can be regulated by gut microbiota. Through a comprehensive 
review of the literature (Supplementary Table S11), we identified 205 
gut microbiota pathways as common mediators across all 
“microbiota-sleep disorder” relationships. For the “microbiota-
insomnia” relationship, candidate mediators include smoking, 
alcohol consumption, pain, anxiety, depression, diabetes, coronary 
heart disease, and stroke. In the “microbiota-EDS” relationship, 
candidate mediators include BMI, smoking, alcohol consumption, 
pain, anxiety, depression, diabetes, coronary heart disease, and 
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stroke. For the “microbiota-OSA” relationship, mediators include 
BMI, smoking, alcohol consumption, diabetes, and stroke. In the 
“microbiota-iRBD” relationship, smoking and depression were 
identified as candidate mediators.

The sources for all GWAS data on these mediators are presented 
in Table 1. To minimize interference from sample overlap, we selected 
mediator data from datasets independent of exposure and 
outcome factors.

FIGURE 1

Flowchart of the overall study design. Our research is divided into three stages. Stage 1: Utilizing univariate Mendelian randomization analysis to 
investigate the causal relationships between gut microbiota and sleep disorders. Stage 2: Employing observational studies as external validation for 
Mendelian randomization. Stage 3: Using network MR analysis to explore the indirect causal relationship between gut microbiota and sleep disorders. 
MR, Mendelian randomization; UVMR, univariate MR; MR PRESSO, MR pleiotropy residual sum and outlier; BMI, Body mass index; IVs, Instrumental 
variables; EDS, excessive daytime sleepiness; SWRD, sleep-wake rhythm disorders; OSA, obstructive sleep apnea; IRBD, isolated REM sleep behavior 
disorder; HCs, Health controls.
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TABLE 1 Data sources in this study.

Phenotype PMID or GWAS ID Sample size Ancestry Consortium or cohort study

Exposure

  Gut microbiome
IEU database ID: ebi-a-GCST90016908 to 

ebi-a-GCST90017118; PMID: 33462485
14,306 European MiBioGen consortium

Outcome

  Insomnia IEU database ID: ukb-b-3957 462,341 European MRC-IEU consortium; UK Biobank

  EDS IEU database ID: ukb-b-5776 460,913 European MRC-IEU consortium; UK Biobank

  SWRD FinnGen R10 ID: F5_SLEEPWAKE 405,685 European FinnGen database

  OSA FinnGen R10 ID: G6_SLEEPAPNO 410,385 European FinnGen database

  IRBD
GWAS catalog: GCST90204200; PMID: 

36470867
9,447

European The iRBD cohort (N cases = 1,061, N 

controls = 8,386) included large cohorts of French, French, 

Canadian, Italian and British origins, and smaller cohorts 

from different European populations

International RBD Study Group; French and 

French-Canadian HYPERGENES Project; Trust 

Case Control Consortium; Controls from McGill 

University, LNG, NIA, NIH

Candidate mediators

  Gut bacterial pathway (for insomnia, EDS, 

SWRD, OSA, and iRBD)

IEU database ID: ebi-a-GCST90027446 to 

ebi-a-GCST90027650; PMID: 35115690
7,738 European (participants from the north of the Netherlands) Dutch Microbiome Project

  Smoking (for OSA and iRBD) IEU database ID: ieu-b-25 PMID: 30643251 337,334 European GSCAN; UK Biobank

  Smoking (for insomnia and EDS) IEU database ID: finn-b-SMOKING 138,088 European FinnGen database

  Alcohol usage (for OSA) IEU database ID: ukb-b-5779 462,346 European MRC-IEU consortium; UK Biobank

  Alcohol usage (for insomnia and EDS) IEU database ID: finn-b-KRA_PSY_ALCOH 218,792 European FinnGen database

  Body mass index (for EDS and OSA) IEU database ID: ieu-b-40 PMID: 30124842 681,275 European GIANT

  Pain (for insomnia and EDS) IEU database ID: finn-b-PAIN 218,369 European FinnGen database

  Type 2 diabetes (for OSA) IEU database ID: ukb-b-13806 462,933 European MRC-IEU consortium; UK Biobank

  Type 2 diabetes (for insomnia and EDS) IEU database ID: finn-b-E4_DM2 215,654 European FinnGen database

  Coronary artery disease (for insomnia and EDS) IEU database ID: finn-b-I9_CHD 218,792 European FinnGen database

  Stroke (for OSA) IEU database ID: ukb-b-6358 462,933 European MRC-IEU consortium; UK Biobank

  Stroke (for insomnia and EDS) IEU database ID: finn-b-C_STROKE 180,862 European FinnGen database

  Anxiety (for insomnia and EDS) IEU database ID: finn-b-F5_ALLANXIOUS 210,623 European FinnGen database

  Depression (for insomnia, EDS, and iRBD) IEU database ID: finn-b-F5_DEPRESSIO 215,644 European FinnGen database

MRC-IEU, Medical Research Council Integrative Epidemiology Unit; LNG, Laboratory of Neurogenetics; NIA, National Institute on Aging; NIH, National Institutes of Health; DBDS, Danish Blood Donor Study; GSCAN, Sequencing Consortium of Alcohol and 
Nicotine use; GIANT, Genetic Investigation of ANthropometric Traits.
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2.2.3 Outcomes
According to ICSD-3, we  incorporated GWAS data for five 

prevalent sleep disorders, namely, insomnia, EDS, SWRD, OSA, and 
iRBD as outcomes (Sateia, 2014). The UK Biobank1 provided GWAS 
data for insomnia [International Classification of Diseases version-10 
(ICD10) codes G47.0, F51.0; data collected from 2012 to 2018] and 
EDS (ICD10 codes G47.1, F51.1; data collected from 2012 to 2018), 
which included 462,341 and 460,913 samples, respectively.

The data for SWRD (ICD10 codes G47.2, F51.2; data collected 
from 2017 to 2023) and OSA (ICD10 codes G37.3; data collected from 
2017 to 2023) were sourced from the Finnish Biobank R10,2 containing 
405,685 and 410,385 samples, respectively.

In 2022, Krohn et  al. (2022) contributed to the largest iRBD 
GWAS dataset, comprising 9,447 samples (including 1,061 cases from 
the International RBD study group and 8,386 controls), and iRBD 
cases were diagnosed following the International Classification of 
Sleep Disorders (2nd or 3rd Edition), including video 
polysomnography assessments.

All these datasets were selected for their public availability and 
large sample sizes to ensure sufficient statistical power for causality 
detection and mitigate potential biases arising from small sample sizes 
(Thompson et al., 2016).

2.3 Stage 1: univariable Mendelian 
randomization

2.3.1 Selection of instrumental variables
Given the exceedingly small number of eligible instrumental 

variables (IVs) below the genome-wide significance threshold 
(p < 5 × 10−8), we  opted for a relatively less stringent threshold 
(p < 5 × 10−5), as informed by previous studies (Li et al., 2022; Liu et al., 
2022; Cui et al., 2023). The instrument strength was estimated using the 
F-statistic (Huang et al., 2021), and an F-statistic exceeding 10 suggests 
the absence of weak IV bias (Burgess and Thompson, 2011). We selected 
SNPs with a minor allele frequency (MAF) ≥0.01. We  clumped 
independent SNPs based on European ancestry reference data (1,000 
Genomes Project, r2 > 0.001, genomic region = 10,000 kb). Summary 
statistics were harmonized on alleles positively associated with exposures. 
SNPs that were ambiguous palindromes (A/T, C/G) and had an MAF 
greater than 0.42 were excluded (Jiang et al., 2023). Furthermore, to 
mitigate reverse causation bias, we excluded SNPs that were significantly 
associated with the outcome (p < 5 × 10−5) (Park, 2023) and utilized the 
Steiger method for further filtering (Hemani et al., 2017).

2.3.2 Primary and secondary analyses of UVMR
The inverse-variance weighted (IVW) method (Burgess et  al., 

2017) served as our primary analysis esteemed for its accuracy and 
power in estimating causal effects when all selected SNPs are valid IVs 
(Burgess et al., 2013). To assess the robustness of the IVW results 
under various assumptions, we used additional MR methods robust 
to pleiotropy as secondary analyses. These included the maximum 
likelihood (ML) method (Xue et  al., 2021), the weighted median 

1 https://www.ukbiobank.ac.uk/

2 https://www.finngen.fi/fi

(WM) (Bowden et al., 2016) approach, MR-Egger regression (Bowden 
et al., 2015), and the Mendelian randomization pleiotropy residual 
sum and outlier (MR-PRESSO) test (Verbanck et al., 2018), offering a 
comprehensive evaluation of the causal inferences drawn.

2.3.3 Sensitivity analyses of UVMR
We used several sensitivity analysis methods. First, one primary 

analysis method and four secondary analysis methods were used to 
assess the robustness of the results. Second, Cochran’s Q statistic 
assessed heterogeneity (indicative of potential pleiotropy) in IVW 
estimates. Third, horizontal pleiotropy was evaluated using the p-value 
for the intercept in MR-Egger (Bowden et al., 2015) and the p-value 
for the global test in MR-PRESSO analysis (Verbanck et al., 2018). 
Fourth, outlier SNPs identified by MR-PRESSO were excluded, with 
the remaining SNPs subjected to repeated analysis. Fifth, the leave-
one-out method tested whether the MR analysis results were driven 
by any single SNP. Finally, reverse MR analysis examined the potential 
for reverse causation to affect the outcomes.

For robust conclusions, we applied stringent criteria to positive 
results. A finding was considered “probable causality” only if the 
p-value from the IVW estimate was <0.05, at least three of the four 
secondary analytical methods supported the IVW results (p < 0.05), 
with no evidence of influence on heterogeneity, horizontal pleiotropy, 
outliers, or reverse causation. Furthermore, a result was deemed 
“causality” only if the p-value from the IVW estimate was <0.05/196 
(passing the Bonferroni correction).

2.3.4 Supplementary validations for UVMR results
Moreover, various novel MR models have been developed in 

recent years such as (1) the constrained maximum likelihood-model 
average method (cML-MA), eliminating biases caused by correlated 
and uncorrelated pleiotropy (Xue et al., 2021); (2) the contamination 
mixture method (ConMix), estimating the size of causal effects in the 
presence of invalid instruments with the lowest mean squared error 
in a range of realistic scenarios (Burgess et al., 2020); (3) the robust 
adjusted profile score (MR-RAPS), enabling robust causal inference 
under weak instrument variable conditions (Yu et al., 2023); (4) the 
debiased inverse-variance weighted method (dIVW), further 
mitigating bias from weak instrument variables in IVW analysis. 
We selected these four new algorithms as supplementary validations 
to check the robustness of results classified as “probable causality” or 
“causality.”

2.4 Stage 2: external validations

2.4.1 Observational study design
The UVMR analysis revealed that 14 gut microbiota might 

influence the risk of 5 categories of sleep disorders. To further 
corroborate the findings, we collected fecal samples from patients with 
these sleep disorders and HCs. We  then performed 16S rDNA 
sequencing to compare the differences in microbiome proportions 
between groups, checking for consistency with the trends predicted 
by the UVMR analysis.

2.4.2 Study subjects
All patients were recruited from the Department of Neurology at 

the Affiliated Hospital of Xuzhou Medical University. HCs were either 
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hospitalized for health check-ups or caregivers of patients. Participants 
were excluded if they had recently taken probiotics, were on long-term 
medication, had severe neurological, mental, or systemic diseases, or 
had familial genetic disorders.

In this study, 16 insomnia patients, 16 EDS patients, 14 SWRD 
patients, 10 OSA patients, and 16 pRBD (probable REM Sleep 
Behavior Disorder) patients were recruited. To diagnose insomnia, 
we  applied the Insomnia Severity Index (Bastien et  al., 2001), 
considering patients with scores above 10 as having insomnia. This 
threshold demonstrated a sensitivity of 86.1% and a specificity of 
87.7% (Morin et al., 2011). The Epworth Sleepiness Scale was used to 
diagnose excessive daytime sleepiness, with scores over 10 indicating 
the condition, which showcases a sensitivity of 93.5% and a specificity 
of 100% (Johns, 2000). We used the RBD-HK scale, developed by Li 
et al. (2010), to assess patients for symptoms of RBD. In this scale, 
individuals scoring above 17 were classified as probable RBD (pRBD) 
patients. At this threshold of 17 points, the scale demonstrated a 
sensitivity of 85% and a specificity of 81% (Shen et  al., 2014). 
Additionally, we diagnosed obstructive sleep apnea (OSA) patients 
following the AASM-2012 diagnostic criteria, while sleep-wake 
rhythm disorder diagnoses adhered to the ICSD-3 criteria. The HCs 
did not exhibit any type of sleep disorder.

Data on characteristics such as sex, age, BMI, and years of 
education were collected for each participant. To improve 
comparability between groups, we included patients whose baseline 
characteristics were similar to those of HCs. Written informed consent 
was collected from all participants prior to the commencement of the 
study. This research was approved by the Ethics Committee of the 
Affiliated Hospital of Xuzhou Medical University (No. 
XYFY2022-KL262-01, No. XYFY2023-KL266-01).

2.4.3 Laboratory assessment and preprocessing 
of raw data

Three fecal samples were obtained from each participant during 
their first bowel movement. To minimize environmental 
contamination, samples were taken from the central portion of the 
stool and placed into sterile containers. These samples were then 
transported on ice, stored at −80°C, and, subsequently, underwent 
DNA isolation. After completing the collection of all samples, 16S 
rDNA sequencing was performed. Total DNA was extracted from the 
fecal samples using the PF Mag-Bind Stool DNA Kit (Omega Bio-Tek, 
United  States). An optimized primer set (forward primer 338F: 
ACTCCTACGGGAGGCAGCAG, reverse primer 806R: 
GGACTACHVGGGTWTCTAAT; Sangon Biotech, Shanghai, China) 
was used to amplify the multiplex primer library covering the V3–V4 
region of the 16S rDNA gene (Liu et  al., 2016). Sequencing was 
conducted on the Illumina PE300/PE250 sequencer (Illumina, 
United States) by Shanghai Megi Biomedical Technology Co., Ltd. 
Raw sequence data were quality-controlled using Fastp software 
(Chen et  al., 2018) (https://github.com/OpenGene/fastp, version 
0.20.0) and assembled using FLASH software (Magoč and Salzberg, 
2011) (http://www.cbcb.umd.edu/software/flash, version 1.2.11). 
Sequences were clustered into OTUs based on 97% similarity using 
UPARSE software (Edgar, 2013) (http://drive5.com/uparse/, version 
11). Mitochondrial sequences annotated in all samples were removed. 
All sample sequences were rarefied to 20,000, and after rarefaction, the 
average sequence coverage (Good’s coverage) for each sample 
remained at 99.09%. OTU taxonomic annotation was performed by 

aligning against the Silva 16S rRNA gene database (v138) using the 
RDP classifier (Wang et al., 2007) (http://rdp.cme.msu.edu/, version 
2.13) with a confidence threshold of 70%. Community composition 
for each sample was then determined at various taxonomic levels.

2.4.4 Statistical analyses
We initially compared baseline characteristics between 

participants with various sleep disorders and those in the control 
group. Continuous variables, presented as means and standard 
deviations, were analyzed using an independent-sample t-test. 
Categorical variables were expressed as proportions and assessed 
using the chi-square test. All aforementioned analyses were conducted 
using R version 4.3.1.

All microbiota-related data analyses were conducted on the 
Majorbio Cloud Platform.3 Specifically, the alpha diversity, ACE, 
Shannon, and Simpson indices were calculated using mothur software 
(Schloss et  al., 2009) (http://www.mothur.org/wiki/Calculators, 
version v1.30.2), with group differences in alpha diversity assessed via 
the Wilcoxon test.

For the gut microbiota showing “probable causalities” or 
“causalities” with sleep disorders in stage 1 through UVMR analysis, 
we compared their proportions between the patients and HC groups 
using the Wilcoxon test and examined whether the direction of 
differences aligns with the trend observed in the MR analysis.

2.5 Stage 3: network Mendelian 
randomization

We utilized the UVMR method to estimate the overall effect of gut 
microbiota on sleep disorders. Furthermore, we used network MR (or 
two-step MR) analysis to explore the pathways through which gut 
microbiota may influence sleep disorders. Stage 1 involved using 
UVMR to estimate the causal effect of genetically determined gut 
microbiota on each candidate mediator (β1). Stage 2 utilized MVMR 
to estimate the causal effect of each candidate mediator on sleep 
disorders, adjusting for microbiome abundance (β2).

We proceeded to evaluate the magnitude of the mediating effect 
using the product of coefficients method (β1 × β2) when candidate 
mediators met the following three criteria: (1) UVMR analysis 
demonstrating the capacity of the microbiota to influence the 
mediator; (2) MVMR analysis confirming that, after adjusting for 
microbiota variations, the mediator independently affects the 
incidence of sleep disorders; and (3) the direction of the mediating 
effect must be consistent with the direction of the overall effect.

The proportion of the mediating effect was calculated by dividing 
the mediating effect by the overall effect. The standard error of the 
mediating effect was derived using the delta method (Carter et al., 2019).

In step 1, we conducted heterogeneity and horizontal pleiotropy 
analyses as part of the sensitivity analysis for UVMR. In step  2, 
we applied the MVMR-Egger method to confirm the robustness of our 
MVMR-IVW findings.

All MR analyses were conducted using the TwoSampleMR (0.5.7) 
and MR-PRESSO packages in R, version 4.3.1.

3 https://cloud.majorbio.com
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3 Results

3.1 Stage 1: causalities between gut 
microbiota and sleep disorders through 
UVMR analysis

Our study identified 14 potential causal relationships: 14 
microbiota may influence the risk of 5 types of sleep disorders. Among 
them, 10 causal relationships were classified as “probable causalities,” 
while 4 were classified as “causalities” (Table 2).

Our analysis identified four microbiota associated with an 
increased risk of insomnia. Specifically, the class Negativicutes [Beta 
(95% confidence interval) = 0.035 (0.015, 0.056), p = 1.08 × 10−4, IVW] 
and the order Selenomonadales [Beta = 0.032 (0.016, 0.049), 
p = 1.08 × 10−4, IVW] were found to have a “causality” with insomnia. 
The phylum Firmicutes [Beta = 0.017 (0.003, 0.032), p = 1.50 × 10−2, 
IVW] and the genus Lachnoclostridium [Beta = 0.035 (0.015, 0.056), 
p = 8.05 × 10−4, IVW] showed “probable causalities” with the outcome. 
Secondary analyses using ML, WM, and MR-PRESSO models 
supported these findings. Supplementary validations with the 
cML-MA, ConMix, dIVW, and MR-PAPS models also supported the 
IVW conclusions (Supplementary Tables S3, S6).

Four microbiota were linked to an increased risk of EDS. The 
genus Oxalobacter [Beta = 0.014 (0.007, 0.020), p = 3.45 × 10−5, 
IVW] showed a “causality” with EDS. The phylum Bacteroidetes 
[Beta = 0.013 (0.003, 0.024), p = 1.51 × 10−2, IVW], genus 
Butyricimonas [Beta = 0.014 (0.006, 0.023), p = 1.20 × 10−3, IVW], 
and genus Eubacterium eligens group [Beta = 0.015 (0.002, 0.028), 
p = 2.50 × 10−2, IVW] exhibited “probable causalities” with 
EDS. These associations were supported by secondary analyses 
(ML, WM, and MR-PRESSO) and supplementary validations with 
all four new models, except for the cML-MA method, which did 
not replicate the causality between the phylum Bacteroidetes 
and EDS.

Two microbiota were associated with SWRD, both classified as 
“probable causalities.” The genus Prevotella9 [Beta = 0.631 (0.059, 
1.202), p = 3.05 × 10−2, IVW] increased SWRD risk, while the genus 
Ruminiclostridium6 [Beta = −0.819 (−1.396, −0.242), p = 5.38 × 10−3, 
IVW] had a protective effect. These findings were supported by 
secondary analyses (ML, WM, and MR-PRESSO) and all methods for 
supplementary validations, except for the cML-MA method, which 
did not replicate the causality between the genus Prevotella9 
and SWRD.

Two microbiota were found to affect the incidence of OSA. The 
genus Allisonella [Beta = 0.070 (0.028, 0.112), p = 1.05 × 10−3, IVW] 
was associated with an increased risk of OSA, a finding classified 
as “probable causality.” The genus Eubacterium xylanophilum 
group [Beta = −0.146 (−0.221, −0.071), p = 1.31 × 10−4, IVW] was 
found to have a protective effect on OSA, with evidence level 
“causality.” These results were supported by secondary analyses 
from three methods and supplementary validations with all four 
new models.

Finally, two microbiota were linked to an increased risk of iRBD, 
both classified as “probable causalities”: the genus Eubacterium 
coprostanoligenes group [Beta = 0.681 (0.137, 1.224), p = 1.42 × 10−2, 
IVW] and the genus Oscillibacter [Beta = 0.54 (0.132, 0.876), 
p = 7.97 × 10−3, IVW]. These associations were supported by secondary 
analyses (ML, WM, and MR-PRESSO) and supplementary validations, 

except for the ConMix method, which did not replicate the causality 
between the genus Eubacterium coprostanoligenes group and iRBD.

The results of sensitivity analyses suggest that all findings remain 
unaffected by weak instrument variables, heterogeneity, horizontal 
pleiotropy, outliers, and reverse causations 
(Supplementary Tables S2, S4, S5, S7, S8).

3.2 Stage 2: external validation of stage 1 
results from an observational study

Patients with various sleep disorders and HCs showed no 
significant differences in gender, age, BMI, or years of education 
(Supplementary Table S9). Compared to HCs, patients with 
insomnia, SWRD, and OSA exhibited significantly lower alpha 
diversity. For the 14 types of microbiota identified by UVMR as 
potentially having causal relationships with sleep disorders, 
we assessed differences in their proportions between groups using 
the Wilcoxon test (Supplementary Table S10). We found that the 
proportion of the class Negativicutes and the order Selenomonadales 
was significantly higher in the insomnia group compared to HCs 
(Figures  2B,C); the proportion of the genus Eubacterium 
xylanophilum group was significantly lower in the OSA group than 
in HCs (Figure 2J); and the proportion of the genus Eubacterium 
coprostanoligenes group was significantly higher in the pRBD group 
compared to HCs (Figure  2K). No significant differences were 
found in the remaining 10 types of microbiota between groups 
(Figure 2).

3.3 Stage 3: indirect causalities between 
gut microbiota and sleep disorders from 
the network MR analysis

Please refer to Supplementary Tables S12–S14 for the selection 
process of effective mediators. Network MR analysis indicates that 
the class Negativicutes and order Selenomonadales may be associated 
with the onset of insomnia by potentially exacerbating pain 
symptoms, with a mediation proportion (95% CI) of 12.43% (0.47, 
24.39%, Figure 3A). The genus Oxalobacter might contribute to the 
promotion of EDS by disrupting the adenine and adenosine salvage 
pathways, with a mediation proportion of 25.39% (1.84, 48.95%, 
Figure 3B). The genus Allisonella could increase the risk of OSA by 
potentially promoting obesity in patients, with a mediation 
proportion of 36.88% (17.23, 56.54%, Figure 3C), while the genus 
Eubacterium xylanophilum group may reduce the risk of OSA by 
possibly decreasing smoking behavior, with a mediation proportion 
of 7.70% (0.66, 14.74%, Figure 3D). The results of the sensitivity 
analysis indicate that the findings of the network MR are not 
influenced by weak instruments, horizontal pleiotropy, or reverse 
causation (Supplementary Tables S12–S16).

4 Discussion

In stage 1, we initially utilized UVMR to identify 14 types of gut 
microbiota that may influence five categories of sleep disorders. In 
stage 2, the results from an observational study confirmed significant 
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TABLE 2 Exploring the causal relationships between gut microbiota and sleep disorders with the UVMR method.

Exposure Outcome Method nSNP p-value β (95% CI) Judgment Supplementary validations

Phylum Firmicutes Insomnia

IVW

17

1.50 × 10−2 0.017 (0.003, 0.032)

Probable causality

cML-MA (+)

ML 5.99 × 10−3 0.018 (0.005, 0.031) ConMix (+)

MR Egger 3.18 × 10−1 0.017 (−0.015, 0.048) dIVW (+)

MR PRESSO 2.71 × 10−2 0.017 (0.003, 0.032) MR-PAPS (+)

WM 2.30 × 10−3 0.027 (0.010, 0.045)

Class Negativicutes Insomnia

IVW

12

1.08 × 10−4 0.032 (0.016, 0.049)

Causality

cML-MA (+)

ML 1.60 × 10−4 0.033 (0.016, 0.050) ConMix (+)

MR Egger 1.47 × 10−1 0.041 (−0.010, 0.093) dIVW (+)

MR PRESSO 8.80 × 10−4 0.032 (0.018, 0.047) MR-PAPS (+)

WM 1.00 × 10−4 0.045 (0.022, 0.067)

Order Selenomonadales Insomnia

IVW

12

1.08 × 10−4 0.032 (0.016, 0.049)

Causality

cML-MA (+)

ML 1.60 × 10−4 0.033 (0.016, 0.050) ConMix (+)

MR Egger 1.47 × 10−1 0.041 (−0.010, 0.093) dIVW (+)

MR PRESSO 8.80 × 10−4 0.032 (0.018, 0.047) MR-PAPS (+)

WM 1.25 × 10−4 0.045 (0.022, 0.068)

Genus Lachnoclostridium Insomnia

IVW

12

8.05 × 10−4 0.035 (0.015, 0.056)

Probable causality

cML-MA (+)

ML 6.01 × 10−5 0.038 (0.019, 0.056) ConMix (+)

MR Egger 7.70 × 10−1 0.011 (−0.062, 0.084) dIVW (+)

MR PRESSO 6.47 × 10−3 0.035 (0.015, 0.056) MR-PAPS (+)

WM 3.49 × 10−2 0.028 (0.002, 0.055)

Phylum Bacteroidetes EDS

IVW

12

1.51 × 10−2 0.013 (0.003, 0.024)

Probable causality

cML-MA (−)

ML 1.68 × 10−2 0.014 (0.002, 0.025) ConMix (+)

MR Egger 6.47 × 10−1 0.005 (−0.017, 0.028) dIVW (+)

MR PRESSO 3.30 × 10−2 0.013 (0.003, 0.024) MR-PAPS (+)

WM 2.97 × 10−2 0.017 (0.002, 0.032)

Genus Butyricimonas EDS

IVW

13

1.20 × 10−3 0.014 (0.006, 0.023)

Probable causality

cML-MA (+)

ML 1.39 × 10−3 0.015 (0.006, 0.024) ConMix (+)

MR Egger 7.50 × 10−1 0.005 (−0.024, 0.034) dIVW (+)

MR PRESSO 5.18 × 10−3 0.014 (0.006, 0.022) MR-PAPS (+)

WM 6.93 × 10−3 0.016 (0.004, 0.028)

(Continued)
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Exposure Outcome Method nSNP p-value β (95% CI) Judgment Supplementary validations

Genus Eubacterium 

eligens group
EDS

IVW

8

2.50 × 10−2 0.015 (0.002, 0.028)

Probable causality

cML-MA (+)

ML 2.59 × 10−2 0.015 (0.002, 0.028) ConMix (+)

MR Egger 1.35 × 10−1 0.048 (−0.006, 0.103) dIVW (+)

MR PRESSO 1.92 × 10−2 0.015 (0.005, 0.024) MR-PAPS (+)

WM 3.05 × 10−2 0.019 (0.002, 0.035)

Genus Oxalobacter EDS

IVW

10

3.45 × 10−5 0.014 (0.007, 0.020)

Causality

cML-MA (+)

ML 5.20 × 10−5 0.014 (0.007, 0.021) ConMix (+)

MR Egger 4.82 × 10−1 0.012 (−0.020, 0.045) dIVW (+)

MR PRESSO 2.52 × 10−3 0.014 (0.007, 0.020) MR-PAPS (+)

WM 4.41 × 10−4 0.016 (0.007, 0.024)

Genus Prevotella9 SWRD

IVW

15

3.05 × 10−2 0.631 (0.059, 1.202)

Probable causality

cML-MA (−)

ML 6.90 × 10−3 0.650 (0.178, 1.122) ConMix (+)

MR Egger 6.83 × 10−2 1.602 (0.023, 3.182) dIVW (+)

MR PRESSO 4.83 × 10−2 0.631 (0.059, 1.202) MR-PAPS (+)

WM 3.43 × 10−2 0.742 (0.055, 1.429)

Genus 

Ruminiclostridium6
SWRD

IVW

16

5.38 × 10−3 −0.819 (−1.396, −0.242)

Probable causality

cML-MA (+)

ML 7.32 × 10−3 −0.798 (−1.382, −0.215) ConMix (+)

MR Egger 2.17 × 10−2 −1.925 (−3.385, −0.465) dIVW (+)

MR PRESSO 1.39 × 10−2 −0.819 (−1.396, −0.242) MR-PAPS (+)

WM 1.88 × 10−3 −1.218 (−1.986, −0.450)

Genus Allisonella OSA

IVW

8

1.05 × 10−3 0.070 (0.028, 0.112)

Probable causality

cML-MA (+)

ML 1.35 × 10−3 0.071 (0.028, 0.115) ConMix (+)

MR Egger 7.70 × 10−1 0.044 (−0.239, 0.328) dIVW (+)

MR PRESSO 1.46 × 10−3 0.070 (0.043, 0.097) MR-PAPS (+)

WM 7.25 × 10−3 0.070 (0.019, 0.121)

Genus Eubacterium 

xylanophilum group

OSA IVW 9 1.31 × 10−4 −0.146 (−0.221, −0.071) Causality cML-MA (+)

ML 2.75 × 10−4 −0.145 (−0.222, −0.067) ConMix (+)

MR Egger 3.07 × 10−2 −0.308 (−0.532, −0.084) dIVW (+)

MR PRESSO 1.00 × 10−3 −0.146 (−0.203, −0.089) MR-PAPS (+)

WM 5.47 × 10−4 −0.174 (−0.273, −0.075)

(Continued)

TABLE 2 (Continued)
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differences in four of these microbiota between groups, aligning with 
the trends identified in UVMR analysis. In stage 3, the network MR 
analysis revealed that pain mediates the effect of the class Negativicutes 
and the order Selenomonadales in promoting insomnia. Additionally, 
disruptions in the adenine and adenosine salvage pathways mediate 
the role of the genus Oxalobacter in advancing EDS. Finally, obesity 
and smoking behavior were found to mediate the influence of the 
genus Allisonella and the genus Eubacterium xylanophilum group, 
respectively, on the incidence of OSA. Our research offers new insights 
and perspectives on novel pathways through which the gut 
microbiome regulates sleep disorders.

Previous studies have demonstrated that the gut microbiome 
influence sleep via the gut-brain axis, engaging intricate neural, 
immune, metabolic, and endocrine pathways (Wang et al., 2022). 
However, such studies have often been hindered by uncontrollable 
confounding factors, the possibility of bidirectional causation, and 
small sample sizes, leading to a lack of consistent findings and 
robust conclusions. MR offers a powerful solution to these 
challenges. Therefore, we firmly believe that MR is a compelling 
method for investigating the relationship between microbiomes 
and diseases.

Previous MR studies exploring the relationship between the gut 
microbiome and sleep have experienced several limitations: (1) they 
did not investigate the associations between the microbiome and less 
common sleep disorders, such as SWRD and iRBD. (2) The absence 
of non-MR findings as external validations failed to establish 
triangulation of evidence. (3) Previous research did not delve into 
how the microbiome may lead to sleep disorders. Our study, 
integrating MR analysis with observational research, effectively 
addresses these gaps. More importantly, by using the network MR 
analysis, we  have opened new perspectives on how the gut 
microbiome influences sleep.

4.1 Class Negativicutes, inflammatory pain, 
and insomnia

Insomnia, the most prevalent sleep disorder, is characterized by 
difficulties in initiating or maintaining sleep (Buysse, 2013; Riemann 
et al., 2015). Pain is one of the most common risk factors for insomnia, 
as it can disrupt the equilibrium of the dopaminergic, serotonergic, 
and opioidergic systems, ultimately leading to sleep disturbances (Nijs 
et  al., 2018). The Gram-negative class Negativicutes and its order 
Selenomonadales are notably capable of producing a biologically 
active component known as lipopolysaccharides (LPS), which is a 
primary inducer of inflammatory pain (Yin et al., 2020). In stage 1 of 
our study, UVMR analysis indicated that Negativicutes and 
Selenomonadales could promote insomnia, a finding supported by 
three secondary analysis methods and four supplementary analysis 
techniques, establishing “causality.” In stage 2, external validation 
through observational research revealed that despite lower alpha 
diversity in the insomnia group compared with healthy controls, the 
proportion of Negativicutes and Selenomonadales was significantly 
higher, bolstering the validity of our conclusions. In stage 3, the 
network MR analysis discovered that Negativicutes and 
Selenomonadales exacerbate insomnia by intensifying pain symptoms, 
with the LPS-induced inflammatory pain possibly identified as a 
critical mechanism leading to insomnia.T
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4.2 Genus Oxalobacter, adenosine salvage 
disruption, and EDS

EDS is characterized by an ongoing struggle to remain alert 
during the day (Pérez-Carbonell et al., 2022). EDS may be linked to 
an imbalance of neurochemical factors that govern sleep and 
alertness and accumulated sleep debt. Adenosine, a neurochemical 
that promotes sleep drive, accumulates between brain cells as 
wakefulness is prolonged, inhibiting the activity of brain regions 
associated with wakefulness and inducing sleep. Sleep duration 
extension allows the brain to convert adenosine back to ATP, 
reducing sleep drive and promoting alertness (Porkka-Heiskanen and 
Kalinchuk, 2011; Brown et al., 2012). This mechanism also explains 
why caffeine, as an adenosine receptor antagonist, can help 
maintain wakefulness.

For the first time, our research has identified that the gut 
microbiome may influence the occurrence of EDS by participating in 
the metabolism of adenosine. In stage 1, UVMR analysis pointed to 
the genus Oxalobacter as an independent risk factor for EDS. This 
conclusion was supported by 3 secondary analysis methods and 4 

supplementary analysis techniques, establishing “causality”. In stage 2, 
our observational study could not effectively compare differences 
between groups due to the low abundance of the genus Oxalobacter in 
our subjects. In stage 3, through the network MR analysis, 
we discovered that the genus Oxalobacter may contribute to EDS by 
inhibiting the reuptake pathway of adenine and adenosine. The 
disruption of adenosine reuptake increases the concentration of 
adenosine in brain tissues, creating a prolonged sleep-promoting 
effect, which ultimately leads to the development of EDS.

Notably, Oxalobacter is Gram-negative, obligate anaerobic 
bacteria that specialize in degrading oxalate, a process crucial for 
maintaining oxalate homeostasis in the host. Low oxalate levels are 
considered a biomarker of sleep deprivation (Weljie et al., 2015). As 
an independent risk factor for EDS, increased levels of Oxalobacter 
seem to enhance oxalate degradation, thereby lowering oxalate levels 
in the body. This suggests that patients with EDS and sleep deprivation 
might exhibit reduced oxalate levels, presenting an apparent paradox. 
After searching on the Metorigin platform (Yu et al., 2022) and various 
other tools (Li et al., 2018, 2020; Lai et al., 2022), we identified that 
Oxalobacter is involved in the oxalate metabolic pathway R11617. This 

FIGURE 2

External validation of UVMR results. For those identified “causalities” and “probable causalities” from stage 1, we compared the differences in gut 
microbiota between different sleep disorder patients and healthy controls using 16S rDNA sequencing to determine if they exhibit a consistent trend 
with the results of UVMR. pRBD, patients with probable REM sleep behavior disorders. Statistical significant differences are annotated with “*,” while 
non-significant differences are annotated with “ns”.
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reversible reaction implies that Oxalobacter can promote not only 
oxalate degradation but also potentially oxalate synthesis under 
certain conditions. Whether Oxalobacter affects oxalate metabolism 
differently in the context of various sleep disorders remains to 
be clarified by future research.

4.3 Genus Ruminiclostridium 6, 
thermoregulation, and SWRD

Patients with SWRD typically experience difficulties initiating or 
maintaining sleep or challenges in waking up at appropriate times. The 
human sleep-wake cycle is governed by both the endogenous circadian 
system and sleep homeostasis. The maintenance of the circadian 
system relies on regulation by the suprachiasmatic nucleus, along with 
periodic variations of core body temperature and the release of wake-
promoting signals (such as orexin) and sleep-promoting signals (such 
as cortisol and melatonin) (Meyer et  al., 2022). The genus 
Ruminiclostridium has been implicated in the regulation of body 
temperature changes during sleep, thereby maintaining sleep rhythm 
(Thompson et  al., 2021). Our study also indicates that 
Ruminiclostridium 6 may serve a protective function in preserving 
sleep rhythm in stage 1. This conclusion is bolstered by the findings 

from three secondary analysis methods and four supplementary 
analysis techniques.

4.4 Genus Allisonella, obesity, and OSA

OSA is characterized by repeated episodes of upper airway 
collapse, leading to complete or partial cessation of breathing. 
Before research on gut microbiota, OSA has largely focused on how 
OSA-induced intermittent hypoxia and sleep fragmentation 
disrupt the microbial balance, leading to various complications. 
Our study initiatively identifies gut microbiota as a potential 
precursor to OSA.

Obesity is a primary risk factor for OSA due to excessive fat 
deposition in the chest area, which increases respiratory resistance, 
compresses the airway, and causes airway narrowing. A significant 
finding from a large multicenter cohort study by Ecklu-Mensah et al. 
(2023) showed that obese patients exhibit notably higher levels of the 
genus Allisonella. Aranaz et al. (2021) reached similar conclusions in 
another observational study. In our research, in stage 1, we identified 
the genus Allisonella as an independent risk factor for OSA, a finding 
supported by three secondary analysis methods and four 
supplementary analysis techniques. In stage 2, we  observed no 

FIGURE 3

Results of network MR. Direct effect α: the causal effect of gut microbiota on mediators in UVMR analysis. Direct effect β: the causal effect of 
mediators on sleep disorders after adjusting for gut microbiota abundance in MVMR analysis. Total effect: the total effect of gut microbiota on sleep 
disorders in UVMR analysis. Mediation effect: the indirect effect of gut microbiota on sleep disorders through mediators calculated by the coefficient 
product method. The results with a p-value of <0.05 are considered statistically significant and annotated with “*”.
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significant differences in the prevalence of the genus Allisonella 
between OSA patients and HCs, likely due to the selection of 
participants with similar BMI to ensure comparable baseline 
information between groups. In stage 3, through network MR analysis, 
we  discovered that the genus Allisonella indirectly increases OSA 
incidence by elevating patients’ BMI. The increase in the upper 
respiratory tract resistance due to fat deposition may play a significant 
role in this process. Additionally, previous MR studies have 
demonstrated that the genus Allisonella can also heighten the 
incidence of chronic obstructive pulmonary disease (COPD) (Wei 
et al., 2023), further substantiating our hypothesis.

4.5 Genus Eubacterium xylanophilum 
group, smoking behavior, and OSA

Our research also found that the genus Eubacterium xylanophilum 
group has a protective effect against OSA. Animal experiments and 
MR analyses suggest that the gut microbiota can affect reward- and 
stress-related behavior associated with tobacco use (Lee et al., 2018; 
Meckel and Kiraly, 2019; Fan et al., 2023). Meanwhile smoking, which 
can induce upper respiratory inflammation and cause relaxation of 
respiratory muscles, may trigger OSA (Lin et  al., 2012). In our 
research, during stage 1, we  discovered that the Eubacterium 
xylanophilum group acts as a protective factor against OSA, a 
conclusion supported by 3 secondary analysis methods and 4 
supplementary analysis techniques, with the evidence level rated as 
“causality.” In stage 2, we also observed a significant decrease in the 
abundance of the Eubacterium xylanophilum group in OSA patients 
compared to HCs. In stage 3, network MR analysis revealed that this 
bacterial group indirectly reduces the incidence of OSA by decreasing 
smoking behavior in patients. This discovery significantly enhances 
our understanding, demonstrating that the microbiota can affect sleep 
not only through inflammatory, endocrine, and metabolic pathways 
of the gut-brain axis but also by influencing patient behavior.

4.6 Genus Eubacterium coprostanoligenes 
group, genus Oscillibacter, inflammation, 
and iRBD

IRBD is characterized by the lack of muscle atonia, disturbing 
dream content, and abnormal behaviors during REM sleep. Given that 
over 80% of iRBD cases evolve into Parkinson’s disease, multiple 
system atrophy, or dementia with Lewy bodies over a 16-year 
follow-up period (Schenck et  al., 2013), iRBD is considered a 
precursor to alpha-synucleinopathies. Braak staging and previous 
studies indicate that the disruption of the intestinal barrier and local 
inflammatory responses can lead to the deposition of alpha-synuclein 
in the gut. This pathogenic alpha-synuclein may propagate along the 
enteric nervous system to the brain, ultimately leading to the 
occurrence of iRBD. These studies underscore the significant role of 
intestinal inflammation in the pathogenesis of iRBD.

The genus Eubacterium coprostanoligenes group and genus 
Oscillibacter have been found closely associated with immune-
inflammatory responses (Guo et al., 2023; Gaudino et al., 2024). In an 
observational study focusing on HCs, first-degree relatives of iRBD 
patients, iRBD patients, and Parkinson’s disease patients with RBD 

symptoms, Yun Kwok Wing et al. observed a gradual increase in the 
abundance of the genus Eubacterium coprostanoligenes group and genus 
Oscillibacter with the progression of alpha-synucleinopathy. Similarly, 
Kinji Ohno et al. noted a significant rise in the abundance of these genera 
in iRBD patient groups compared to HCs in another observational study. 
In our research, during stage 1, UVMR analysis revealed that these 
genera could promote the onset of iRBD, a finding supported by three 
secondary analysis methods and various supplementary analysis 
techniques. In stage 2, compared to HCs, patients in the pRBD group 
exhibited significantly higher levels of the genus Eubacterium 
coprostanoligenes group, while increases in the genus Oscillibacter were 
observed but did not achieve statistical significance. Since stage 3 
network MR analysis did not identify indirect causal pathways from 
these microbial groups to iRBD, further research is needed to elucidate 
the underlying mechanisms behind these associations.

4.7 Strengths and limitations

Compared to previous studies focusing on the gut microbiota and 
sleep disorders, our research offers several advantages: (1) robust 
conclusion: the superiority of the MR method allows us to effectively 
reduce confounding biases, reverse causation, and interference from 
insufficient sample sizes encountered in previous studies. Furthermore, 
we adopted stringent criteria for defining positive results, considering 
a conclusion to be preliminary only if supported by the IVW method 
and at least three out of four secondary analyses. Additionally, we used 
four novel models as supplementary analytical methods and conducted 
multiple sensitivity analyses to exclude results with heterogeneity, 
pleiotropy, and outliers. Most importantly, the results from 
observational studies and MR analyses together form triangulating 
evidence, significantly enhancing the credibility of our conclusions. (2) 
Rigorous mechanistic exploration: our study is the first to explore the 
indirect causal pathways through which the microbiome leads to sleep 
disorders, employing rigorous network MR analysis methods.

However, our study has several limitations across its three stages. 
In stage 1, (1) the stringent criteria for defining positive results might 
have led to overlooking some potential causal relationships. (2) All 
MR analysis data were derived from European populations, which 
limits the generalizability of our findings. Future MR analyses across 
different ethnicities are necessary to confirm whether the relationship 
between gut microbiota and sleep disorders is consistent. (3) While 
our study supports a link between gut microbiota and sleep disorders, 
it remains unclear whether these microbiota independently affect the 
onset of these disorders or interact with other microbiota, host 
genetic factors, and microenvironmental factors. Further research is 
needed to clarify these interactions. In stage 2, (1) we conducted an 
observational study with participants from Asian populations, while 
the UVMR results were primarily based on European populations, 
making racial differences an unavoidable factor. (2) The inclusion of 
participants did not account for the impact of lifestyle factors or 
work-related stress on sleep, potentially introducing confounding 
bias. (3) In the external validation, the selection of RBD patients was 
based on the RBD-HK questionnaire and was not confirmed through 
polysomnography (PSG). (4) This stage used a cross-sectional design 
and did not include patient follow-up. Monitoring these patients’ 
post-treatment to observe if symptom improvement correlates with 
changes in gut microbiota would provide stronger evidence for the 
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UVMR results. (5) To enhance comparability between participant 
groups, we selected individuals with similar BMI levels. However, 
BMI could be a mediating factor in the effect of certain microbiota 
on sleep disorders, and adjusting for this variable might mask some 
true intergroup differences. In stage 3, further observational studies 
are needed to validate the differences in mediating factors, such as 
pain, smoking behavior, and plasma adenosine levels among patients 
with various sleep disorders.

5 Conclusion

In summary, the results from UVMR, observational study, and 
network MR analysis indicate that pain, obesity, adenosine salvage 
disruption, and smoking behavior mediate the effect of gut microbiota 
on sleep disorders.
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