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Objectives: Certain Group B Streptococcus (GBS) genotypes are associated

with invasive disease in neonates. We conducted a comparative genomic

analysis of GBS isolates from neonatal disease and maternal carriage in the

Netherlands to determine distribution of genetic markers between the two host

groups.

Methods: Whole genome sequencing was used to characterise 685 neonatal

invasive isolates (2006–2021) and 733 maternal carriage isolates (2017–2021)

collected in the Netherlands.

Results: Clonal complex (CC) 17 and serotype III were significantly more

common in disease while carriage isolates were associated with serotypes II,

IV, V as well as CC1. Previously reported CC17-A1 sub-lineage was dominant

among disease isolates and significantly less common in carriage. The phiStag1

phage, previously associated with expansion of invasive CC17 isolates in the

Netherlands, was more common among disease isolates compared to carriage

isolates overall, however it was equally distributed between CC17 isolates from

carriage and disease. Prevalence of antimicrobial resistance genes was overall

lower in disease compared to carriage isolates, but increased significantly over

time, mediated by rise in prevalence of a multidrug resistance element ICESag37

among disease isolates.

Conclusion: There is a stable association between certain GBS genotypes

and invasive disease, which suggests opportunities for developing more

precise disease prevention strategies based on GBS targeted screening.
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In contrast, GBS mobile genetic elements appear less likely to be correlated

with carriage or disease, and instead are associated with clonal expansion events

across the GBS population.

KEYWORDS

Group B Streptococcus, neonatal invasive disease, maternal carriage, serotypes, clonal
complexes, mobile genetic elements

Introduction

Streptococcus agalactiae (Group B Streptococcus, GBS) is a
common coloniser of the vaginal and gastrointestinal tracts of
healthy adults. Carriage of GBS during pregnancy represents a
risk factor for the development of invasive disease in the newborn
and GBS is a leading cause of invasive infection in neonates
worldwide (Gonçalves et al., 2022). Beta-lactams represent the first
choice for intrapartum antibiotic prophylaxis (IAP) during labour
and treatment of GBS disease. While most GBS isolates remain
susceptible to beta-lactams (Kobayashi et al., 2021), prevalence
of resistance to second-line antibiotics such as erythromycin and
clindamycin has been increasing (Slotved and Hoffmann, 2020;
Kekic et al., 2021; Sabroske et al., 2023).

Group B Streptococcus isolates are often grouped based on
their capsular polysaccharide (CPS), with 10 different serotypes
described to date: Ia, Ib, and II–IX (Berti et al., 2014). GBS CPS is
a major virulence factor of GBS and a number of GBS multivalent
vaccines targeting CPS are currently under development (Absalon
et al., 2022). GBS isolates are also characterised using multi-locus
sequence typing (MLST), which has revealed that five GBS clonal
complexes (CCs) are associated with colonisation and disease
in humans: CC1, CC10, CC17, CC19, and CC23 (Björnsdóttir
et al., 2016; Khan et al., 2022). Some GBS lineages are associated
with specific CPS serotypes, for instance CC17 isolates express
predominantly serotype III (Teatero et al., 2016). Associations
between GBS molecular markers and different host groups have
been observed, with CC17-serotype III dominant among neonatal
GBS invasive disease (Teatero et al., 2016; Bianchi-Jassir et al., 2020;
Jamrozy et al., 2020), while CC1 often associated with disease in the
adult population (Flores et al., 2015).

We have previously reported that CC17 prevalence has
increased among GBS isolates from neonatal disease in the
Netherlands, which was associated with expansion of particular
CC17 clonal groups and with acquisition of a novel phage phiStag1
(Jamrozy et al., 2020). It has been unclear whether the increasing
prevalence of these CC17 clones occurred only among the disease-
associated GBS isolates, or was reflective of a more broad expansion
across the GBS population. To address this, we have used whole
genome sequencing (WGS) to analyse and contrast population
structures of GBS isolates from maternal carriage and neonatal
disease, collected in the Netherlands. Furthermore, to better
understand the genetic variability between isolates from the two
at-risk populations, we compared the distribution of key GBS
molecular markers such as serotype, CC, antimicrobial resistance
(AMR) genes and the intra-lineage population structure within the
major CCs.

Materials and methods

GBS isolates

The collection consisted of 685 neonatal (<90 days old)
invasive GBS isolates collected between 2006 and 2021, and 733
maternal carriage GBS isolates collected between 2017 and 2021
in the Netherlands. Isolates from neonatal disease were derived
from a nationwide surveillance of bacterial meningitis and infant
bacteraemia conducted by the Netherlands Reference Laboratory
for Bacterial Meningitis (NRLMB). Disease isolates collected
between 2006 and 2016 were described previously (Jamrozy et al.,
2020). The infections were classified as early onset disease (EOD)
at age 0–6 days, and as late onset disease (LOD) at age 7–89 days.
Maternal carriage isolates were collected from pregnant women
in hospitals in Amsterdam, The Hague, Utrecht, Hengelo, and
Arnhem, for the Netherlands observational study on GBS disease,
bacterial virulence and protective serology (NOGBS). Isolates were
cultured from the vagina (n = 528) or urine (n = 205) according to
local hospital protocols.

Whole-genome sequencing and post
processing

Genomic DNA was extracted using either the Wizard R©

Genomic DNA Purification Kit or the Maxwell
R©

RSC Cultured
Cells DNA Kit (AS1620) from Promega. Tagged DNA libraries
were created using NEBNext

R©

UltraTM II DNA Library Prep Kit
for Illumina. Whole-genome sequencing was performed on the
Illumina NovaSeq 6000 platform with 150 bp paired-end reads.
Sequence reads were used to create assemblies using SPAdes v3.10.0
(Bankevich et al., 2012). Annotated assemblies were produced as
described previously (Page et al., 2016).

Whole-genome sequence data analysis

The sequence data was assessed using GBS QC pipeline v1.0.31.
Sequences that have passed QC were analysed using the GBS typer
pipeline v1.0.102 to determine sequence type (ST), serotype, and
AMR gene carriage. Novel MLST alleles and ST profiles were

1 https://github.com/sanger-bentley-group/GBS_QC_nf

2 https://github.com/sanger-bentley-group/GBS-Typer-sanger-nf
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deposited in the MLST database3. Isolates were assigned to a CC
using the geoBURST algorithm in PHYLOVIZ v2.0 (Nascimento
et al., 2017) and a single locus variant for group definition. To
determine the presence of a phiStag1 (Jamrozy et al., 2020) and
ICESag37 elements, sequence reads were mapped to reference
sequences (phiStag1: GenBank accession PP091924; ICESag37:
accession no. CP019978, 629058-702486) with SRST2 v0.2 using
default parameters (Inouye et al., 2014).

Phylogenetic analyses were performed as detailed in
Supplementary Methods. CC17 isolates from the Netherlands
were supplemented with publicly available CC17 genomes to
reconstruct a global, time-calibrated phylogeny as detailed in
Supplementary Methods.

Statistical analysis

Fisher’s exact test was used to determine significant association
between host status and GBS genotypes, P-value < 0.001 was
considered statistically significant.

Results

Serotype, ST, and CC distribution among
GBS from carriage and disease

The dataset consisted of 733 maternal carriage and 685
neonatal disease isolates. The majority of neonatal isolates were
from EOD (62%) with the remainder derived from LOD (38%;
Supplementary Table 1).

Based on the in silico analysis, nine capsular serotype genotypes
were identified (Ia, Ib, II–VII, and IX), while six isolates were non-
typeable (Figure 1A). The most common serotypes among carriage
isolates were III (25%), V (19%), II (17%), and Ia (17%), while
disease isolates were predominantly serotype III (59%), followed by
Ia (22%) (Figure 1B).

We identified 149 unique STs (Supplementary Table 1). The
most common STs among carriage isolates were: ST1 (11%),
ST17 (11%), ST23 (9%), ST19 (9%), ST28 (6%), and ST24
(5%) (Supplementary Figure 1). In contrast, disease isolates were
dominated by ST17 (39%), followed by less common ST23 (15%)
and ST19 (10%). The STs were grouped into 12 CCs. The main
CCs among all GBS isolates were CC17 (29%), CC19 (19%), CC23
(15%), CC1 (13%), and CC8 (8%) (Figure 1C). In line with ST
assignment, the majority of disease isolates belonged to CC17
(45%), followed by CC23 (18%) and CC19 (16%). The carriage
isolates showed a more diverse CC distribution, spread across the
five main CCs: CC19 (21%), CC1 (18%), CC17 (15%), CC23 (13%),
and CC8 (11%) (Figure 1D).

We analysed associations between CCs and serotypes (Figure 2
and Supplementary Figure 2), which showed that CC17 and CC23
carried a single dominant serotype, III and Ia, respectively, while
the other main CCs had a higher serotype diversity (Figure 2). Most
serotypes were associated with multiple CCs, except for VI and VII

3 https://pubmlst.org/sagalactiae/

FIGURE 1

Serotype and CC distribution among the GBS isolates by host status.
(A) Proportion of all isolates representing each serotype, stratified
by host status. (B) Relative serotype distribution in each host status
group. (C) Proportion of all isolates representing each CC, stratified
by host status. (D) Relative CC distribution in each host status
group. (A,C) Total number of isolates for each serotype and CC,
respectively, is displayed above the bars.

which were only identified in CC1, while serotype IX was found
only in CC130 isolates (Supplementary Figure 2).

We wished to compare the distribution of genotypes between
isolates from carriage and disease. However, since our dataset
was not fully temporally matched, we needed to account for the
possibility of sampling bias due to the previously reported temporal
changes in the prevalence of certain GBS lineages among isolates
from neonatal invasive disease in the Netherlands (Jamrozy et al.,
2020). To account for the likelihood of a continuing temporal trend
in frequency of GBS genotypes, we have evaluated the differences
between carriage and disease isolates by comparing a full dataset
as well as a subset consisting only of isolates that were collected
during overlapping collection years (2018–2021). As such, the latter
included only the most recently collected disease isolates.

Across the full dataset we observed that serotype III was
significantly more common in disease while serotypes Ib, II, IV,
and V were more prevalent in carriage isolates (P < 0.001;
Table 1). Among temporarily matched datasets, serotypes II, IV,
and V remained more common in carriage although this was
not statistically significant, while serotype III was still significantly
associated with disease isolates.

Among all isolates, ST17 was significantly more common in
disease, while ST1, ST28, ST291, and ST569 were significantly
associated with carriage isolates (P < 0.001; Table 1). In time-
matched datasets, these carriage-associated STs were still more
prevalent among carriage isolates but this was not statistically
significant. In contrast, ST17 was still significantly more common
among disease isolates. In line with these associations, CC17 was
significantly associated with disease while CC1 with the carriage
isolates (P < 0.001), which was observed across the full and time-
matched datasets. Additionally, CC8 isolates were more common
in carriage although this was statistically significant only for the full
dataset. We also observed that CC19 was significantly (P < 0.001)
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FIGURE 2

Serotype distribution by host status and CC. EOD, early onset disease; LOD, late onset disease.

more common in carriage but only within the time-matched
dataset, due to a substantial drop in its prevalence in the most recent
disease isolates. Regarding CC-serotype associations, isolates from
CC24-serotype V and CC17-serotype IV were found exclusively in
carriage isolates except for a single CC24-serotype V identified in
disease isolate (Table 1).

We also compared the distribution of genotypes between
maternal carriage isolates collected from vagina and urine and
observed no variation in prevalence of serotypes and CCs between
the two isolation sources (Supplementary Figure 3).

Phylogenetic structure and host status
associations within GBS CC

Intra-lineage population structure was analysed by clustering
each of the five major GBS CCs into phylogenetic clades (Figure 3).
We have previously reported a clonal expansion of specific
CC17 clades (CC17-A1 and CC17-A2) among GBS isolates from
neonatal disease in the Netherlands (Jamrozy et al., 2020) and
wished to compare their distribution among carriage and disease
isolates, together with a broader comparison of GBS population
between the two host groups. The phylogenetic trees of CC17
and CC23 revealed a single dominant clade (CC17-A and CC23-
A, respectively), while the phylogenies of other CCs were more
diverse, revealing between 4 and 6 distinct clades each. To identify
the CC17 clades associated with the previously reported expansion,
the dominant CC17 clade, CC17-A, was partitioned further into
three sub-clades: CC17-A1, CC17-A2, and CC17-A0. For each
clade identified, we calculated its prevalence across all carriage and
disease isolates to identify dominant clusters within each host group
and to compare their distribution (Figure 4).

The most common clades among the carriage isolates were
CC19-B (13%), CC23-A (12%), and CC1-A (9%). In disease
isolates, the most prevalent clades were CC17-A1 (24%) and
CC23-A (18%). Additionally, clades CC1-A, CC8-C, CC19-B, and
CC19-D were significantly more common among carriage while
CC17-A0, CC17-A1, CC17-B, and CC19-A were associated with
the disease isolates (P < 0.001; Table 1). Those associations

remained significant in time-matched datasets only for CC17-A0
and CC17-A1.

To better understand the variable CC clade distribution
between carriage and disease isolates, we also compared
the prevalence of these clades within corresponding CC
(Supplementary Figure 4). This has revealed that for CC1,
CC8, and CC23 the distribution of clades was similar between
carriage and disease isolates. For instance, CC1-A, CC8-C, and
CC23-A represented dominant CC1, CC8, and CC23, respectively,
clades in both carriage and disease. In contrast, for CC17 and
CC19, we observed that variable clade distribution was associated
with differences in CC17 and CC19 population structure between
carriage and disease. As such, CC17-A1 was the dominant CC17
clade in disease isolates, while CC17 isolates from carriage showed
an equal distribution of CC17-A1 and CC17-A2. The dominant
CC19 clade in carriage isolates was CC19-B, while in disease the
majority of isolates belonged to CC19-A.

Previous analysis of CC17 isolates from neonatal invasive
disease in the Netherlands also revealed acquisition of a novel
phage, phiStag1 (GenBank accession PP091924), which correlated
with the clonal expansion of clade CC17-A1 (Jamrozy et al., 2020).
In the current dataset, phiStag1 phage was found in 26% of all
isolates, and it was significantly more common in disease (32%)
in comparison to carriage (21%) isolates (Table 1). The phage
was found predominantly in CC17 isolates where it was mostly
associated with CC17-A1 and CC17-A2 (Supplementary Figure 5).
Despite being more common in disease isolates overall, the phage
was equally distributed among CC17 isolates from carriage and
disease (Supplementary Figure 5). The phiStag1 phage was also
detected in other dominant CCs: CC19 (10%), CC23 (28%), CC1
(5%), and CC8 (19%), where it was mostly equally distributed
between carriage and disease (Supplementary Figure 5).

GBS resistome

Tetracycline resistance genes (tetM, tetO, and tetL) were the
most prevalent AMR determinants, observed in 86% of all GBS
isolates. They were equally represented in disease and carriage
isolates (Supplementary Table 2).
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TABLE 1 Prevalence of genotypes found to be differentially distributed between GBS from carriage and disease.

Full Time-matched subset

Carriage Disease P-value Carriage Disease P-value

Serotype

Ib 8% (62) 4% (28) <0.001 8% (59) 9% (6) 1

II 17% (127) 5% (33) <0.001 17% (120) 6% (4) 0.01

III 25% (183) 59% (406) <0.001 25% (177) 57% (40) <0.001

IV 8% (56) 2% (17) <0.001 8% (53) 0 0.01

V 19% (137) 5% (36) <0.001 19% (130) 6% (4) 0.004

MLST

ST1 11% (77) 3% (23) <0.001 10% (71) 3% (2) 0.05

ST17 11% (82) 39% (266) <0.001 11% (80) 43% (30) <0.001

ST28 6% (41) 1% (7) <0.001 5% (38) 1% (1) 0.25

ST291 2% (15) 0 <0.001 2% (12) 0 0.61

ST569 2% (15) 0 <0.001 2% (15) 0 0.38

CC

CC1 18% (131) 7% (46) <0.001 18% (125) 3% (2) <0.001

CC8 11% (84) 5% (34) <0.001 11% (80) 6% (4) 0.16

CC17 15% (108) 45% (309) <0.001 15% (103) 53% (37) <0.001

CC19 21% (156) 16% (111) 0.02 21% (149) 6% (4) <0.001

CC-serotype

CC17-IV 2% (15) 0 <0.001 2% (12) 0 0.04

CC24-V 3% (24) 0.1% (1) <0.001 3% (24) 1% (1) 0.63

Clades

CC1-A 9% (68) 3% (22) <0.001 9% (64) 3% (2) 0.07

CC8-C 5% (37) 2% (11) <0.001 5% (34) 3% (2) 0.76

CC17-A0 0.4% (3) 7% (50) <0.001 0.4% (3) 9% (6) <0.001

CC17-A1 5% (37) 24% (167) <0.001 5% (37) 21% (15) <0.001

CC17-B 2% (13) 5% (36) <0.001 2% (12) 9% (6) 0.004

CC19-A 1% (8) 7% (46) <0.001 1% (8) 3% (2) 0.23

CC19-B 13% (94) 6% (42) <0.001 13% (90) 1% (1) 0.002

CC19-D 6% (45) 1% (7) <0.001 6% (42) 1% (1) 0.17

MGE

phiStag1 21% (156) 32% (218) <0.001 21% (148) 39% (27) 0.002

AMR

MLSB 24% (179) 15% (102) <0.001 25% (172) 26% (18) 0.88

ICESag37 4% (31) 5% (37) 0.27 4% (30) 17% (12) <0.001

The total number of isolates from carriage/disease with corresponding genotype is shown in brackets. The prevalence of genotypes is shown for the full and time-matched (2018–2021) datasets.

The second most common were genes conferring resistance to
macrolides, lincosamides, and streptogramin B (MLSB) antibiotics
(ermB, ermA, ermT, mefA/msrD, lnuB, lsaC, and lsaE), which were
present in 20% of all GBS isolates (Supplementary Table 2). The
most common MLSB resistance determinants were ermB (12%),
mefA/msrD (4%), and ermA (4%; Supplementary Table 2). Across
the collection, the highest prevalence of MLSB resistance genes was
observed in isolates belonging to CC19 (32%), CC1 (30%), and
CC17 (19%) (Supplementary Table 2), and the majority were from

clades CC19-B, CC1-A and CC17-A2, respectively (Figures 3A,
C, E). Across the full dataset, MLSB resistance genes were more
common in carriage (24%) in comparison to disease (15%) isolates.
This was no longer observed in a time-matched dataset, which
showed a comparable frequency of MLSB resistance genes in
carriage (25%) and disease isolates (26%).

Overall, 6% of all GBS isolates carried aminoglycoside
resistance genes, with similar prevalence in isolates from carriage
(7%) and disease (6%) in a full dataset (Supplementary Table 2).
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FIGURE 3

Phylogenetic trees of the five major CCs. The branches of each tree are coloured in accordance with CC-specific clusters ID. Each tip is annotated
with (from the innermost circle): host status, serotype, carriage of MLSB resistance genes, phiStag1 and ICESag37 (where applicable). Phylogenetic
trees of (A) CC17, (B) CC23, (C) CC1, (D) CC8, and (E) CC19.

However, in a time-matched dataset they became more common
in disease isolates (17%). Low frequency of chloramphenicol
resistance genes (1%) was observed, mostly in carriage isolates (2%;
Supplementary Table 2).

In CC17, a number of AMR determinants [ant(6-Ia), aph(3′-
III), aadE, ermB, tetO] were carried by clonally related isolates
(Supplementary Figure 6). Further analysis revealed that these
resistance genes were located on a single, previously defined mobile
genetic element (MGE), ICESag37 (Zhou et al., 2017). The majority
of CC17 isolates carrying ICESag37 belonged to CC17-A2 (94%;
Figure 3A). The ICESag37 element was also detected in CC8
isolates, exclusively in clade CC8-B (Figure 3D). The prevalence

of ICESag37 was similar in carriage (4%) and disease (5%) isolates
in a full dataset. However, its prevalence increased substantially in
more recent disease isolates and in a time-matched dataset it was
significantly more prevalent in disease (P < 0.001; Table 1).

Global CC17 phylogeny and prevalence
of ICESag37

To further investigate the apparent association between
ICESag37 element and CC17-A2 isolates, we combined our CC17
sequence data (n = 229) with publicly available CC17 genomes
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FIGURE 4

Prevalence of CC1, CC8, CC17, CC19, and CC23 clades among GBS isolates by host status. Disease isolates are stratified by disease onset (EOD, early
onset disease; LOD, late onset disease).

(n = 650) (Supplementary Table 3) and reconstructed a time-
calibrated, global CC17 phylogeny (Figure 5). The non-Dutch
CC17 isolates represented 19 countries and most were derived from
disease (83%; Supplementary Table 3).

The global CC17 isolates clustered into the three previously
observed clades: CC17-A, CC17-B, and CC17-C (Figure 5). The
majority of CC17-A isolates were represented by clade CC17-
A1 (45%). The ICESag37 element was identified in 10% of
non-Dutch CC17 genomes and only in isolates belonging to
CC17-A, predominantly in CC17-A2 (63%) but also in CC17-A1
(12%) (Figure 5 and Supplementary Figure 7). The ICESag37-
positive CC17 isolates were globally distributed and clustered
into three distinct sub-clades, indicating multiple independent
acquisition events followed by clonal expansion (Figure 5 and
Supplementary Figure 7). It was estimated that all ICESag37-
positive sub-clades emerged in the 1990s. Based on this dataset,
the first ICESag37 positive CC17 isolates were collected in 2010
in Canada and China, with the first isolation in the Netherlands
in 2011 (Supplementary Figure 8). Regardless of the country of
origin, the majority of globally derived CC17-A2 isolates collected
between 2010 and 2021 were ICESag37 positive (Supplementary
Figure 8). ICESag37 sequence from all globally distributed CC17
isolates shared significant nucleotide identity (93%–100%, median
99.8%) (Supplementary Figure 9).

Discussion

Intrapartum antibiotic prophylaxis currently represents the
main strategy for the prevention of early onset GBS disease. This
prevention strategy assumes an equal risk of neonatal invasive
disease from any identified colonising GBS isolate. However, our
and previous research clearly showed that some GBS genotypes
carry a higher risk of neonatal disease. More studies are needed
to investigate the pathophysiological mechanisms that drive these
differences in invasive potential and evaluate the added value
of GBS genotype determination to more precisely target GBS
prevention. Our work has shown that, in line with previous reports,
CC17-serotype III strains were significantly more common in
disease (Kekic et al., 2021). while serotypes II, IV, V, and CC1 were

associated with maternal carriage. We have also identified variable
prevalence of some lineage-serotype combinations between the two
host groups. This included isolates representing CC24-serotype V
and CC17-serotype IV, which were associated with carriage. This
suggests that the association between CC17 and neonatal disease
is serotype III dependent. Although other serotypes have emerged
within this GBS lineage, they appear less likely to cause neonatal
infection as none of the CC17-serotype IV were observed among
disease isolates in our collection. In contrast, serotype III remained
associated with neonatal disease even after exclusion of all CC17
isolates (P < 0.001).

Our previous work has shown expansion of specific CC17
sub-clades, CC17-A1 and CC17-A2, among isolates from neonatal
invasive disease in the Netherlands, which correlated with a rise in
disease incidence in the country. A matched collection of isolates
from maternal carriage from the Netherlands was not previously
available, which hindered further investigation of the epidemiology
of these clones in a wider GBS population. In this work, we
addressed this data gap and compared the prevalence of different
clades from major CCs, including CC17, between carriage and
disease isolates. Overall, CC17-A1 clade was the most prevalent
sub-lineage among all disease isolates, suggesting an increased
capacity to cause disease. However, although it was considerably
less common among all carriage isolates, the CC17 population
from carriage was dominated by CC17-A1 and CC17-A2 isolates.
This suggests that the previously reported rise in the frequency of
these clusters in GBS from neonatal disease likely reflected their
expansion in the carriage GBS CC17 population, which resulted in
a spillover to invasive GBS population.

We also reported previously and in this work that the
expanding CC17 sub-clades, CC17-A1 and CC17-A2, are
associated with certain MGEs that might contribute to their
prevalence. One is a novel phage, previously termed phiStag1,
which emerged suddenly in the CC17 population around the
mid-1990s (Jamrozy et al., 2020). A recent study has shown that the
phage belongs to a novel group of phages designated streptococcal
mobilisable prophages (SMphages) (Huang et al., 2023). The phage
carries a putative virulence gene, which was termed Alp-P1 and
was shown to promote the adhesion and invasion of bovine and
human cells. These findings further indicate that phiStag1 might
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FIGURE 5

Core genome time-calibrated maximum likelihood phylogeny of
global CC17 GBS isolates. The tree consists of external (n = 650)
and Dutch (n = 229) CC17 GBS genomes. Each tip is annotated with
CC17 clade ID and country of isolation (“Other”: countries
represented by less than 10 isolates). Branches of clusters carrying
ICESag37 are coloured in green.

provide some selective advantage to its host and thus promote
clonal expansion of CC17-A1 and CC17-A2. In our dataset, we
found phiStag1 to be overall more common among disease isolates.
However, among CC17 isolates, the phage was equally distributed
among carriage and disease. Further work is needed to better
understand phiStag1’s role in GBS disease. While it was found
more common in isolates from disease, this was likely driven by its
association with CC17 and the dominance of this lineage within
disease. It remains unclear if presence of this phage contributes
to maternal colonisation, transmission to the infant or neonatal
invasive disease.

We have also observed a high prevalence of the ICESag37
element among CC17 isolates. This MGE confers resistance to
erythromycin, tetracycline and aminoglycosides (Zhou et al., 2017).
It was first identified in the Sag37 strain, which represents ST12. In
our dataset, ICESag37 was most common in CC17 (15%), followed
by CC8 (4%), which includes ST12. Carriage of a MDR ICESag
element, corresponding to ICESag37, has been reported previously
in CC17 (Campisi et al., 2016). Our analysis of a global CC17
phylogeny has confirmed that ICESag37-positive CC17 isolates are

widely distributed and have been found in Asia, Europe, and North
America. We also observed that carriage of this MGE within CC17
is associated mostly with sub-clade CC17-A2. Within the Dutch
GBS collection, CC17-A2 accounted for 87% of all isolates carrying
ICESag37. As such, ICESag37-positive CC17-A2 isolates resistant
to both macrolides and aminoglycosides might pose a clinical threat
due to reduced options for first- and second-line antimicrobial
treatment of GBS infections.

Limitations of our study include a temporal sampling bias, with
disease and carriage isolates collected over different time periods,
with only a 4-year overlap between the two collections (2018–
2021). To account for this, we conducted a parallel analysis of
full and time-matched datasets. While some genotypes showed
statistically significant associations across both datasets, for many
the differences between carriage and disease isolates were no
longer statistically significant in time-matched dataset, which is
likely partly due to much lower disease sample size in the latter.
However, the analysis also showed that the prevalence of AMR
genes was higher in most recently collected disease isolates, which
was associated with increase in frequency of isolates carrying
the ICESag37 element. Finally, the maternal carriage isolates
were recovered from vagina and urine, with the latter potentially
associated with asymptomatic bacteriuria. However, we observed
no variation in genotype distribution between isolates from these
sources suggesting that GBS isolates from urine are acquired from
the rectovaginal site and represent the same GBS population.

Here we report that the previously observed clonal expansion
of CC17-A1 and CC17-A2 clades as well as the emergence of
phiStag1 phage among GBS isolates from neonatal invasive disease
in the Netherlands likely reflect changes in the maternal carriage
population. Overall, our findings reinforce the importance of
comparing GBS isolates from healthy individuals and patients
to identify pathogen genotypes that might be associated with
increased capacity to cause disease. Altogether this will provide
pathogenicity markers that can be targeted in disease prevention
strategies as well as molecular markers for surveillance of high-
risk clones that demonstrate enhanced dissemination across GBS
population irrespective of the host status.
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