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The diversity of Ganoderma remains largely unexplored, with little information

available due to fungiphobia and the morphological plasticity of the genus. To

address this gap, an ongoing study aims to collect and identify species with

this genus using nuclear ribosomal DNA regions called the “Internal Transcribed

Spacer” (ITS1-5.8S-ITS2 = ITS). In this study, a new species, Ganoderma

segmentatum sp. nov., was discovered on the dead tree trunk of the medicinal

plant, Vachellia nilotica. The species was identified through a combination

of morpho-anatomical characteristics and phylogenetic analyses. This new

species was closely related to Ganoderma multipileum, G. mizoramense, and

G. steyaertanum, with a 99% bootstrap value, forming a distinct branch in the

phylogenetic tree. Morphologically, G. segmentatum can be distinguished by

its frill-like appearance on the margin of basidiome. Wilt or basal stem rot,

a serious disease of trees caused by Ganoderma species and V. nilotica, is

brutally a�ected by this disease, resulting in substantial losses in health and

productivity. ThisGanoderma species severely damages V. nilotica through deep

mycelial penetration in the upper and basal stems of the host species. Pathogenic

observational descriptions of G. segmentatum on dead tree trunks showed the

exudation of viscous reddish-brown fluid from the basal stem portion, which

gradually extended upward. Symptoms of this disease include decay, stem

discoloration, leaf drooping, and eventual death, which severely damaged the

medicinal tree of V. nilotica.
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1 Introduction

The members of the genus Ganoderma P. Karst. (Basidiomycota, Polyporales) can

be found all over the world and play a diverse role in forest ecosystems (Coetzee et al.,

2015; Sun et al., 2022). The tropical diversity of Ganoderma is not completely clear,

as shown by the current number of novelties (Wang et al., 2009; Xing et al., 2018;

Cabarroi-Hernández et al., 2019; Luangharn et al., 2019). The synonymization in the

genus Ganoderma indicates that the present nomenclatural situation is unsatisfactory and

confused, and its improvement needs continuous endeavor (Hong and Jung, 2004; Wang

et al., 2009; Fryssouli et al., 2020). Ganoderma has been investigated at macro- and micro-

levels, and some existing records are purely based on morphological descriptions. The

main morpho-anatomical characteristics of Ganoderma species are shelf-like basidiomata,
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laccate appearance, and a maroon-brown color (Ahmad, 1956;

Steyaert, 1972; Irshad et al., 2012; Fakhar-ud-Din and Mukhtar,

2019). Unfortunately, no DNA sequences are available for a few

records, and there is an urgent need to use molecular methods to

study the Ganoderma species (Umar et al., 2021a).

Molecular phylogeny provides interesting progress in this

genus (Volk, 1992; Moncalvo, 2000; Hong and Jung, 2004). Most

sequences of ITS rDNA have been analyzed to delimit and resolve

the confusion surrounding this species in Ganoderma complexes

(Hong and Jung, 2004; Cabarroi-Hernández et al., 2019). The

internal transcribed spacer (ITS: ITS1-5.8S-ITS2) shows maximum

efficiency in solving the problems regarding species identification

among Ganoderma taxon (Fryssouli et al., 2020). ITS presents a

clear barcoding gap to sort out the morphological and biological

species concepts; therefore, it can be used for identification (Badotti

et al., 2017).

Ganoderma, a hazardous white rot fungus present on living

trees, possesses cell wall-degrading enzymes to degrade major

wood components such as lignin, cellulose, and hemicellulose

(Schwarze et al., 2000). Many Ganoderma species are pathogenic,

causing butt and stem rot diseases of woody plants and crops

(Moncalvo, 2000; Elliott et al., 2001; Sahebi et al., 2017).

Saprophytic Ganoderma species are highly ligninolytic in nature

due to white rot (Volk, 1992). In natural ecosystems, laccase

plays an important role in lignin production and degradation

in plants. Laccases have garnered multiple industrial interests,

e.g., xenobiotic bioremediation and detoxification of phenolics

(Wang et al., 2015). This enzyme has been presented in many

Ganoderma species and is associated with diverse biological events,

especially in the life cycle of white-rotter’s mycelium development,

pigmentation, sporulation, and fruiting body formation (Jin

et al., 2018). Ganoderma species are emerging as major fungal

pathogens. Laccases of these species have been assigned other

biological functions, e.g., plant pathogenesis, lignin degradation,

and provides understanding of how a fungal saprophyte becomes a

dangerous pathogen. It is an intrinsic attribute for an opportunistic

pathogen to realize that its regulatory pathways have evolved

under environmental rather than host pressure. Nevertheless,

its production pathway defines the pathogen’s ability to cause

host damage because evolution allows for appropriate survival in

the environment and pathogenicity in the host plant (Zhu and

Williamson, 2004).

Higher plants assimilate laccases in lignin biosynthesis and

polymerization (a structural compound), which further facilitate

plant development and defense of plant tissues in response to

pathogenic species (Arregui et al., 2019; Westrick et al., 2024).

Interestingly, Ganoderma, a wood rotter, secretes laccase during

lignin degradation, in which terminal phenolic lignin is directly

oxidized by laccases (Westrick et al., 2024).

Many diseases are caused by different pathogens in multiple

crops and trees, e.g.,Ganoderma sp., which leads to basal and upper

stem rot (Fee, 2011). The genusGanoderma significantly minimizes

the yield of medicinal plants, and the world economy experiences a

huge product loss, if we fail to protect the medicinal plants (Corley

and Tinker, 2008). Degradation by Ganoderma slowly leads to

the decay of tree trunks, a process where lignin and cellulose are

diminished with the passage of time. Trunks of trees die due to

the infectious pathogenic action of Ganoderma, where lignin and

cellulose of the lower bole or root flare become decayed (Sinclair

and Lyon, 2005). Proteins and cell wall-degrading enzymes are

biological macromolecules involved in fungal life activities (Wu

et al., 2017). Fungal attack directly exposed the spongy cellulose

by decomposition of lignin, and white rot appeared on the plant’s

woody tissues (Paterson et al., 2009). The disease of rot starts with

the penetration of fungal mycelia into the tree’s roots, which is

sporadic toward the shoot, and finally, the trunk stands collapse

(Rees et al., 2009).

Vachellia nilotica is a tree of 5–20m long, fissured bark with

a dense spheric crown. The stems and branches are usually dark

to black in color. This tree has thin, straight, light gray spines

in axillary pairs without thorns. Leaves are bipinnate, with pairs

of pinnulae, tomentose, and rachis, with a gland at the bottom

of the last pair of pinnulae. Flowers are globulous (1.2–1.5 cm

dia.), bright golden-yellow in color, and whorly on 2–3 cm long

peduncles located at the ends of branches (Wardill et al., 2005). The

present study was conducted to analyze the morpho-anatomical

characters of basidiomata and the ITS sequence phylogeny of new

Ganoderma specimens, which act as amajor pathogen ofV. nilotica.

This species leads to massive economic losses by threatening the

medicinal host plants with basal rot diseases.

2 Materials and methods

2.1 Specimen collection and
morphological examination

The Ganoderma specimens were collected in 2019 from the

University of the Punjab, New Campus, Lahore, Pakistan (under

the authority letter of the Director, Institute of Botany, University of

the Punjab). The average annual rainfall is approximately 607mm,

and the temperature is 24◦C at this site. This area is covered

by Vachellia nilotica. Basidiomata were found at the bases of

the live tree trunks of V. nilotica trees, usually after the onset

of the rainy season in early summer. We observed microscopic

structures from cross-sections of the dried basidiomata in KOH

(5%), stained them with Congo red (1%), and viewed them under

an MX4300H compound light microscope (Meiji Techo Co., Ltd.,

Japan). Drawings weremade with the aid of a drawing tube. Data on

anatomical features were recorded from at least 30 measurements

at a magnification of 1000X. Basidiospore measurements were

presented as length× width (Nagy et al., 2010). Basidiospores were

measured without taking into account the apiculus when they were

not shrunk. The morphological descriptions of the microscopic

features are in part following the study by Cabarroi-Hernández

et al. (2019). Color terms in parentheses were recorded by following

Kornerup and Wanscher (1975).

2.2 DNA sequencing and phylogenetic
analyses

Genomic DNA was extracted from dried specimens using the

modified cetyltrimethylammonium bromide (CTAB) procedure
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(Doyle and Doyle, 1987). ITS (ITS1+5.8S+ITS2 rDNA) was

amplified with polymerase chain reaction (PCR) using the primers

ITS1 and ITS2 (White et al., 1990). Reaction mixtures (20 µL)

contained 0.5 µL DNA template, 8.5mL of distilled water, 0.5 µL

of each primer, and 10mL PCR mix [DreamTaqGreen PCR Master

Mix (2 X), Fermentas]. PCR cycling conditions were 35 cycles of

95◦C for 30 s, 52◦C for 30 s, and 72◦C for 1min, followed by a final

extension at 72◦C for 10min. Sequencing was conducted using the

same PCR primers. New sequences were edited usingMEGA v. 10.0

(Kumar et al., 2016) and submitted to GenBank under accession

numbers MZ666127 and MZ666128.

The newly generated sequences were used to search for the

most similar sequences deposited in GenBank using the BLASTn

tool. Sequences were aligned using the MAFFT online version

(Katoh et al., 2019) and manually adjusted using MEGA v. 10.0

(Tamura et al., 2011). A phylogenetic analysis was conducted

via maximum likelihood (ML) and Bayesian inference (BI). ML

analyses were performed using RAxML-HPC Blackbox version

8.2.10 (Stamatakis, 2014) implemented on the CIPRES Science

Gateway (Miller et al., 2010), with an estimated proportion of

invariable sites GTRGAMMA+I and branch support evaluated

by 1,000 bootstrap replicates. Bayesian inference was carried out

in MrBayes v. 3.2.2 (Ronquist et al., 2012). The best substitution

model for tree reconstruction was estimated by both the Akaike

information criterion and the Bayesian information criterion

jModelTest 2.0 (Darriba et al., 2012). Four Markov chain Monte

Carlo chains were run simultaneously, starting from random trees

for 2,000,000 generations and sampling every 100th generation.

After discarding the first 25% of trees as burn-in phase, a consensus

Bayesian tree and Bayesian posterior probabilities (BPP) were

determined based on all remaining trees. A BPP above 0.90 was

considered a significant value. Trees were visualized and further

edited in Tree Graph 2 (Stöver and Müller, 2010).

2.3 Qualitative analysis and absorption
spectra

Malt Extract Agar (MEA) media was prepared by the addition

(g/L) of MEA 7, Agar 10, K2HPO4 0.5, KH2PO4 0.5, MgSO4·7H2O

0.5, Peptone 2.5, and Glucose 15 at pH 5.0. Culture media

was sterilized (for 25min at 121◦C) and then autoclaved. The

autoclaved MEA was augmented with 0.02% guaiacol for typical

laccase (phenolic) and 0.04% veratryl alcohol (non-phenolic) for

atypical laccase. Chromogen was added to evaluate the atypical and

the typical laccase-producing abilities of Ganoderma mycelium.

The replicates were incubated at 30◦C for 5 days.

Submerged culture broth was designed for peak absorption of

laccase in shake flasks. Submerged nutrients broth (g/L), composed

of yeast extract 5 g, starch 1 g, MgSO4·7H2O 0.5 g, NaCl 0.5 g,

FeSO4·7H2O 0.5 g, CaCl2 0.5 g, and ZnSO4 0.02 g, were taken in

shake flasks for the growth of mycelium and incubated at 27±

2◦C in static condition for 5 days. The pH range of 8.0 to 11 for

blue laccase and 4 to 12 for white laccase was selected. Afterward,

absorbance was monitored at 280, 330, 470, and 605 nm (3min)

using a UV-Vis spectrophotometer (Xing et al., 2018). Three

replicates were designed for accuracy in the results.

2.4 Statistical analysis

The collected data from various parameters was analyzed

and represented by means ± standard deviation (SD). Statistical

analysis was calculated using SPSS 18.0 software.

3 Results

3.1 Phylogenetic analyses

The two ITS rDNA sequences (MZ666127 and MZ666128)

of the new species had 0.5% site differences. The phylogenetic

tree of G. segmentatum sp. nov. was closely matrixed to G.

multipileum, G. mizoramense, and G. steyaertanum B. J. Smith

and K. Sivasithamparam with a bootstrap value of 99%. The ITS

dataset included 98 nucleotide sequences of Ganoderma species,

and one sequence ofAmauroderma (A. rudeKF372587) was chosen

as an outgroup in this tree. There were 697 bp in the dataset.

The nucleotide frequencies were A = 22.21%, T/U = 29.35%, C =

23.56%, and G= 24.87%, and themaximum log likelihood was InL-

4430,914. The best model, GTR+G+I, selected by jModelTest, was

used for BI. Both ML and BI analyses resulted in trees of identical

topology, and the differences mostly supported the nodes. The ML

tree is shown in Figure 1.

3.2 Taxonomy

Ganoderma segmentatum A. Umar (Figures 2–4)

MycoBank: MB840865

Ganoderma segmentatum is morphologically characterized

by annual, dimidiate, stipitate, and brick-red-colored laccate

basidiome with a thin, light brown margin. A context without

resinous melanoid bands was observed in this species.

Holotype: PAKISTAN. Punjab Province: Lahore, NewCampus,

University of Punjab (31.4981◦N 73.3044◦E), elevation 217m a.s.l.,

attached to the trunk of the living tree of Vachellia nilotica, 22

June 2018, Aisha Umar (holotype UPASH101). GenBank: ITS

=MZ666127.

Etymology: The species epithet “segmentatum” indicates the

frill-like appearance at the pileus margin.

Description: “Basidiomata annual, solitary or in group, rigid,

dull laccate, stipitate, convex, consistency corky-woody; Pileus

17–18 × 13–13.5 cm, applanate, non-imbricate, dimidiate to

flabelliform, laccate, plano convex, hard, shiny upper surface,

rugose to verrucose, thin crusted, conspicuously concentrically

sulcate to groovy, particularly with frill-like appearance near

the margin and around the whole basidiomata; purplish red

(14A8), earth colored (5F3), brick red; Stipe 5.5–5.5 × 3.5–

3.7 cm, pleuropode, acentric, stout, cylindrical to flat dorso-lateral,

dark brown (8F7–6F8) thus darker than the pileus, woody hard,

strongly laccate with a thick crust; Margin 0.3–0.5mm thick,

obtuse, entire, few undulations, usually lighter than the rest of

the pileus, dull yellow (4A8) to brown (5E8) when fresh, and

later cream (4A3) to orange (5A4) in dry condition; Stipe 5.5–

5.5 × 3.5–3.7 cm, pleuropode, acentric, stout, cylindrical to flat

dorso-lateral, dark brown (8F7–6F8) thus darker than the pileus,
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FIGURE 1

RaXmL tree reconstructed based on ITS rDNA sequences showing the phylogenetic placement of G. segmentatum sp. nov. Maximum likelihood

bootstrap (MLB) values higher than 50% (based on 1,000 replicates) are displayed at the nodes, and thick lines represent Bayesian posterior

probabilities (BPP) >0.95. The tree is rooted in Amauroderma rude (KF372587). The sequences in bold are from the new species.
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FIGURE 2

G. segmentatum sp. nov. (A) basidiome upper surface with a frill-like margin and laccate appearance. (B) milky white lower pore surface. (C) side

view of the basidiome with thin margins. (D) caccate dark maroon brown stipe. (E) contextum in layers form and longitudinal tubes below the

contextum [scale bars: (A–D) = 3cm, (E) =0.5mm].

woody hard, strongly laccate with a thick crust; Pore surface at

first cream (4A3) becomes brown (6E8) to dark brown (6F8) when

old, pores almost invisible to the naked eye, subcircular to circular,

dissepiments entire and thick, sterile margin concolorous; Tubes

1.1–1.2 cm deep, non-stratified, grayish brown (6E3) with earth-

colored (5F3) walls, strongly contrasting with the pore mouth

and the context; Context: 0.9–1.2 cm thick, dry, azonate in both

pileus and stipe, loose fibrils, rusty brown (6E8) to dark brown
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FIGURE 3

G. segmentatum sp. nov. (A) generative hyphae (clamp connections indicated by an arrow). (B) skeletal hyphae. (C) binding hyphae with multiple

branches. (D1, D2) crustohymeniderm cells/cuticle cells taken from basidiomata. (E) broadly ellipsoid, bitunicate, and coarsely echinulated

basidiospores. (F, G) basidia. (H) chlamydospores [scale bars: (A–C) =5µm, (D–G) =10µm].
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FIGURE 4

Line drawing of anatomical characters of G. segmentatum. (A) cenerative hyphae. (B) skeletal hyphae. (C) binding hyphae. (D) basidia. (E)

chlamydospores. (F) basidiospores. (G) crustohymeniderm cells [scale bars: (A–C) =5µm, (D–G) = 10µm].

(6F8), hard, non-melanoid, separated from the crust by a yellowish

orange (4A7) thin line;Hyphal system trimitic: generative hyphae

hyaline, thin-walled, septate, with clamp connection, abundant

in the dissepiments; somatic hyphae composed of skeletal and

binding hyphae; skeletal hyphae thick-walled to solid in the trama;

frequently branched, yellowish (2A3), dichotomous to arboriform

with thick stalks gradually tapering in the context; and cuticle

yellowish (2A3) to brownish (6D6), with thick branches shorter

than in the trama; binding hyphae thick-walled, light brown (5D5),

randomly bulbous (from middle or near the branch), branched

slender, and acutes; Pileipellis: composed of a palisade of vertical

club-shaped to broadly clavate, pale yellow, yellowish-brown (5E8)

to pale dark brownish (6E8) apices, 38.5–55.7 × 12.2–14.4µm,

smooth, thick-walled to solid, with scant lumen, largely stalked with

peduncles continuing as hyaline thick-walled hyphae;Basidia 10.5–

20.2 × 2.2–2.7µm, fusiform to clavate, mostly two-spored with

acute sterigmata, thin-walled, content with fine to coarse granular

oily content; Basidiospores 8.5–9.6 × 5.2–6.7µm (average L =

8.84µm, W = 5.78µm, Q = L/W = 1.52), broadly ellipsoid,

bitunicate, exospore smooth, endospore coarsely echinulate, with

turgid vesicular appendix, guttulated, spore print light brown

(6D8); Chlamydospores 2.4–2.9 × 2.3–2.6µm, numerous, round,

thick-walled, ornamented with long pillars, hyaline, yellowish

(2A3) to reddish brown (8E7).

Another specimen examined: PAKISTAN. PUNJAB

PROVINCE: Lahore, New Campus, University of Punjab
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(31.4981◦ N 73.3044◦ E), elevation 217m a.s.l., attached to a dead

tree trunk of Vachellia nilotica, 25 July 2019, Aisha Umar (isotype

UPASH102). GenBank: ITS=MZ666128.

3.3 Plant-pathogenic interaction

Ganoderma segmentatum is reproduced by vegetative mycelia

and sexually by spores. Basidiospores are believed to be the

source of the inoculum. Spores germinated and formed the

monokaryotic vegetative mycelia, which are saprophytically grown

in the plant trunk. Dikaryotic mycelium was seen via migration

and the nuclear exchange of two different hyphae. The dikaryotic

mycelium ofGanoderma species caused a deep and speedy invasion

within the plant host. The dikaryotic mycelia formed the large

basidiomata under suitable environmental conditions. Basidiomata

is a multicellular reproductive body where karyogamy and meiotic

spores lead to the completion of the sexual phase (Figure 5). The

tetrapolar mating system in sexual reproduction promoted the

diversity of genetic content in the same plantation of the genus

Ganoderma, leading to population dynamics. This is the primary

cause of inefficient disease management. Basal rot management is a

big challenge, because the infective dikaryotic mycelium continued

the process of penetration into a healthy tree trunk and produced

new basidiospores.

Colonization of G. segmentatum with V. nilotica was observed

through contact between healthy and diseased roots. The

colonization started when the Ganoderma species found a wound

for penetration (Figure 5). G. segmentatum initially exhibited the

symptoms of reddish-brown viscous fluid exudated from the basal

stem portion, which gradually extended upward in direction. In

severe cases, the basal portion of the stem decayed completely,

and sporophores appeared at the base of the trunk. Brutally rot

roots, decay and discoloration of the stem, drooping of all leaves,

browning of branches, and death of the plant are the characteristic

symptoms of this disease.

The growing patches of BSR infection covered the healthy

tree species with the passage of time. The specialized reproductive

basidiospores of Ganoderma play an important role in the

maintenance of the sexual cycle. Ganoderma segmentatum is

FIGURE 5

Schematic presentation of stem root causes the decay of V. nilotica by G. segmentatum sp. nov.
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characterized by broadly ellipsoid, bitunicate, smooth exospores,

endospores that are coarsely echinulated, turgid vesicular appendix,

and guttulated basidiospores typically grown in the trunk.

Similarly, other white-rot fungal species degrade the wood lignin

component during pathogenic action. Basidiomata on the basal

stem badly infected the Vachellia nilotica tree. Symptoms of basal

stem rot disease on V. nilotica were the collapsing of lower leaves

and leaves hanging downward from the point of attachment, and

finally, the trunk falling down due to stem decay. Ganoderma

segmentatum, as a pathogen, released cell wall-degrading laccase

to soften and loosen the host cell wall made up of lignin.

The fungal and its laccase facilitated the softening and deep

penetration of needle-like microhyphae in the stem of V. nilotica.

Microhyphae with extracellular matrix degraded the cellulose

components, leading to minute cell wall cracks. This pathogenic

interaction of mycelium with living cells and tissues also facilitated

the continuous supply of nutrients. Microscopic examination of

infected V. nilotica revealed the biotrophic nutrition provided by

G. segmentatum during colonization. Needle-like fungal structures

puncture the healthy plant cells. Embedded thick and blackish-gray

lines were also observed in the host tree.

3.4 Cell wall degrading enzyme

The laccase in this study was detected in the preliminary

test. The engraved mycelium was taken exactly below side of

the fruiting body grown on the tree trunk of V. nilotica.

Trunk-penetrated mycelia were inoculated on an MEA plate

augmented with veratryl alcohol. White laccase transformed the

veratryl alcohol into a brown color by oxidation (Figure 6A).

Blue laccase formed the reddish-brown oxidation zone on the

agar plate after oxidation of guaiacol, indicating the ability of

Ganoderma sp. to release the laccase (Figure 6B). It is well

known that blue laccases generally react with organic substrates

in the presence of mediators (guaiacol), while yellow laccases

perform the same act without any mediator molecules. The

laccase of Ganoderma species oxidizes the non-phenolic lignin

compounds, which cannot be oxidized by the laccase alone.

Thus, the oxidation of lignin was dependent on the presence

of primary laccase substrates (mediators). In this study, typical

blue laccase exhibited a reddish-brown color by reaction with

chromogen, while white or yellow laccase did not exhibit any color

with guaiacol.

Laccase secreted by mycelium taken from the lower side of the

fruiting body exhibited a peak at 340 nm at a pH of 6.5 (Figure 6C).

The absorption peak was 600 nm at a pH of 12 for laccase in

submerged broth (Figure 6D). The results indicated from the peak

that laccase broke down the trunk and caused basal stem rot via the

production of white laccase. The peak observed for laccase in the

submerged broth indicated blue laccase.

White/yellow laccase had an absorption peak at 330 nm to

400 nm, but no peak was observed at 605 to 610 nm. Yellow laccase

can be reduced artificially into blue laccase but it does not exhibit

absorption at 600 nm. Conversion of laccase from blue to yellow

occurred by the reduction of the type I Cu site via aromatic

products or the binding of specific amino acids to the enzyme

polypeptide formed during lignin degradation. The reason behind

the colorlessness of white laccase is the change in the valence state of

the copper ion (Cu2+). White laccase is also considered a member

of the laccase family because its primary structure is identical to the

known laccase, which uses oxygen as an oxidative agent.

4 Discussion

In the ITS phylogeny, the new species clustered together

with G. multipileum, G. martinicense, G. mizoramense, and G.

destructans M.P.A. Coetzee, Marinc, and M. J. Wingf and G.

steyaertanum in a highly supported clade (99%). The global meta-

analysis of ITS rDNA Ganoderma sequences (Fryssouli et al.,

2020) resolved all five species with a maximum supported (72%

ML, 0.97 BPP) lineage. Fryssouli et al. (2020) used the threshold

of interspecific values for ITS similarities (≤ 98%), and genetic

distance (≥ 0.015) effectively applied to the 21 putatively new

phylospecies. The widely adopted thresholds for separating the

species in Basidiomycota are < 97% to 98% for ITS sequence

similarity, while p-values are > 0.010–0.020 for genetic distances

(Zervakis et al., 2019). Therefore, ITS-based phylogenies are helpful

in addressing taxonomic issues (in conjunction with other criteria

like distinct morpho-anatomical characters).

The present study introducedG. segmentatum as a newmember

of the genus Ganoderma. It also substantiated the reliability

of our ITS phylogeny in resolving Ganoderma species in this

clade. The six species in the lineage can be roughly characterized

by the geographical origin of their specimens. The specimens

of G. destructans originated from South Africa (Darriba et al.,

2012; Coetzee et al., 2015). G. martinicense is reported from the

USA, Mexico, Cuba, Martinique, Colombia, Brazil, and Argentina

(Darriba et al., 2012). G. steyaertanum is distributed in Indonesia

and Australia, while G. multipileum is described as including

the specimens formerly assigned to tropical Asian Ganoderma

lucidum (Stöver and Müller, 2010). As shown by the internal clade

resolution, G. multipileum had a strong phylogenetic relationship

(86% ML, 0.95 BPP) with G. segmentatum, which was resolved

in the sister position. Both species form a sister subclade with

G. martinicense. Based on present knowledge, G. multipileum and

G. segmentatum have the same geographical origin, especially

G. multipileum, which is known from Pakistan. Besides the

phylogenetic separation, the two species can be well differentiated

by their morphological features. Basidiomata of both species are

usually laterally stipitate, while in G. segmentatum, they can be

concrete, with pilei often growing together from the lower pilei

in G. multipileum (Wang et al., 2009). A group of laccate pilei

in G. multipileum overlap, while our new species is less laccate

and solitary, appearing on a stem. The basidiomata is maroon-

brown in G. multipileum and brick-red in G. segmentatum. In

addition, the imbricate and concrete basidiomata ofG. multipileum

may reach a large size (up to 36 cm long and 54 cm wide) (Wang

et al., 2009). Moreover, the pileial surface of G. multipileum

showed a range of colors from orange-yellow (4A7) to orange-red

(8A8) to brown-red (8C8) and was radially striate (Wang et al.,

2009) compared to the sulcate concentrically zonate margin of

G. segmentatum.
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FIGURE 6

Preliminary plate test for laccase (A) veratryl alcohol, (B) guaiacol, (C) absorbance of laccase, and (D) laccase at a particular pH.

The most distinguishing features are the size and shape of

the basidiospore in the genus Ganoderma (Steyaert, 1972; Kirk

et al., 2008; Torres-Torres and Guzmán-Dávalos, 2012; Umar

et al., 2021b). The spore size of G. multipileum is larger (8.0–

13.2 × 5.5–7.4µm) than that of our species. On an ITS basis,

26 additional nucleotides are present in G. segmentatum sp.

nov. and differentiated by 10 nucleotides from G. multipileum.

Therefore, according to the nucleotide basis, G. multipileum is

different from our species. Ganoderma martinicense Welti and

Courtec. basidiospores are larger (9.5–12× 5–7µm) with a golden

yellow pileal surface (Welti and Courtecuisse, 2010), contrary

to G. segmentatum. One additional nucleotide is present in G.
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martinicense but absent in our species. Almost seven nucleotides

are different in our new species of G. martinicense. The spores of

Ganoderma parvulum are longer (8–10× 5–6µm) than those ofG.

segmentatum identified in Pakistan (De Lima Júnior et al., 2014).

G. parvulum is characterized by a pale ochraceous context

with resinaceous streaks (Murrill, 1902), while the context is light

chocolate brown without resinaceous streaks in G. segmentatum.

G. parvulum has two additional nucleotides, while two gaps are

present in our species. Both species are differentiated by 17

nucleotides. The basidiomes of Ganoderma destructans and G.

steyaertanum exhibited a few similarities, but the spores of G.

destructans are slightly larger than those of G. steyaertanum (7.3–

12.7 × 5.0–9.5µm). G. steyaertanum possesses laccate dimidiate

basidiocarp, occasionally sessile, umbonate that is dark to chestnut

(dark brown) in color, yellowish-white margin, and pale yellow

to grayish orange pores (Stöver and Müller, 2010). These

characteristics are contrary to those of this newGanoderma species.

G. segmentatum sp. nov. is differentiated from G. steyaertanum by

eight nucleotides, while our new species possesses one additional

nucleotide and two gaps in nucleotide sequence. Basidiospores of

G. destructans are larger (11–14× 7–9µm, av. 12.3× 8.0µm) than

our new species. The pileus surface of G. destructans is covered

by white to creamy soft non-poroid tissue of hymenophore, which

turns brown when this species becomes old (Coetzee et al., 2015).

At themolecular level, analysis of ITS sequence alignments revealed

that three additional and five different nucleotides are present in G.

segmentatum sp. nov., while they are absent in G. destructans.

The combinatorial mating system of sexual reproduction

promoted diversity in the genus Ganoderma. The genetic

divergence in the genetic pool was higher, especially in isolates of

different geographical origins. Different isolates and strains exhibit

a different degree of aggressiveness and patience toward biological

control (Kok et al., 2013; Midot et al., 2019; Wong et al., 2021).

In this study, upper and basal stem rot severely affected the

Vachellia nilotica plant species. This rot is the primary cause of an

inefficient disease control system. Studies indicated that there is a

need of compatible partners for Ganoderma species to “mate and

initiate” the sexual cycle (heterothallism). Monokaryons possess

two “unlinked mating” loci, which initiate the mating process

to complete sexual reproduction (ruled by the tetrapolar mating

system) (Ramzi et al., 2019). Ganoderma, as a pathogen, releases

small cell wall-degrading enzymes, e.g., cellulase, manganese

peroxidase, polygalacturonase, and laccase, which soften the host

cell wall (Tan et al., 2018). Hyphae of G. boninense colonized the

oil palm root by secreting trace amounts of degrading enzymes

(polygalacturonase and laccase) (Dhillon et al., 2021). These

enzymes degenerate the integrity of the polysaccharides (host cell

wall) (Ho et al., 2019). This process starts with the production of

multiple response molecules (reactive oxygen species, phytoalexins,

and pathogenesis-related proteins) to trigger the alterations in

the cell wall. Currently, little study is available on the proteins

or enzymes involved in host penetration. Hyphal mating ensures

the survival and continuation of the genetic variety of many

fungal pathogenic species. Variation inmating facilitates the species

in adoption of changed environmental conditions (Morrow and

Fraser, 2009). Different studies have reported that Ganoderma

is a common disease-causing agent. This species gradually leads

to the death and decline of trees (Glen et al., 2009; Elshafie

et al., 2013; Bhadra, 2014; Coetzee et al., 2015). The pathogenic

action of G. adspersum on young Tilia species and Aesculus sp.

was reported in Italy by Nicolotti et al. (2009). Post-inoculation,

after 2 years, make the decay columns by drilling the method

of inoculation. In New York, Pirone (1957) also performed the

pathogenicity tests via agar plugs or fruiting body (pieces) of G.

lucidum placed by drilling into the holes of the lower trunk in young

Acer platanoides, and symptoms of infection were also observed.

Elliott and Broschat (2005) considered Ganoderma zonatum a

destructive palm pathogen, similarly, infections or diseases were

observed in palms according to Elliott and Uchida (2024). A few

Ganoderma species are host-specific and found on certain groups of

hosts (palms, conifers, and hardwoods) (Gilbertson and Ryvarden,

1986); For example, Ganoderma meredithiae attacked pines, while

Ganoderma curtisiimade connections with hardwoods (Elliott and

Broschat, 2005; Adaskaveg et al., 2011).

Non-phenolic substrates are oxidized by white/yellow laccases,

which are required in the case of blue laccases. Yellow laccase

was detected by converting veratryl alcohol into veratraldehyde

(Chaurasia et al., 2013a,b). Veratryl alcohol is a secondary

metabolite synthesized de novo by white-rot fungi and its low

amount enhance the laccase activity (Jensen et al., 1994). Veratryl

alcohol, a non-phenolic lignin compound, can be oxidized by the

laccase of Coriolus versicolor.

In the reported literature on submerged culture, fungi secreted

blue laccases, while secreting yellow laccases when grown on

lignin-containing solid substrates. Yellow laccases are better

biocatalysts than blue ones. Yellow laccase was produced in

Pleurotus ostreatus, G. fornicatum, Panus tigrinus, Phlebia radiate,

P. tremellosa, Sclerotinia sclerotiorum (Daroch et al., 2014;

Agrawal et al., 2018), G. lucidum, Scytalidium thermophilum

(Ben Younes and Sayadi, 2011), Pycnoporus sanguineus (Dantán-

González et al., 2008), Cerrena unicolor (Michniewicz et al.,

2008), Pycnoporus cinnabarinus (Schliephake et al., 2000), and

Myrothecium verrucaria (Zhao et al., 2012). The blue laccase was

identified by Trametes versicolor, T. trogii, T. villosa, Rigidoporus

lignosus, and Coriolus versicolor (Levin et al., 2010). Phellinus

linteuis MTCC-1175 exhibited a peak at 610 nm (Chaurasia et al.,

2013a,b), while yellow laccase showed a characteristic spectrum in

Coriolopsis floccosaMTCC-1177 (Chaurasia et al., 2013a,b).

It was previously observed that the yellow laccases were

obtained from cultures grown on a solid-state medium, while

the blue forms isolated from cultures grown on a liquid medium

without lignin (Daroch et al., 2014). The authors suggested that

the yellow laccase can be fabricated by the modification of blue

laccase via 1. low-molecular-weight lignin decomposition products;

2. glycosylation; 3. turnover-dependent oxidation of the active

site; 4. amino acids; and 5. copper ligands. This mediator can be

obtained from the culture medium, from which the enzyme was

isolated (Dantán-González et al., 2008; Ben Younes and Sayadi,

2011; Agrawal et al., 2018).

5 Conclusion

The morpho-anatomical and molecular study of Ganoderma

segmentatum indicated that it is a new species matrixed separately

in the clade of Ganoderma species with a strong bootstrap value
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(99%). Ganoderma is a globally distributed genus comprising

species associated with forest ecology and medicinal trees. The

Ganoderma species are facultative parasites on living, dead, or

rotting trees. They also cause the white rot of hardwoods by

decomposing cellulose, lignin, and polysaccharides. The decay of

roots and lower trunk or stem flares leads to hazardous tree

conditions and tree failures, resulting in serious damage to property

and life.

It is clear that Ganoderma are ecologically indispensable, but

their pathogenic nature causes tree diseases. Although this new

species is a major contributor to the genus Ganoderma and its

pathogenic relationship with host plants has brutally damaged the

V. nilotica.
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