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Age and gender have been recognized as two pivotal covariates affecting 
the composition of the gut microbiota. However, their mediated variations in 
microbiota seem to be  inconsistent across different countries and races. In 
this study, 613 individuals, whom we  referred to as the “healthy” population, 
were selected from 1,018 volunteers through rigorous selection using 16S 
rRNA sequencing. Three enterotypes were identified, namely, Escherichia–
Shigella, mixture (Bacteroides and Faecalibacterium), and Prevotella. Moreover, 
11 covariates that explain the differences in microbiota were determined, with 
age being the predominant factor. Furthermore, age-related differences in 
alpha diversity, beta diversity, and core genera were observed in our cohort. 
Remarkably, after adjusting for 10 covariates other than age, abundant genera 
that differed between age groups were demonstrated. In contrast, minimal 
differences in alpha diversity, beta diversity, and differentially abundant genera 
were observed between male and female individuals. Furthermore, we also 
demonstrated the age trajectories of several well-known beneficial genera, 
lipopolysaccharide (LPS)-producing genera, and short-chain fatty acids (SCFAs)-
producing genera. Overall, our study further elucidated the effects mediated by 
age and gender on microbiota differences, which are of significant importance 
for a comprehensive understanding of the gut microbiome spectrum in healthy 
individuals.
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Introduction

The gut microbiota has coevolved with the human body, and its homeostasis plays a pivotal 
role in health, including education of the host immune system, protection against pathogens, 
and regulation of intestinal endocrine functions (Hou et al., 2022). The imbalances in the gut 
microbiota have been linked to a range of diseases, such as inflammatory bowel disease, 
allergies, and autoimmune diseases (Duvallet et al., 2017). Moreover, disruptions in the gut 
microbiota are also related to age-related diseases, such as Alzheimer’s disease, vascular 
dementia, and other neurodegenerative disorders (Chandra et al., 2023). Extensive studies 
targeting disease-related microbiota have implicated increasing microbial components in 
various pathologies, recognizing them as potential biomarkers. For instance, fecal microbial 
markers have been widely studied for colorectal cancer screening (Wong and Yu, 2019). 
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However, the translation of microbiota research into clinical practice 
is still limited due to multiple challenges, especially the difficulty in 
precisely defining “healthy” microbiota, including the well-known 
probiotics and opportunistic pathogens. Therefore, elucidating the gut 
microbiota spectrum within healthy individuals is of great significance 
for targeting the microbiota to predict and treat associated diseases.

Age and sex have emerged as pivotal covariates in depicting the gut 
microbiome (Zhernakova et al., 2016; Zhang et al., 2021), with several 
reports highlighting their potential role in microbiota differences (de la 
Cuesta-Zuluaga et al., 2019; Zhang et al., 2021). However, inconsistent 
differences have been widely reported in various studies of microbiota 
related to age and gender. For example, no significant differences were 
observed in the alpha diversity of the gut microbiota between men and 
women or among age groups in a healthy Japanese cohort with 277 
subjects aged 20–89 years (Takagi et al., 2019). Conversely, in another 
cohort of 1,741 Chinese adults, sex accounted for the majority of 
microbial variance (Zhang et al., 2021). Intriguingly, in a previous study 
encompassing adult cohorts from four different nations, significant 
correlations between microbial diversity and age and sex were observed 
in American, British, and Colombian populations, while no significant 
associations between alpha diversity and age and sex were observed in 
Chinese individuals (de la Cuesta-Zuluaga et al., 2019).

Given the significance of delineating the gut microbiota spectrum 
in healthy individuals and the uniqueness of age- and sex-dependent 
microbiota across different countries and races, the present study 
recruited 1,018 Chinese volunteers. Through rigorous exclusion 
criteria, 613 individuals, whom we refer to as the “healthy” population, 
were used for subsequent analysis. Overall, our results provide insights 
into the intricate interplay between age and sex and the gut microbiome 
and elucidate their effect size on microbiota differences, thereby 
providing support for a comprehensive depiction of the gut microbiota 
spectrum in healthy individuals.

Materials and methods

Study description and population

To investigate the age- and sex-related trajectories of the gut 
microbiota in healthy Chinese individuals, we recruited 1,018 volunteers 
from China. The metadata (Supplementary Table S1) were collected 
through a questionnaire, including demographic information (age, sex, 
blood type, and BMI), lifestyle (smoking, alcohol drinking, exercise 
frequency, sleep duration, and sleep procrastination), dietary information 
(dietary regularity and dietary preference), mental stress frequency, and 
recent gastrointestinal manifestations (stool type, foul defecations, stink 
farts, and ozostomia). A total of 675 individuals lacking evidence of 
factors that could affect gut microbiota were identified based on a lengthy 
list of exclusion criteria; we  will refer to them here as “healthy” 
(Supplementary Table S2). Exclusion criteria included individuals who 
used antibiotics or probiotics prior to 3 months of study participation, 
individuals with a history of fecal microbiota transplantation, individuals 
who are pregnant or lactating, individuals with a history of psychiatric 
disorder (e.g., anxiety and insomnia), individuals with a history of 
gastrointestinal symptoms or disorders (e.g., inflammatory bowel disease 
and irritable bowel syndrome), and individuals with a history of breast or 
genital system problems. Participants with other factors that could affect 
intestinal motility or gut microbiota, as evaluated by researchers, were also 

excluded. After further filtering of the samples lacking age and sex 
information, 613 healthy samples were used for subsequent analysis 
(Supplementary Table S3). Correlation between the metadata was 
measured by Spearman’s rank correlation with the psych R package v2.0.7 
(Supplementary Tables S12, S13). A p-value of <0.05 was 
considered significant.

Sample collection and 16S rRNA sequencing

Fecal samples were collected following a standardized procedure: 
participants were given detailed instructions. Following the 
instructions, participants collected the samples by themselves and 
stored the samples in home freezers or iceboxes; samples were 
transported to the research laboratory using a cold chain within 24 h; 
samples were then well homogenized, aliquoted, and stored at −80°C 
until further analyses. Microbial DNA was extracted from feces using 
the MP FastDNA Spin Kit for Feces (MP Biomedicals, Santa Ana, CA, 
United States) following the manufacturer’s instructions. The V3–V4 
variable regions of the 16 S rRNA gene were amplified by PCR with the 
primers 314\F: CCTAYGGGRBGCASCAG and 806 R: 
GGACTACNNGGGTATCTAAT. The PCR product was evaluated 
using a 1.5% gel electrophoresis and purified by magnetic beads 
(Yeasen, Shanghai, China). The purified amplicons were sequenced 
using paired-end sequencing (PE 250) on an Illumina NovaSeq6000 
platform. The raw sequencing reads for all raw datasets were subjected 
to reference-based chimera filtering using VSEARCH v2.10.3 (Rognes 
et al., 2016). Chimeric-filtered sequences were assigned to operational 
taxonomic units (OTUs) by OTU picking using the QIIME pipeline 
(Caporaso et  al., 2010). Sequences were clustered using UCLUST 
(Edgar, 2010) into OTUs (≥ 97% similarity) based on the SILVA 132 
database (Quast et al., 2013; Supplementary Table S4).

Diversity analysis

To estimate the alpha diversity of the microbiota, observed 
species, Shannon, Simpson, Pielou, Ace, and Chao1 indices were 
calculated using the vegan R package v3.6.2 (Oksanen et al., 2024) 
(Supplementary Table S15). Furthermore, β diversity was estimated 
by using the Bray–Curtis distance and was calculated using the 
vegan R package and represented through principal coordinate 
analysis (PCoA).

Enterotype analysis

The enterotype clustering was performed as previously 
described (Arumugam et al., 2011; Lu et al., 2021). Briefly, according 
to the relative abundance of each genus in each sample, Jensen–
Shannon divergence (JSD) was calculated by using the “dist.JSD” 
function coded in R.1 Based on the obtained distance matrix, the 
613 samples were clustered using partitioning around medoids 
(PAMs) clustering by using the “pam” function in the cluster R 

1 http://enterotype.embl.de/enterotypes.html
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package v1.14.2 (Brock et al., 2008). The optimal number of clusters 
was chosen by maximizing the Calinski–Harabasz (CH) index, 
which is calculated by the “index.G1” function in the clusterSim R 
package v0.15–3 (Dudek and Walesiak, 2020; 
Supplementary Table S16). The result of clustering was visualized 
on the PCoA plot by the ade4 R package v1.7–15 (Brock et  al., 
2008). To identify the driving genera of each enterotype, random 
forest analysis with 10-time 5-fold cross-validation was performed 
(Lu et  al., 2021) using the randomForest R package v4.6–15 
(Breiman et al., 2022; Supplementary Table S17).

Permutational multivariate analysis of 
variance (PERMANOVA)

To identify the covariates explaining the microbial difference, 
PERMANOVA was performed at the OTU, species, and genus levels 
based on the Bray–Curtis distance (Supplementary Table S14). The 
pseudo-F statistics and p-values were calculated using the “adonis” 
function from the vegan R package based on 9,999 permutations. 
The cutoff was set at a p-value of <0.05.

Multivariate association with linear models 
(MaAsLin)

To evaluate whether there were robust age or sex differences in 
microbial composition when adjusting for the effects of other 
covariates, MaAsLin2 R package v1.8.02 was used to treat each 
variable as a fixed effect (Supplementary Tables S18–20). The above-
identified variables in PERMANOVA analysis were included in the 
models. The Benjamini–Hochberg method was used to adjust for 
multiple testing, and an FDR of <0.1 was considered significant.

Statistical analyses

The continuous variables (that is, alpha diversity, beta diversity, and 
relative abundance) between the two groups were compared using a 
two-sided Wilcoxon rank-sum test, while the continuous variables among 
multiple groups were compared using the Kruskal–Wallis test. Data were 
presented as the mean ± standard error of the mean (SEM). A p-value of 
<0.05 was considered significant. The dynamic change curves of specific 
microbial genera with age and sex are fitted using locally weighted 
regression (loess) with the ggplot2 R package v3.4.4.

Results

An overview of the cohort and analysis of 
enterotypes

To delineate the gut microbiome landscape in a healthy 
Chinese population, 1,018 participants with an overall equivalent 

2 https://github.com/biobakery/biobakery/wiki/maaslin2

ratio were recruited from our cohort (Supplementary Table S1). 
After filtering the samples that we  referred to as “healthy” 
according to the selection criteria (see Materials and methods), 
613 healthy individuals (male: 358 and female: 255) were 
identified for further analyses (Supplementary Table S3). This 
cohort mainly consists of Han individuals (Han: 98.37%) from 18 
provinces in China, with ages ranging from 1 to 99 years old.

Consistent with the previous studies (De Filippo et al., 2010; 
Qin et  al., 2010), the phyla Firmicutes, Bacteroidota, 
Proteobacteria, and Actinobacteria were found to be predominant 
in all samples (Figure 1A). A total of eight genera were observed 
in >90% of samples, with average relative abundances >0.1% (the 
core microbiota, Figure  1B). With the exception of 
Subdoligranulum, these genera matched the core gut microbiota 
of healthy Chinese individuals who resided in Guangdong 
province in 2008 (He et  al., 2018). Four of these core genera 
overlapped with the top nine most abundant fecal genera in 
another Chinese cohort, which included 314 healthy individuals 
from nine provinces (Zhang et al., 2015). Additionally, four of the 
core genera overlapped with another healthy cohort’s core genera, 
with 2,678 individuals from 28 provinces of China (Lu et  al., 
2021). Furthermore, all core genera, except Escherichia–Shigella, 
were observed in over 90% of samples from a cohort of 483 
healthy participants (Ren et al., 2023).

It has been reported that the human gut microbiota was 
stratified into clusters, referred to as enterotypes. Using PAM 
clustering based on JSD, three enterotypes were identified by the 
maximum CH index in our healthy samples (Figures  1C,D; 
Supplementary Table S11). We further identified driving genera 
by random forest algorithm (the area under the curve [AUC] for 
the receiver operating characteristic (ROC) curve: 0.98, 
Figures  1E,F), obtaining Escherichia–Shigella enterotype (E1, 
n = 250), mixture (Bacteroides and Faecalibacterium) enterotype 
(E2, n = 275), and Prevotella enterotype (E3, n = 88) 
(Figures  1G,H). In another Chinese cohort, 483 healthy 
individuals were categorized into Bacteroides and Prevotella 
enterotypes (Ren et  al., 2023). Moreover, reports show that 
Prevotella and Bacteroides were two common enterotypes in 
Chinese populations (Lin et  al., 2020). Escherichia–Shigella 
enterotype observed in our cohort is rare but consistent with the 
four other Chinese healthy cohorts (Liang et al., 2017; Lu et al., 
2021; Lv et al., 2023; Pang et al., 2023). The alpha diversity indices 
(Shannon, observed species, Simpson, Pielou, ACE, and Chao1) 
were used to evaluate the diversity and richness of each enterotype. 
Notably, E2 and E3 exhibited higher Shannon, observed species, 
Simpson, Pielou, and ACE indices than E1 (Figures 1I–M), with 
no marked difference in the Chao1 index among the enterotypes 
(Figure 1N).

Covariates associated with the gut 
microbiota composition

To investigate microbiota-associated determinants, 
demographic information, lifestyle, dietary information, mental 
stress frequency, and recent gastrointestinal manifestation of 
individuals were examined. Spearman’s correlation analysis 
revealed the potential inter-variable associations 
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(Supplementary Tables S12, S13). Age inversely correlated with 
sleep duration within our cohort, suggesting a decline in sleep 
hours with advancing age (Figure 2A). Additionally, individuals 
experiencing frequent mental stress exhibited higher rates of 
alcohol consumption, sleep procrastination, and irregular diet 
(Figure 2A). Across the analysis cohort, 11 factors were identified 
as significant microbiota covariates at the OTU, species, and genus 
levels (PERMANOVA, Bray–Curtis distance, p < 0.05; Figure 2B; 
Supplementary Table S14). Age accounted for the most microbial 
variance, followed by several reported covariates including sex 
(Falony et al., 2016; Zhernakova et al., 2016; Zhang et al., 2021), 
mental stress frequency (Madison and Bailey, 2024), dietary 
regularity (Howarth et al., 2007), stool type (Falony et al., 2016; 
Zhernakova et  al., 2016), and lifestyle factors such as sleep 
duration (Falony et  al., 2016; Zhernakova et  al., 2016), 
consumption of alcohol (Falony et al., 2016; Zhang et al., 2021), 
and smoking (Falony et al., 2016; Zhang et al., 2021). Additionally, 
sleep procrastination, foul defecation, and ozostomia were also 
associated with the gut microbiota composition (Figure 2B). It is 
noteworthy that age showed 8-fold more variance at the OTU level 
and nearly 10-fold variance at the genus level than sex (Figure 2B). 
Furthermore, sex has not been determined as a significant 
covariate at the species level in PERMANOVA analysis 
(Figure 2B). Overall, our results indicated that the effect size of 
age on the gut microbiota is far greater than that of sex.

Association between age and the gut 
microbiota

The establishment of an adult-like intestinal microbial community 
typically occurs within the first 3–5 years of life (Odamaki et al., 2016; 
Vaiserman et al., 2017). Moreover, the rapid diversification of bacteria 
observed in infancy slows in early childhood (between 1 and 5 years 
of age) (Eckburg et al., 2005), and gut microbial diversity remains 
lower in children than in adults (Lynch and Pedersen, 2016). 
Furthermore, older individuals (> 60 years old) exhibited greater 
variability in the gut microbiome composition than younger 
individuals (Wilmanski et  al., 2021). Therefore, our cohort was 
stratified into the following age groups according to previous studies 
(Seo et  al., 2023): young children (1–5 years old, n = 54), children 
(6–17 years old, n = 279), young adults (18–39 years old, n = 82), 
middle-age adults (40–59 years old, n = 109), and elderly people 
(60–99 years old, n = 89).

To begin with, we compared microbial community diversity 
and richness among five age groups by analyzing alpha diversity 
indices and found that the 6–17 age group has higher observed 
species and Shannon index than the 1–5 age group (Figures 3A,B). 
Moreover, all alpha diversity indices, including observed species, 
Shannon, Simpson, Pielou, Ace, and Chao1 indices, were higher in 
the 18–39 age group than in the 1–5 age group (Figures 3A–F), 
consistent with the previously observed lower bacterial alpha 

FIGURE 1

An overview of the cohort and analysis of enterotypes. (A) The relative abundance of the top six bacteria in 613 healthy samples at the phylum level. 
(B) The relative abundance of the eight core genera. (C) The CH Index. (D) PCoA plot showing three enterotypes. (E,F) The mean decrease in accuracy 
(E) and the mean decrease in Gini (F) of genera from random forest models classifying enterotypes. (G) The relative abundances of representative 
genera of enterotypes. (H) The number of each enterotype in 613 healthy samples. (I–N) Alpha diversity is evaluated by the Shannon Index (I), observed 
species (J), the Simpson Index (K), the Pielou Index (L), the ACE Index (M), and the Chao1 Index (N). Kruskal–Wallis test. Values are mean  ±  SEM. 
*p  <  0.05, **p  <  0.01, ***p  <  0.001.
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diversity in 1–5-year-old children compared to adults (Cheng et al., 
2016). The Shannon and Simpson indices were used to describe the 
diversity of the gut microbiome, while the Pielou index was used to 
describe its evenness (Zheng et al., 2024). In our cohort, the gut 
microbiota of adults aged 18–39 years is more diverse and even 
compared to children aged 6–17 years, as evidenced by higher 
Shannon, Simpson, and Pielou indices (Figures 3B–D). In contrast, 
the Shannon, Simpson, and Pielou indices were lower in the 60–99 
age group than in the 18–39 age group (Figures 3B–D), aligning 
with the observation that the microbiota in elderly people will 
retrogress and become less diverse (Biagi et al., 2016; Lynch and 
Pedersen, 2016; Ling et al., 2022). Next, we compared beta diversity 
using the Bray–Curtis distance at the OTU level, and PERMANOVA 
analysis showed a significant difference among the five age groups 
(Figure 3G). Intriguingly, the R2 values between adjacent age groups 
were smaller, suggesting more subtle differences in the gut 
microbiota composition between these groups, which further 

confirmed the trajectory of microbial shifts along the aging process 
(Figure 3G). Enterotype 1 was predominant in the 1–5 (53.7% of 
samples) and 60–99 (61.8%) age groups, while enterotype 2 was 
more common in the 6–17 (53.8%) and 18–39 (47.6%) age groups 
(Figure 3H).

It has been well-recognized that age is closely related to the 
composition of the human gut microbiota (Zhang et al., 2021; 
Pang et  al., 2023). Therefore, we  further investigated the 
age-related microbiota composition differences, and the relative 
abundance of the top  10 phyla, classes, families, genera, and 
species has been demonstrated (Figure 3I; Supplementary Figure S1; 
Supplementary Tables S5–S10). The 1–5 age group has lower 
phylum Bacteroidota and higher phylum Actinobacteriota than 
the 18–39 age group (Figure  3J), which is consistent with the 
reported abundance composition of the phyla Bacteroidota and 
Actinobacteriota in healthychildren’s intestinal tracts (Thriene 
and Michels, 2023). Furthermore, the phylum Actinobacteriota is 

FIGURE 2

Correlation between host factors and identification of the gut microbial covariate. (A) Heatmap showing Spearman’s rank correlation between selected 
host factors. *p  <  0.05 and absolute Rho value ≥0.3. (B) Heatmap shows the p-value of each identified covariate as determined by PERMANOVA with 
Bray–Curtis dissimilarities at the OTU, species, and genus levels. Horizontal bars show inferred variance (R2) explained by each identified covariate at 
the OTU, species, and genus levels. Metadata categories are color-coded. If p-values were  <  0.05, covariates were found to be statistically significant.
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more abundant in young human adults (Figure  3K) and shows a 
decreasing trend with age (Li et al., 2021). A similar age-dependent 
trend was observed in our study. Moreover, in the 40–59 and 
60–99 age groups, the abundance of the phylum Bacteroidota 
gradually decreases, which is consistent with observations from 
another cross-sectional study (Pang et  al., 2023), where the 
abundance of the phylum Bacteroidota is lower than in young 
adults (20–44 years), in the middle-aged (45–65 years), and elderly 
(66–85 years) groups. Additionally, the 18–39 age group displayed 
a lower abundance of the Verrucomicrobiota and Proteobacteria 
phyla compared to the 1–5 age group (Figures 3L,M), while the 
60–99 age group had the highest abundance of the 
Verrucomicrobiota phylum (Figure 3L). Then, we identified the 
core genera in the five age groups and found that the number and 
abundance of core genera decrease with age (Figure 3N), which 
can be attributed to the increased bacterial community uniqueness 
(Milosevic et  al., 2021; Boehme et  al., 2023). The genera 
Faecalibacterium, Blautia, Lachnoclostridium, and 
[Ruminococcus]_torques_group were the shared core genera 
among the groups (Figure 3N). The genus Escherichia-Shigella was 
notably abundant in the 1–5 and 60–99 age groups (Figure 3O), 
and the genera Faecalibacterium and Bacteroides showed a decline 

in abundance with increasing age (Figures  3P,Q). Overall, our 
results indicated the existence of significant differences in alpha 
diversity, beta diversity, microbiota composition, and core genera 
abundance across different age groups.

To further identify the age-dependent genera, MaAsLin2 
multivariate analysis was used to adjust for confounding variables 
including sex, sleep duration, sleep procrastination, mental stress 
frequency, stool type, dietary regularity, alcohol drinking, 
smoking, foul defecations, and ozostomia (Figure  4; 
Supplementary Table S18). The genera [Clostridium]_innocuum_
group, Erysipelatoclostridium, Hungatella, and [Ruminococcus]_
gauvreauii_group were significantly more abundant in the 1–5 
age group than 6–17, 18–39, and 40–99 age groups. The genera 
Clostridium_sensu_stricto_1, Romboutsia, Turicibacter, 
Terrisporobacter, UBA1819, Intestinibacter, Lachnospiraceae_
UCG001, Desulfovibrio, Pseudomonas, NK4A214_group, Dorea, 
[Eubacterium]_ruminantium_group, Christensenellaceae_R-7_
group, and Holdemania, UCG002 were significantly more 
abundant in the 60–99 age group than 1–5 and 6–17 age groups. 
Overall, these findings highlight the significant impact of age on 
the composition of the gut microbiota at the genus level, with 
distinct microbial profiles characterizing different age brackets.

FIGURE 3

Differences in the microbiota alpha diversity, beta diversity, and composition in different age groups. (A) Observed species. (B) The Shannon index. 
(C) The Simpson index. (D) The Pielou index. (E) The ACE index. (F) The Chao1 index. (G) PCoA plot of beta diversity based on the OTU level (Bray–
Curtis dissimilarities) among five age groups with a 95% ellipse. The table presents the results of PERMANOVA between groups. (H) The proportion of 
each enterotype within each age group. (I) The relative abundance of the top 10 abundant bacteria at the phylum level. (J) The relative abundance of 
the phylum Bacteroidota. (K) The relative abundance of the phylum Actinobacteriota. (L) The relative abundance of the phylum Verrucomicrobiota. 
(M) The relative abundance of the phylum Proteobacteria. (N) Heatmap showing the relative abundance of core genera in each age group. The symbol 
× represents bacterial genera that are not core genera of this age group. (O–Q) The relative abundance of the genera Escherichia–Shigella, 
Faecalibacterium, and Bacteroides. Each dot represents a sample. Fitting curves of loess regression models are indicated with blue lines. The 95% CIs 
are shown as blue-shaded areas. In A–F, J–M a Kruskal–Wallis test was used. Values are mean  ±  SEM. *p  <  0.05, **p  <  0.01, ***p  <  0.001.
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Association between sex and the gut 
microbiota

We next investigated the role of sex in the difference of composition 
in the gut microbiota. To begin with, alpha diversity indices were 
comparable between the male and female participants (Figures 5A,B; 
Supplementary Figures S2B–E). However, PERMANOVA analysis 
based on the Bray–Curtis distance revealed significant compositional 
differences between the sexes (Figure  5C). The distribution of 
enterotypes between male and female individuals has been 
demonstrated (Figure 5D). Moreover, female individuals exhibited a 
lower abundance of the Fusobacteriota phylum and a higher abundance 
of the Euryarchaeota phylum compared to male individuals 
(Figures 5E–G). The top 10 abundant classes, orders, families, genera, 
and species have also been demonstrated 
(Supplementary Figures S3A–E). Further analysis identified two 
additional core genera, Subdoligranulum and Bifidobacterium, in 
female individuals than male individuals (Figure 5H), although their 
relative abundances were similar across sexes (Figures 5I,J). Utilizing 
MaAsLin2 multivariate analysis for sex-associated genera identification, 
we found associations between the genera clostridium_sensu_stricto_1 
and male individuals after adjusting for all other covariates except sex 
(Figure 5K; Supplementary Table S19). To mitigate the confounding 
effects of age, we further stratified the cohort according to predefined 
age groups. In each age stratum, the composition ratios of enterotypes 
between male individuals and female individuals are similar, except in 
the 18–39 age group, where female individuals have a higher proportion 
of E2 and a lower proportion of E3 compared to male individuals 
(Figure 5D). In the 1–5, 6–17, and 18–39 age groups, no significant 
differences in alpha diversity or beta diversity were observed between 
sexes (Supplementary Figures S4A–C). Similarly, alpha diversity 
indices were consistent between male and female participants within 
the 40–59 age group (Supplementary Figure S4D). However, the 
PERMANOVA analysis indicated a significant divergence in 

microbiota structure between sexes in the 40–59 age group (Figure 5L). 
Additionally, in the 60–99 age group, men demonstrated significantly 
higher ACE index and observed species than women (Figures 5M,N). 
Furthermore, no significant differential genera were observed between 
male individuals and female individuals in each age group by 
MaAsLin2 multivariate analysis (Supplementary Table S20). Overall, 
these findings suggested that sex-related differences in the gut 
microbiota within our cohort were subtle.

Age-dependent dynamic alteration of the 
functional gut microbiota

The gut microbiota exerts its functions through interactions with 
the host, either directly or via its metabolites (Yao and Li, 2023). Here, 
we first investigated the age-related trajectories in four well-known 
probiotics that have beneficial effects on the host. Bifidobacterium, a 
widely distributed commensal genus within the phylum 
Actinobacteriota, plays a role in maintaining intestinal homeostasis 
and alleviating inflammation (Liu et al., 2022; Gavzy et al., 2023), 
thereby benefiting intestinal health. We observed a consistent decline 
in the genus Bifidobacterium with advancing age, most pronounced 
during infancy (Figure 6A), which is consistent with the repeatedly 
observed decreased trend in elderly people in several studies (Arboleya 
et al., 2016; Seo et al., 2023). Interestingly, this decline appeared more 
gradual in female individuals than in male individuals (Figure 6A). 
The genus Prevotella exhibited an initial increase followed by a 
subsequent decrease (Figure 6B). In contrast, the genera Akkermansia 
and Lactobacillus were found to be more abundant in older adults 
(Figures 6C,D). Furthermore, aging was associated with a marked 
increase in genera with potential detrimental or proinflammatory 
roles (Figures  6E–I), including Desulfovibrio, Pseudomonas, 
Escherichia–Shigella, Klebsiella, and Clostridium_sensu_stricto_1, 
which are all classic opportunistic pathogens (Rowan et al., 2010; 

FIGURE 4

The identification of age-associated core gut microbial genera. Heatmap shows the relative abundance of age-associated genera among the five age 
groups. Dot plot showing the correlation and significance of age-associated genera (MaAsLin2). Colored dots indicate the directions of associations in 
a given model: red, significant positive associations with the age group (FDR  <  0.1); blue, significant negative associations with the age group (FDR  <  0.1); 
gray, non-significant associations (FDR  ≥  0.1). The sizes of the dots represent the FDR values from MaAsLin2 multivariate analysis (FDR  ≥  0.1, FDR    <  0.1, 
FDR  <  0.05, FDR  <  0.01, and FDR  <  0.001). The greater the size, the more significant the association. MaAsLin2 models between age and genus 
abundance were applied by adjusting for 10 covariates (sleep duration, sleep procrastination, mental stress frequency, stool type, dietary regularity, 
alcohol consumption, smoking, foul defecations, sex, and ozostomia).
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Wyres et al., 2020; Denamur et al., 2021; Qin et al., 2022; Ye et al., 
2024). Moreover, reports have shown that Desulfovibrio, Pseudomonas, 
Escherichia–Shigella, and Klebsiella are also LPS-producing genera 
(Verhaar et al., 2020; Jia et al., 2021; Mohr et al., 2022). SCFAs (e.g., 
butyrate, acetate, and propionate), another microbiota-derived 
metabolite, are critical in maintaining intestinal barrier integrity and 
immune balance (Martin-Gallausiaux et  al., 2021). Importantly, 
abundant SCFAs-producing bacterial populations decreased with 
aging (Figures 7A–I). Moreover, the rate of decline was consistent 
between male and female subjects. Overall, these findings suggest a 
decrease in probiotic populations and an increase in potentially 
harmful bacteria with age, while the influence of sex on these microbial 
changes appears minimal.

Discussion

In the present study, the core genera of the gut microbiota were 
investigated, and three enterotypes were clustered, namely, 
Escherichia–Shigella, a mixture (Bacteroides and Faecalibacterium), 
and Prevotella. Moreover, 11 covariates that explain the differences in 
microbiota were identified, and age exerted the strongest effect. Next, 
age-related differences in alpha diversity, beta diversity, and core 

genera were observed in our cohort. Notably, after adjusting for 10 
covariates other than age, abundant genera that differed between age 
groups were demonstrated. Furthermore, we also demonstrated the 
age trajectories of several well-known beneficial genera, 
LPS-producing genera, and SCFAs-producing genera. Intriguingly, 
minimal differences in alpha diversity, beta diversity, and differentially 
abundant genera were observed between male individuals and 
female individuals.

Age is recognized as a pivotal factor influencing enterotypes in 
our cohort, while in the previous report, age was described as not 
being associated with enterotypes (Arumugam et al., 2011). However, 
other studies reported that age is also a factor affecting enterotypes, as 
indicated by the enterotypes of school-age children, adults, and elderly 
people (Cheng and Ning, 2019; Zhong et al., 2019; Xiao et al., 2021; 
Pang et  al., 2023). Moreover, the enterotype describes the gut 
microbial community landscape, which is influenced by various 
factors, such as diet and BMI (Arumugam et al., 2011; Qingbo et al., 
2024). Consequently, the reported enterotypes vary among cohorts 
from different countries and races. The Escherichia–Shigella enterotype 
observed in our cohort is rarely found in the previous reports (Lu 
et al., 2021) but is consistent with the four other Chinese healthy 
cohorts (Liang et al., 2017; Lu et al., 2021; Lv et al., 2023; Pang et al., 
2023). Overall, the present study confirms the role of age in 

FIGURE 5

Differences of gender-associated findings in microbiota alpha diversity, beta diversity, and composition. (A) Observed species. (B) The ACE Index. 
(C) PCoA plot of beta diversity based on the OTU level (Bray–Curtis dissimilarities) among sex groups with a 95% ellipse. The upper-left corner shows 
the results of PERMANOVA between sex groups. (D) The proportion of enterotypes. (E) The relative abundance of the top 10 abundant bacteria at the 
phylum level. (F) The relative abundance of the phylum Fusobacteriota. (G) The relative abundance of the phylum Euryarchaeota. (H) The relative 
abundance of core genera of male and female groups. (I–K) The relative abundance of the genera Subdoligranulum (I), Bifidobacterium (J), and 
Clostridium_sensu_stricto_1 (K). In (K), a MaAsLin2 model between sex and genus abundance was applied by adjusting for 10 covariates (age, sleep 
duration, sleep procrastination, mental stress frequency, stool type, dietary regularity, alcohol consumption, smoking, foul defecations, and ozostomia). 
*FDR  <  0.1. (L) PCoA plot of beta diversity based on the OTU level (Bray–Curtis dissimilarities) among sex groups at the 40–59 age layer, with a 95% 
ellipse. The upper-left corner shows the results of PERMANOVA between sex groups. (M) The ACE Index. (N) Observed Species. In A, B, F, G, I, J, M, and 
N, a two-sided Wilcoxon rank-sum test was used. Values are mean  ±  SEM. *p  <  0.05, **p  <  0.01.
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FIGURE 6

Age- and sex-related trajectories of beneficial or potentially harmful genera. (A–I) The relative abundance of the genera Bifidobacterium (A), Prevotella 
(B), Akkermansia (C), Lactobacillus (D), Desulfovibrio (E), Escherichia-Shigella (F), Klebsiella (G), Pseudomonas (H), and Clostridium_sensu_stricto_1 (I). 
Each dot represents a sample, with orange representing male individuals and green representing female individuals. Fitting curves of loess regression 
models are indicated with colored lines. 95% CIs are shown as shaded areas. Blue, 613 healthy individuals; orange, male individuals; and green, female 
individuals.

FIGURE 7

Age- and sex-related trajectories of SCFAs-producing genera. (A–I) The relative abundance of the genera Bacteroides (A), Lachnoclostridium (B), 
Lachnospiraceae_NK4A136_group (C), Agathobacter (D), Phascolarctobacterium (E), Anaerostipes (F), Butyricicoccus (G), Lachnospiraceae_UCG-004 
(H), and Dialister (I). Each dot represents a sample, with orange representing male individuals and green representing female individuals. Fitting curves 
of loess regression models are indicated with colored lines. 95% CIs are shown as shaded areas. Blue, 613 healthy individuals; orange, male individuals; 
and green, female individuals.
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enterotypes of the gut microbiota, and the age-related enterotype 
alterations require further study.

Associations between age and gut microbiota diversity and 
composition have been observed both in our study and in others (de 
la Cuesta-Zuluaga et al., 2019; Zhang et al., 2021; Pang et al., 2023). 
However, most studies’ understanding of age-mediated gut microbiota 
differences stems from comparisons within isolated age segments of 
adults or pediatric individuals, while the present study encompasses a 
healthy demographic population ranging from 1 to 99 years old, which 
is beneficial for a comprehensive understanding of the age trajectory 
of the gut microbiota. Moreover, beta diversity analysis confirms the 
age-related microbial structure differences. Furthermore, higher alpha 
diversity indices were observed in younger adults than those in 
children and elderly people in our study. Importantly, after adjusting 
for 10 covariates other than age, we identified numerous differentially 
abundant bacterial genera between age groups. Indeed, due to the 
close association between age and gut microbiota composition, 
researchers have attempted to predict age through the microbiota 
difference across age groups in healthy individuals (Seo et al., 2023). 
However, it should be noted that the changes observed in the gut 
microbiota associated with age are not entirely consistent due to 
biological differences such as race, country, culture, and lifestyle (Seo 
et al., 2023). Therefore, although the gut microbiota can relatively well 
predict the age of healthy individuals, its applicability across different 
populations still requires further investigation.

Abundant potential SCFAs-producing genera were observed to 
decrease with aging, which is consistent with the previous observation 
that SCFAs and SCFAs-producing microbiota decreased with aging 
(Woodmansey et al., 2004; Salazar et al., 2013, 2019). Therefore, most 
studies suggest that supplementation of SCFAs, which can contribute 
to intestinal homeostasis and health (Zhang et al., 2022), in healthy 
elderly individuals is also essential. Additionally, SCFAs are beneficial 
for the integrity of the gut barrier, which tends to weaken with aging 
(Wu et al., 2023). Therefore, the supplementation of SCFAs should 
be given greater consideration in elderly people than in the young, and 
elderly people should consume fiber-rich diets (Li et  al., 2024), 
incorporate prebiotics such as fructooligosaccharides that promote 
SCFAs production (Kumar et  al., 2012), intake SCFAs-producing 
probiotics, or directly supplement with SCFAs to facilitate health.

The age trajectories of four well-recognized probiotics were also 
investigated in the present study. The abundance of Bifidobacterium 
decreases along the age trajectory from infancy, whereas Akkermansia 
and Lactobacillus demonstrate an increasing trend with advancing 
aging. Moreover, the genus Prevotella is enriched in young adults and 
decreases with aging. First, it should be noted that intestinal health is 
the outcome of the collective action of various probiotics. Our 
speculation is that the types of probiotics that maintain health vary 
across different age stages, and their inter-crosstalk sustains human 
health collectively. Second, other factors, such as diet, may also 
induce probiotic alteration, although dietary preference for meat or 
vegetables did not account for microbial variation in our study. 
Previous studies have shown that the probiotic Prevotella is an 
indicator of favorable postprandial glucose metabolism (Asnicar 
et al., 2021), and the Prevotella enterotype is related to carbohydrate 
dietary patterns (Wu et al., 2011). Third, although there is a significant 
correlation between age and the abundance of probiotics, the causal 
relationship between aging and probiotics remains unclear. For 
example, the decline of Bifidobacterium with aging was associated 

with a reduction in adhesion to the intestinal mucosa, but it is not 
clear whether it is due to alterations in the microbiota or intestinal 
microenvironment of elderly people (Arboleya et  al., 2016). 
Additionally, reports show that supplementing reduced Bifidobacteria 
can extend lifespan (Shujie et  al., 2021), and Akkermansia and 
Lactobacillus are two hallmarks of healthy aging [56, 57], suggesting 
that regulating probiotics may contribute to the youthful state of the 
intestine. However, the causal relationship between aging and 
probiotic abundance remains elusive, necessitating further research.

A slight increase in the abundance of the genera Pseudomonas, 
Escherichia–Shigella, Klebsiella, and Desulfovibrio with aging was 
observed in our study, which can produce LPS (Verhaar et al., 2020; 
Jia et al., 2021; Mohr et al., 2022). Previous studies reported that gut 
microbiota LPS can accelerate inflammaging in mice (Kim et  al., 
2016). Considering that the elderly individuals included in our study 
were rigorously selected as healthy subjects, the slight increase in the 
LPS-producing genus does not appear to affect their normal 
physiological functions. The underlying reasons and implications 
warrant further investigation. Previous studies report that small 
amounts of LPS can induce endotoxin tolerance (Yuan et al., 2016), 
which may explain the protective effects of increased LPS-producing 
bacteria in elderly people. Moreover, alterations in the gut 
environment that align with aging, such as pH shifts and alterations 
in gut motility, can favor the growth of different bacterial populations 
(Kedia et al., 2018), including those that produce LPS. Taken together, 
the cause and significance of the slight increase in LPS-producing 
bacteria with aging merit further exploration.

In our cohort, PERMANOVA analysis showed that age explains 
8-fold more variance at the OTU level and nearly 10-fold variance at 
the genus level than sex, while sex has not been determined as a 
significant covariate at the species level. Moreover, when gender was 
considered a grouping factor, no obvious differences between male 
individuals and female individuals were observed in the age-related 
changes of alpha diversity. Numerous studies have shown that 
enterotype is less affected by gender (Kim et al., 2020; Matusheski 
et al., 2021). Consistently, there is a similar distribution of enterotypes 
across sexes overall in our observation. Even after adjusting for 
covariates other than sex, only the genus Clostridium_sensu_stricto_1 
was observed to increase in male individuals significantly. Notably, 
after further stratification according to age group, there are minimal 
differences between sexes in alpha diversity, beta diversity, and 
microbial composition. In conclusion, the effect size of age on the gut 
microbiota is much greater than that of sex in our cohort.

There are several limitations to our study. First, as a retrospective 
study design, comprehensive physiological indices and detailed dietary 
information, which are essential in understanding factors responsible 
for or affected by the singular gut microbiota characteristics uncovered 
here, are absent in the present study. Moreover, metabolites originating 
from the microbiota are significant mediators of its beneficial or 
detrimental health effects. Although we observed numerous alterations 
in SCFAs-producing bacteria, the quantities of SCFAs were not further 
directly quantified in this study. In addition, the region-related 
microbiota differences also need to be considered, while our sample 
size to further group our Chinese individuals was insufficient. For 
instance, samples from Liaoning (n = 1), Inner Mongolia Autonomous 
Region (n = 1), and Yunnan (n = 1) provinces are insufficient and 
lacking representation. Therefore, to investigate region-mediated 
microbial differences, we further grouped the samples: Hubei province 
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(n = 494) and non-Hubei province (n = 119). The PCoA result indicates 
that the gut microbiota structures of the two groups are similar 
(Supplementary Figure S5). Importantly, after adjusting for 11 
covariates, such as age and gender, the PERMANOVA analysis revealed 
that the region did not mediate significant differences at the OTU, 
genus, and species levels between the two groups in the present study 
(Supplementary Figure S5). More samples from various provinces of 
China need to be further collected in the future to investigate the inter-
provincial microbiota differences. Alternatively, a comparative analysis 
of Chinese samples with those from other countries at the national 
level would help to clarify region-related microbiota differences. 
Furthermore, it is worth noting that our study employed 16S rRNA 
sequencing as the methodological approach. However, the sequencing 
depth does not allow precise identification at the species level. Even 
within the same genus, significant metabolic and functional differences 
exist among different species. Therefore, future research should utilize 
metagenomic assays to elucidate microbial functional differences 
related to age and gender at the species level.

Conclusion

This study reports features of the gut microbiome associated with 
age and gender in a healthy Chinese population. Age exerts stronger 
impacts on microbial alpha diversity, beta diversity, and composition 
than sex. Moreover, we demonstrated the dynamic alterations of gut 
probiotics or LPS-producing microbiota across the aging process, 
suggesting the need to supplement beneficial bacteria, particularly 
those producing SCFAs, according to age. In conclusion, our results 
elucidate the age trajectory of the gut microbiota, contributing to the 
understanding of the microbiota spectrum thereby implementing 
precise microbiota intervention strategies.
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