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Background: Previous studies have identified a clinical association between gut 
microbiota and Obstructive sleep apnea (OSA), but the potential causal relationship 
between the two has not been determined. Therefore, we aim to utilize Mendelian 
randomization (MR) to investigate the potential causal effects of gut microbiota on 
OSA and the impact of OSA on altering the composition of gut microbiota.

Methods: Bi-directional MR and replicated validation were utilized. Summary-
level genetic data of gut microbiota were derived from the MiBioGen 
consortium and the Dutch Microbiome Project (DMP). Summary statistics of 
OSA were drawn from FinnGen Consortium and Million Veteran Program (MVP). 
Inverse-variance-weighted (IVW), weighted median, MR-Egger, Simple Mode, 
and Weighted Mode methods were used to evaluate the potential causal link 
between gut microbiota and OSA.

Results: We identified potential causal associations between 23 gut microbiota 
and OSA. Among them, genus Eubacterium xylanophilum group (OR  =  0.86; 
p  =  0.00013), Bifidobacterium longum (OR  =  0.90; p  =  0.0090), Parabacteroides 
merdae (OR  =  0.85; p  =  0.00016) retained a strong negative association with OSA 
after the Bonferroni correction. Reverse MR analyses indicated that OSA was 
associated with 20 gut microbiota, among them, a strong inverse association 
between OSA and genus Anaerostipes (beta  =  −0.35; p  =  0.00032) was identified 
after Bonferroni correction.

Conclusion: Our study implicates the potential bi-directional causal effects of 
the gut microbiota on OSA, potentially providing new insights into the prevention 
and treatment of OSA through specific gut microbiota.
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1 Introduction

Obstructive sleep apnea (OSA) is a sleep disorder characterized by repetitive episodes of 
complete or partial upper airway obstruction during sleep, which has emerged as a very relevant 
public health problem. The main symptoms of OSA are disrupted breathing, intermittent 
hypoxia, and frequent awakenings (Ferini-Strambi et  al., 2017; Seda et  al., 2021), typically 
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accompanied by loud snoring, deteriorated sleep quality, excessive 
daytime sleepiness, and reduced concentration. As a highly prevalent 
disease, OSA significantly affects the lives of millions of people each year 
(Wiegand and Zwillich, 1994). It is reported that the occurrence of OSA 
has reached 20–30% in the adult population (Sanchez-de-la-Torre et al., 
2020) and 3–5% within children (Chan et al., 2020). Nowadays, OSA 
brings strict challenges to both individuals and society. In addition to 
deteriorated life quality, patients with OSA may probably suffer from 
mid-term and long-term consequences, including cardiovascular, 
metabolic, cognitive, and cancer-related alterations (Moreno-Indias 
et  al., 2015). What is more, sequelae of OSA will reduce work 
productivity and elevate the risk of motor vehicle accidents (Teran-
Santos et al., 1999), which is harmful to society in the aspects of both 
financial and public safety. Given the ongoing trends in the obesity 
epidemic observed in developed and developing nations, there is an 
anticipation of a further increase in the global number of patients 
afflicted with OSA, primarily due to the strong correlation between 
overweight/obesity and OSA (Lam et al., 2012). However, the current 
diagnosis and therapy strategies for OSA are insufficient. OSA is 
frequently undiagnosed, while the cost resulting from undiagnosed OSA 
was as high as $149.6 billion in the United States. Besides, traditional 
treatments such as continuous positive airway pressure (Munir et al., 
2023) and mandibular advancement devices are plagued by problems 
with adherence (Rotenberg et  al., 2016), following discomfort 
(Dissanayake et al., 2021), and additional risks from invasive procedures 
(Badran et al., 2020). Therefore, it is imperative to investigate the etiology 
of OSA to better prevent its occurrence, make diagnoses in the early 
time, and explore new treatment methods for OSA.

In recent years, the relationship between microbiota composition 
and the pathogenesis of multiple diseases including OSA has attracted 
widespread attention in the academic community (Cai et al., 2021; Guo 
et al., 2023). In the human microbiota community, the predominant 
constitution is gut microbiota, which refers to the whole microbial 
population that colonizes the intestinal tract, including bacteria, 
archaea, viruses, and protozoans (Guo et al., 2023; Munir et al., 2023). 
The gut microbiota is involved in regulating human metabolism and 
immune activity and plays a crucial role in maintaining homeostasis 
(Musso et al., 2010; Maynard et al., 2012; Frosali et al., 2015; Fujisaka 
et al., 2018). Furthermore, increasing evidence suggests that the gut 
microbiota is associated with the onset and progression of many 
diseases, such as metabolic disorders, autoimmune diseases, and 
tumors (De Luca and Shoenfeld, 2019; Scheithauer et al., 2020; Matson 
et al., 2021). With the introduction of the brain-gut axis concept, there 
is increasing interest in the interaction between the gut microbiota and 
OSA. Previous studies have shown that the brain-gut axis may be a 
potential regulatory factor in the interaction between OSA and gut 
microbiota dysbiosis (Han et al., 2022). OSA may influence the gut 

microbiota through disrupted sleep patterns, and gut microbiota 
imbalance, in turn, may affect sleep patterns through changes in 
metabolites, creating a cycle (Munir et al., 2023). Human studies have 
shown that the microbiota composition differs in short sleepers 
compared to those with normal sleep duration. On the other hand, 
mice exhibit abnormal sleep patterns when the gut microbiota is 
depleted due to prolonged treatment with broad-spectrum antibiotics 
(Wang et al., 2022). These previous findings reveal clinical associations 
between the gut microbiota and OSA but still fail to identify the 
potential causality between the two. Traditional observational research 
may hinder the exploration of causal relationships due to its instinct 
bias from the reverse causality or confounders.

Large-scale cohort studies are still needed to establish the 
correlation between OSA and gut microbiota imbalance, as well as to 
determine whether treating OSA can restore the gut microbiota or if 
administering prebiotics and probiotics can treat OSA (Badran et al., 
2020). However, these studies are costly, cumbersome, and difficult to 
control, which have low feasibility. Recently, Mendelian 
Randomization (MR) has been utilized as a novel epidemiology 
strategy to investigate the causal effect of certain factors on the risk of 
disease outcomes. According to the law of independent assortment, 
genetic variants will be randomly assorted to gametes during meiosis. 
MR analysis is a research method that uses this law as a principle to 
simulate randomized controlled trials (RCT) using single nucleotide 
polymorphisms (SNPs) as genetic instrumental variables (IVs) (Luo 
et al., 2023). It can eliminate confounding bias and is advantageous for 
separating the causal pathways of phenotypically grouped risk 
variables that are hard to randomize or susceptible to measurement 
error (Huang et al., 2023). Nowadays, MR approaches have been used 
to identify several risk factors for OSA, such as blood metabolites (Wu 
et al., 2023). Therefore, the MR method is suitable for the exploration 
of the causal relationships between gut microbiota and OSA. In this 
study, we  carried out a bidirectional two-sample MR study to 
comprehensively assess the potential causal effects of the gut 
microbiota on OSA and OSA on altering the composition of gut 
microbiota, thus identifying specific pathogenic or protective bacterial 
taxa and clarifying the interactions between gut microbiota and OSA.

2 Methods

2.1 Study design

The study flow is depicted in Figure  1, illustrating the 
application of the two-sample MR method to evaluate the potential 
causal relationship between gut microbiota composition and 
OSA. Our study is closely adhered to the guideline of reporting 
MR  - MR-STROBE (Supplementary file). In summary level MR 
analysis, SNPs are used as IVs and must satisfy three key 
assumptions of MR analysis (Strausz et al., 2021): (1) the relevance 
assumption, which requires strong correlation between IVs and the 
exposure of interest; (2) the independence assumption, which 
necessitates that IVs are not associated with confounders related to 
the exposure or outcome; and (3) the exclusion assumption, which 
mandates that IVs only affect the outcome through the exposure. 
Adherence to these assumptions is crucial in two-sample MR 
analysis to mitigate potential bias in causal estimates. To study the 
bi-directional causal effects between OSA and gut microbiota, 

Abbreviations: OSA, Obstructive sleep apnea; MR, Mendelian randomization; DMP, 

Dutch microbiome project; MVP, Million veteran program; IVW, Inverse variance 

weighted; RCT, Randomized controlled trials; SNPs, Single nucleotide 

polymorphisms; IVs, Instrumental variables; GWAS, Genome-wide association 

study; ICD, International statistical classification of diseases; AHI, Apnea-hypopnea 

index; BMI-adj, OSA adjusted with body mass index; BMI-unadj, OSA unadjusted 

with body mass index; SCFAs, Short-chain fatty acids; BSCFAs, Branched 

short-chain fatty acids; BCAAs, Branch chain amino acids; BAs, Bile acids; 

D-LA, D-lactic acid.
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we obtained human gut microbiota genetic data at the phylum to 
genus level from the MiBioGen, and then acquired species-level 
summary statistics of gut microbiota from the Dutch Microbiome 
Project (DMP). Summary-level OSA data is obtained from publicly 
available Genome-Wide Association Study (GWAS) provided by the 
FinnGen Consortium and Million Veteran Program (MVP). For 
significant estimates identified in geneus level with data from 
MiBioGen, we performed species level MR using data from the 
DMP. The potential causality of gut microbiota and OSA was 
calculated using statistical methods including Inverse Variance 
Weighted (IVW), MR Egger, Weighted Median, Simple Mode, and 
Weighted Mode. Among these methods, IVW is considered the 
primary approach. In order to reduce the risk of Type I  errors, 
we apply Bonferroni correction to all positive results.

2.2 Data sources

We used a published GWAS summary statistics from FinnGen 
Study that contained 217,955 healthy individuals and 16,761 patients 
with OSA from European (Sofer et al., 2023). In this GWAS, OSA 
diagnosis relied on International Statistical Classification of Diseases 
(ICD) codes (ICD-10: G47.3, ICD-9: 3472A), which were derived 

from subjective symptoms, clinical examination, and sleep records 
(AHI ≥ 5 or respiratory event index ≥ 5).

We used another published GWAS summary statistics of OSA 
from the VA MVP, with N = 568,576. The overall OSA prevalence is 
21.3%. The average age of the participants is 64 years (standard 
deviation of 15 years), and 91.3% of the participants are male. The 
analysis considered BMI and stratified the population by gender and 
approximate ethnicity and race, while prioritizing genetic similarity 
(Lopera-Maya et al., 2022). In our analysis, we used both OSA and 
BMI-adjusted OSA summary data.

A large-scale association study on genetic variants of the gut 
microbiota was conducted across 24 cohorts, involving a total of 
18,340 participants from diverse populations in Canada, the 
United  States, Israel, South Korea, Denmark, Germany, the 
Netherlands, Belgium, Sweden, the United Kingdom, Finland, and 
Denmark. The majority of the subjects (16 cohorts, N = 13,266) were 
of European ancestry, with 17 cohorts (n = 13,804) having participants 
with mean ages ranging between 50 and 62. The microbiome 
quantitative trait locus mapping study for each cohort focused on taxa 
present in more than 10% of the samples, totaling 211 taxa (131 
genera, 35 families, 20 orders, 16 classes, and nine phyla). The analysis 
of binary trait locus mapping encompassed taxa comprising 10–90% 
of the included samples, resulting in 196 taxa being included in the 

FIGURE 1

Study design. An overview of the study design. MR, Mendelian randomization; OSA, Obstructive sleep apnea; BMI-adj, OSA adjusted with body mass 
index; BMI-unadj, OSA unadjusted with body mass index; SNP, single nucleotide polymorphism; IVW, Inverse-variance weighted; GWAS, Genome-wide 
association study.
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analysis after excluding 15 taxa that could not be definitively classified 
and named.

For the analysis at the species level, we utilized an another GWAS 
dataset from the DMP, which comprised 7,738 participants. The 
microbiota data of these participants were subjected to quality control 
procedures with LifeLines (Kurilshikov et al., 2021). Among the DMP 
members, 58.1% were women, and their ages spanned from 8 to 84 
years, with a mean age of 48.5 years.

No additional ethics approval or informed consent was required 
due to our study was based on public databases.

2.3 Instruments variables selection

In the investigation of the link between the microbiota and OSA 
using MR, two thresholds were applied to select the IVs. In order to 
ensure the genetic variations representing the microbiota trait were 
sufficiently strong, a locus-wide significance threshold of p = 1 × 10–5 
was chosen, which is commonly used in previous microbiota MR 
analyses (Purcell et  al., 2007). The IVs were also clustered for 
independence using PLINK in the two-sample MR tool (Peloso et al., 
2021) and the 1,000 Genomes European data as the reference panel, 
with a looser cutoff of R2 < 0.001 and a clumping window of 10,000 kb.

Sofer et al. (2023) identified 24 top variants associated with OSA 
in multi-ethnic analysis (sex combined) in BMI-adj (OSA adjusted 
with BMI) and BMI-unadj (OSA unadjusted with BMI) analyses, 
which thorough details were provided elsewhere (Hunter-Zinck et al., 
2020), and performed association analyses using PLINK v2.00a3LM 
(Chang et al., 2015). To ensure that the genetic variants representing 
OSA are sufficiently strong, they chose a genome-wide significance 
threshold of p < 1 × 10–8. Clumping was performed with parameters of 
1,000 Kbp and R2 = 0.1 to define the top hits, using MVP multi-
population genotypes as a reference panel.

2.4 Mendelian randomization analysis

In this study, we employed the IVW method as the primary 
analysis to initially assess the potential causal effects of each 
phenotype on OSA risk. IVW is a meta-analysis of the variant 
specific Wald ratios for each variant. One important assumption 
for IVW estimation is that the genetic variants are independent of 
each other (Pierce and Burgess, 2013). And the procedure of IV 
selection has ensured this assumption. Additionally, we conducted 
robustness validation using the weighted median, MR-Egger, 
Simple Mode, and Weighted Mode analysis. Weighted median, a 
method for Mendelian randomization using summary data that 
offers protection against invalid instruments. This approach can 
provide a consistent estimate of the causal effect even when up to 
50% of the information contributing to the analysis comes from 
genetic variants that are invalid IVs. In a simulation analysis, it is 
shown to have better finite-sample Type 1 error rates than the 
inverse-variance weighted method (Bowden et  al., 2016). 
MR-Egger can detect some violations of the standard instrumental 
variable assumptions, and provide an effect estimate which is not 
subject to these violations. The approach can used as a sensitivity 
analysis for assessing whether the effect estimation in a Mendelian 
randomization analysis is influenced by directional pleiotropic 

effects of the genetic variants (Bowden et al., 2015). Simple mode 
is a model-based assessment approach that offers pleiotropy 
robustness (Yang et al., 2023). Weighted Mode can obtain robust 
causal effect estimates for horizontal pleiotropy, it requires that 
the most common causal effect estimate is a consistent estimate of 
the true causal effect and presents less bias and lower type-I error 
rates than other methods under the null in many situations 
(Hartwig et  al., 2017). The results from these methods 
complemented those estimated by the IVW method. In cases 
where the causal effects estimated by the five methods were 
inconsistent for a specific phenotype, a more stringent genome-
wide significance threshold was applied to reselect the IVs and 
recalculate the causal effects (Chen et  al., 2021). If the causal 
estimates of more than three MR methods were nominally 
significant, gut microbiota taxa could be  considered to have 
potential causal effects on OSA.

As for sensitivity analysis, we assessed potential heterogeneity 
using Cochran’s Q statistics and estimated horizontal pleiotropy 
through the MR-Egger intercept test.

2.5 Statistical analysis

We applied Bonferroni correction to establish significance 
thresholds for the primary MR results at each taxonomic level 
(phylum, class, order, family, and genus). For a given feature level 
containing n bacterial taxa, the Bonferroni-corrected significance 
threshold was set at 0.05/n. For instance, in the case of the phylum-
level MR results, with nine taxa included, the Bonferroni-corrected 
threshold for the p-value was 0.05/9 (5.56 × 10–3). Similarly, for the 
MR results at the class, order, family, and genus levels, the 
Bonferroni-corrected thresholds for the p-value were 3.13 × 10–3, 
2.5 × 10–3, 1.56 × 10–3, and 4.20 × 10–4, respectively. Regarding 
Bonferroni-correction at the species level, based on its bacterial 
taxonomic groups, n species were identified with Bonferroni-
corrected p-values of 0.05/n. MR results with p-values lower than 
the Bonferroni-corrected threshold were considered significant. 
Additionally, MR estimates with p < 0.05 were considered nominally 
significant. All p-values for other test reports in this study were 
two-tailed, and a p < 0.05 was considered to indicate a 
significant difference.

The analyses described above were primarily conducted using the 
Two-Sample-MR package (version 0.5.5) within the R software 
(version 4.0.2).

3 Results

3.1 Overview

For 196 taxa in the MiBioGen consortium, the genetic variants 
used as IVs for each taxon exposure ranged from 3 to 20 SNPs. For 
101 species in the DMP, the genetic variants used as IVs for each 
species exposure ranged from 3 to 17 SNPs. Additionally, we identified 
3–12 SNPs as IVs for OSA (BMI-adj and BMI-unadj) in MVP 
(p < 5 × 10–8). The F statistics of all retained SNPs were over 10, 
indicating sufficient correlation strength between IVs and exposure. 
See Supplementary Tables S1–S3 for the final list of retained SNPs.
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3.2 Forward MR

In the forward MR, we used genetic data of the gut microbiota as 
the exposure and genetic data of OSA from the FinnGen Consortium 
as the outcome (Supplementary Table S4). Based on IVW analysis, 
we  identified 15 microbial taxa in the MiBioGen consortium that 
potentially had a causal relationship with OSA (Figure 2; Table 1). On 
the one hand, genus Eubacterium xylanophilum group [IVW OR = 0.86; 
95% CI (0.79–0.93); p = 0.00013], genus Eggerthella [IVW OR = 0.93; 
95% CI (0.88–0.98); p = 0.006], family Bifidobacteriaceae [IVW 
OR = 0.88; 95% CI (0.80–0.97); p = 0.012], order Bifidobacteriales [IVW 
OR = 0.88; 95% CI (0.80–0.97); p = 0.012], family Ruminococcaceae 

[IVW OR = 0.90; 95% CI (0.83–0.98); p = 0.013], phylum Proteobacteria 
[IVW OR = 0.91; 95% CI (0.83–0.99); p = 0.021], phylum Bacteroidetes 
[IVW OR = 0.91; 95% CI (0.82–0.99); p = 0.037], genus 
Enterorhabdus [IVW OR = 0.92; 95% CI (0.85–1.00); p = 0.04], genus 
unknowngenus [IVW OR = 0.93; 95% CI (0.86–1.00); p = 0.043], genus 
Anaerotruncusshowed [IVW OR = 0.92; 95% CI (0.84–1.0); p = 0.046], 
genus Blautia [IVW OR = 0.91; 95% CI (0.82–1.00); p = 0.048] were 
negatively correlated with OSA. On the other hand, genus Allisonella 
[IVW OR = 1.08; 95% CI (1.03–1.13); p = 0.00096], genus Butyricimonas 
[IVW OR = 1.08; 95% CI (1.01–1.16); p = 0.03], genus 
RuminococcaceaeUCG009 [IVW OR = 1.06; 95% CI (1.0–1.13); 
p = 0.038], genus Oxalobacter [IVW OR = 1.046; 95% CI (1.001–1.094); 

FIGURE 2

Mendelian randomization revealing causal effect from gut microbiome (MiBioGen) on OSA. From the outer to inner, cells represent p-values of IVW, 
MR-Egger, weighted median, weighted mode, simple mode. The redder, the smaller p-value was.
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p = 0.046] were positively correlated with OSA (Table 1). In order to 
further elucidate the causal relationship between gut microbiota and 
OSA at the species level (Supplementary Table S5), we used the positive 
results mentioned above as a preliminary condition and identified eight 
species-level microorganisms with a causal relationship with OSA in 
the DMP (Table  1). The results are as follows, s_Bifidobacterium_
longum [IVW OR = 0.902; 95% CI (0.834–0.9745); 
p = 0.00903], s_Faecalibacterium_prausnitzii [IVW OR = 0.92297; 95% 
CI (0.85801–0.99284); p = 0.03131], s_Desulfovibrio_piger [IVW 
OR = 0.9278; 95% CI (0.8753–0.98345); p = 0.01168], s_Bacteroides_
salyersiae [IVW OR = 0.96517; 95% CI (0.93429–0.99706); p = 0.03258], 
s_Parabacteroides_merdae [IVW OR = 0.84572; 95% CI (0.77524–
0.92262); p = 0.00016] were related to a reduced risk of OSA (p < 0.05); 
whereas s_Bilophila_wadsworthia [IVW OR = 1.07819; 95% CI 
(1.0104–1.15052); p = 0.02306], s_Bacteroides_coprocola [IVW 
OR = 1.06261; 95% CI (1.01962–1.10741); p = 0.00395], s_Alistipes_
senegalensis [IVW OR = 1.07075; 95% CI (1.01565–1.12883); 
p = 0.01119] were correlated with increased OSA risk (p < 0.05) 
(Table  1). Among them, genus Eubacterium xylanophilum group, 
s_Parabacteroides merdae, and s_Bifidobacterium longum were found 
to be significantly associated with OSA after Bonferroni-correction, 
while the rest were nominally significant. The weighted median analysis 
showed similar results in the potential causal associations between the 
genus Eubacterium xylanophilum group, genus Allisonella, genus 
Eggerthella, genus unknown genus, s_Bacteroides coprocola, 

s_Parabacteroides merdae, s_Alistipes senegalensis and 
OSA. We conducted an analysis on pleiotropy (Supplementary Table S6) 
and heterogeneity (Supplementary Table S7). Analysis of MR-Egger 
intercepts revealed no indication of pleiotropy (P Intercept > 0.05). 
According to Cochran’s Q statistic, there was no evidence of 
heterogeneity across instrument effects (Cochran’s QIVW > 0.05) 
except family Bifidobacteriaceae, order Bifidobacteriales, s_
Bifidobacterium_longum (Table 2).

3.3 Reverse MR

In the reverse MR (Supplementary Tables S8, S9), we found causal 
relationships between BMI-adj OSA and the abundance of microbiota 
of 2 family, 6 genus, and 1 species. Family Prevotellaceae [IVW 
beta = 0.3552; 95% CI (0.0316 to 0.6789); p = 0.02574], family 
Peptostreptococcaceae [IVW beta = 0.4431; 95% CI (0.0123 to 0.8740); 
p = 0.04380], genus Ruminococcaceae UCG004 [IVW beta = 0.5083; 95% 
CI (0.1061 to 0.9106); p = 0.01325] and genus Paraprevotella [IVW 
beta = 0.5315; 95% CI (0.0644 to 0.9986); p = 0.02574] were positively 
correlated with OSA. However, genus Phascolarctobacterium [IVW 
beta = −0.5114; 95% CI (−0.9359 to − 0.0869); p = 0.01822]. genus 
Anaerostipes [IVW beta = −0.3384; 95% CI (−0.6448 to − 0.0321); 
p = 0.03038]. genus Lachnospiraceae UCG010 [IVW beta = −0.3821; 95% 
CI (−0.7415 to − 0.0226); p = 0.03721]. genus Oxalobacter [IVW 

TABLE 1 Significant and nominal significant forward MR results.

Exposure Method p-value OR 95% CI

genus.Eubacterium xylanophilum group Inverse variance weighted 0.0001* 0.86 0.79–0.93

genus.Allisonella Inverse variance weighted 0.0010 1.08 1.03–1.13

genus.Eggerthella Inverse variance weighted 0.0060 0.93 0.88–0.98

family.Bifidobacteriaceae Inverse variance weighted 0.0120 0.88 0.80–0.97

order.Bifidobacteriales Inverse variance weighted 0.0120 0.88 0.80–0.97

family.Ruminococcaceae Inverse variance weighted 0.0134 0.90 0.83–0.98

phylum.Proteobacteria Inverse variance weighted 0.0211 0.91 0.83–0.99

genus.Butyricimonas Inverse variance weighted 0.0305 1.08 1.01–1.16

phylum.Bacteroidetes Inverse variance weighted 0.0369 0.91 0.82–0.99

genus.RuminococcaceaeUCG009 Inverse variance weighted 0.0378 1.06 1.00–1.13

genus.Enterorhabdus Inverse variance weighted 0.0397 0.92 0.85–1.00

genus.unknowngenus Inverse variance weighted 0.0426 0.93 0.86–1.00

genus.Oxalobacter Inverse variance weighted 0.0457 1.05 1.00–1.09

genus.Anaerotruncus Inverse variance weighted 0.0458 0.92 0.84–1.00

genus.Blautia Inverse variance weighted 0.0485 0.91 0.82–1.00

s_Bifidobacterium_longum Inverse variance weighted 0.0090* 0.90 0.83–0.97

s_Faecalibacterium_prausnitzii Inverse variance weighted 0.0313 0.92 0.86–0.99

s_Bilophila_wadsworthia Inverse variance weighted 0.0231 1.08 1.01–1.15

s_Desulfovibrio_piger Inverse variance weighted 0.0117 0.93 0.88–0.98

s_Bacteroides_coprocola Inverse variance weighted 0.0040 1.06 1.02–1.11

s_Bacteroides_salyersiae Inverse variance weighted 0.0326 0.97 0.93–1.00

s_Parabacteroides_merdae Inverse variance weighted 0.0002* 0.85 0.78–0.92

s_Alistipes_senegalensis Inverse variance weighted 0.0112 1.07 1.02–1.13

*Represents that the p-value meets the Bonferroni-corrected significance threshold. OR, odds ratio; CI, confidence interval.
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TABLE 2 Sensitivity analysis for significant and nominal significant estimates.

Outcome Exposure P-value of Egger 
intercept

p-value of Cochran’s Q 
test

OSA genus.Eubacterium xylanophilum group 0.110 0.603

OSA genus.Allisonella 0.897 0.946

OSA genus.Eggerthella 0.893 0.933

OSA family.Bifidobacteriaceae 0.163 0.044

OSA order.Bifidobacteriales 0.163 0.044

OSA family.Ruminococcaceae 0.991 0.646

OSA phylum.Proteobacteria 0.799 0.786

OSA genus.Butyricimonas 0.863 0.519

OSA phylum.Bacteroidetes 0.654 0.668

OSA genus.RuminococcaceaeUCG009 0.726 0.576

OSA genus.Enterorhabdus 0.508 0.707

OSA genus.unknowngenus 0.304 0.256

OSA genus.Oxalobacter 0.650 0.769

OSA genus.Anaerotruncus 0.074 0.328

OSA genus.Blautia 0.299 0.240

OSA s_Bifidobacterium_longum 0.609 0.018

OSA s_Faecalibacterium_prausnitzii 0.747 0.779

OSA s_Bilophila_wadsworthia 0.377 0.617

OSA s_Desulfovibrio_piger 0.917 0.202

OSA s_Bacteroides_coprocola 0.908 0.995

OSA s_Bacteroides_salyersiae 0.544 0.103

OSA s_Parabacteroides_merdae 0.486 0.448

OSA s_Alistipes_senegalensis 0.270 0.487

genus Ruminococcaceae UCG004 BMI 0.261 0.695

genus Phascolarctobacterium BMI 0.630 0.274

genus Paraprevotella BMI 0.609 0.819

genus Anaerostipes BMI 0.728 0.395

family Prevotellaceae BMI 0.767 0.984

genus Lachnospiraceae UCG010 BMI 0.210 0.355

genus Oxalobacter BMI 0.350 0.493

family Peptostreptococcaceae BMI 0.965 0.104

genus Anaerostipes unBMI 0.738 0.801

genus Methanobrevibacter unBMI 0.844 0.423

genus Slackia unBMI 0.804 0.851

genus Eubacterium rectale group unBMI 0.126 0.664

class Methanobacteria unBMI 0.894 0.313

family Methanobacteriaceae unBMI 0.894 0.313

order Methanobacteriales unBMI 0.894 0.313

genus Intestinimonas unBMI 0.549 0.928

family Lactobacillaceae unBMI 0.028 0.302

genus Clostridium innocuum group unBMI 0.317 0.554

s_Prevotella_copri BMI 0.824 0.826

s_Eubacterium_rectale unBMI 0.933 0.957
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beta = −0.5927; 95% CI (−1.1687 to − 0.0168); p = 0.04369]. s_
Prevotella_copri [IVW beta = −0.5861; 95% CI (−1.0892 to − 0.0830); 
p = 0.02239] was negatively correlated with OSA (Table 3). BMI-unadj 
OSA was causally related to the abundance of microbiota of one class, 
one order, two family, seven genus, and one species. To be detailed, OSA 
was negatively correlated with the genus Anaerostipes [IVW 
beta = −0.3539; 95% CI (−0.5466 to −0.1611); p = 0.000319], genus 
Methanobrevibacter [IVW beta = −0.6863; 95% CI (−1.1242 to 
−0.2483); p = 0.00213], genus Slackia [IVW beta = −0.4422; 95% CI 
(−0.7764 to −0.1080); p = 0.0095], class Methanobacteria [IVW 
beta = −0.5569; 95% CI (−1.0173 to −0.0966); p = 0.0177], family 
Methanobacteriaceae [IVW beta = −0.5569; 95% CI (−1.0173 to 
−0.0966); p = 0.0177], order Methanobacteriales [IVW beta = −0.5569; 
95% CI (−1.0173 to −0.0966); p = 0.0177], genus Intestinimonas [IVW 
beta = −0.2610; 95% CI (−0.4893 to −0.0327); p = 0.0250], genus 
Clostridium innocuum group [IVW beta = −0.4180; 95% CI (−0.8204 to 
−0.0156); p = 0.0417], genus Erysipelatoclostridium [IVW beta = −0.2536; 
95% CI (−0.5055 to −0.0017); p = 0.048456], and s_Eubacterium_rectale 
[IVW beta = −0.3969; 95% CI (−0.7157 to −0.07815); p = 0.01467]. On 
the contrary, OSA was positively correlated with the genus Eubacterium 
rectale group [IVW beta = 0.2381; 95% CI (0.0479–0.4283); p = 0.0141], 
and family Lactobacillaceae [IVW beta = 0.3634; 95% CI (0.03996–
0.6868); p = 0.02765] (Table 3). The weighted median showed similar 
results in the potential causal association analysis of OSA with genus 
Ruminococcaceae UCG004, genus Phascolarctobacterium, genus 
Anaerostipes, genus Lachnospiraceae UCG010, family 
Peptostreptococcaceae, genus Anaerostipes, genus Slackia, genus 

Eubacterium rectale group. We conducted an analysis on pleiotropy 
(Supplementary Table S10) and heterogeneity 
(Supplementary Table S11). The MR-Egger intercept analysis indicates 
that, except for family Lactobacillaceae, all other positive results show no 
pleiotropy (P Intercept > 0.05). Meanwhile, Cochran’s Q statistic shows 
that all positive results exhibit no heterogeneity (Cochran’s 
QIVW > 0.05) (Table 2).

4 Discussion

OSA is a widespread condition that significantly impacts 
individuals’ daily lives, posing risks to personal health and societal 
safety. Besides, recent research underscores the role of gut microbiota 
in the pathogenesis of various diseases. Meanwhile, the composition 
of gut microbiota is also suggested to be altered by several diseases, 
which may in turn influence the development of other conditions. 
Thus, identifying the bidirectional connections between gut 
microbiota and OSA is valuable for the management of both OSA and 
systemic conditions related to gut microbiota. Although some 
observational studies discover clinical relationships between OSA and 
gut microbiota, it is still unknown whether these links are potentially 
causal. In addition, the instinctive drawbacks of traditional 
observational research including reverse causality and bias from 
confounder factors lead to the failure to deduce the causal effects of 
risk factors on certain diseases. To address these issues, in this study, 
we  utilized genetic variations as a proxy to reveal the causal 

TABLE 3 Significant and nominal significant reverse MR results.

Outcome Exposure Method Beta p-value 95% CI

genus Ruminococcaceae UCG004 BMI Inverse variance weighted 0.51 0.013 0.11–0.91

genus Phascolarctobacterium BMI Inverse variance weighted −0.51 0.018 −0.94–0.09

genus Paraprevotella BMI Inverse variance weighted 0.53 0.026 0.06–1.00

genus Anaerostipes BMI Inverse variance weighted −0.34 0.030 −0.64–0.03

family Prevotellaceae BMI Inverse variance weighted 0.36 0.031 0.03–0.68

genus Lachnospiraceae UCG010 BMI Inverse variance weighted −0.38 0.037 −0.74–0.02

genus Oxalobacter BMI Inverse variance weighted −0.59 0.044 −1.17–0.02

family Peptostreptococcaceae BMI Inverse variance weighted 0.44 0.044 0.01–0.87

genus Anaerostipes unBMI Inverse variance weighted −0.35 0.0003* −0.55–0.16

genus Methanobrevibacter unBMI Inverse variance weighted −0.69 0.002 −1.12–0.25

genus Slackia unBMI Inverse variance weighted −0.44 0.009 −0.78–0.11

genus Eubacterium rectale group unBMI Inverse variance weighted 0.24 0.014 0.05–0.43

class Methanobacteria unBMI Inverse variance weighted −0.56 0.018 −1.02–0.10

family Methanobacteriaceae unBMI Inverse variance weighted −0.56 0.018 −1.02–0.10

order Methanobacteriales unBMI Inverse variance weighted −0.56 0.018 −1.02–0.10

genus Intestinimonas unBMI Inverse variance weighted −0.26 0.025 −0.49–0.03

family Lactobacillaceae unBMI Inverse variance weighted 0.36 0.028 0.04–0.69

genus Clostridium innocuum group unBMI Inverse variance weighted −0.42 0.042 −0.82–0.02

genus Erysipelatoclostridium unBMI Inverse variance weighted −0.25 0.048 −0.51–0.00

s_Prevotella_copri BMI Inverse variance weighted −0.59 0.022 −1.09–0.08

s_Eubacterium_rectale unBMI Inverse variance weighted −0.40 0.015 −0.72–0.08

*Represents that the p-value meets the Bonferroni-corrected significance threshold. OR, odds ratio; CI, confidence interval.
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relationship between gut microbiota and OSA. To our knowledge, this 
is the first MR study to elucidate their bidirectional causal relationships 
at the species level. To strengthen the reliability of the results, 
we utilized two gut microbiota datasets and two OSA datasets that 
were independent of each other for MR analyses. In the forward MR 
analysis, we first identified gut microbiota at the phylum, order, family, 
and genus levels associated with OSA. We found that an increase in 
the abundance of gut microbiota at six genus levels, two family levels, 
two phylum levels, and one order level is associated with a reduced 
risk of OSA, while an increase in the abundance of gut microbiota at 
four genus levels is associated with an increased risk of 
OSA. Subsequently, we determined the causal relationship between 
species-level gut microbiota and OSA. Building on the aforementioned 
results, we found that an increase in the abundance of five gut bacterial 
taxa is associated with a reduced risk of OSA, whereas an increase in 
the abundance of 3 gut bacterial taxa is associated with an 
increased risk of OSA. Notably, after Bonferroni-correction, 
we  discovered a significant causal relationship between the 
genus Eubacterium xylanophilum group, s_Parabacteroides_merdae, 
and s_Bifidobacterium_longum and the risk of OSA.

The mechanism of how the Parabacteroides merdae and 
Bifidobacterium longum affect OSA may be associated with obesity. 
Obesity is demonstrated to be a risk factor for OSA. Among patients 
already diagnosed with OSA, a 10% weight gain predicted an 
approximately 32% increase in the AHI, while a 10% weight loss 
predicted a 26% decrease in AHI (Murugan and Sharma, 2008). In a 
4-year follow-up cohort study, it was found that among initially 
non-OSA participants, the risk of developing OSA increased sixfold 
after a 10% weight gain (Murugan and Sharma, 2008). Obesity can 
lead to increased pressure on the chest and diaphragm muscles, 
making it harder for the respiratory muscles to work. In an animal 
experiment, Parabacteroides merdae reduced the weight gain induced 
by a high-fat diet in mice by 27% (Qiao et al., 2022). Parabacteroides 
merdae is positively correlated with the levels of short-chain fatty acids 
(SCFAs) in the cecum, including acetic acid, propionic acid, and 
butyric acid (Ridaura et al., 2013), which can inhibit weight gain by 
modulating food intake, physical activity, heart rate, and oxygen 
assumptions (Yamashita et al., 2009; Lin et al., 2012). What is more, it 
was found that the feces of mice treated with Parabacteroides merdae 
contained branched short-chain fatty acids (BSCFAs) derived entirely 
from branch chain amino acids (BCAAs) (Leucine, isoleucine, and 
valine) (Qiao et al., 2022), demonstrating the ability of Parabacteroides 
merdae to regulate the degradation of BCAAs in the gut (Qiao et al., 
2022). Another experiment showed that obesity-related bacteria 
exhibited higher BCAAs synthesis rates and lower BCAAs degradation 
rates (Ridaura et  al., 2013). Compared to children without OSA, 
children with OSA have significantly higher levels of BCAAs (Barcelo 
et  al., 2017), which is in line with our results. In terms of 
Bifidobacterium longum strains, an animal experiment found that 
levels of SCFAs such as acetate, propionate, and butyrate in the feces 
increased after oral administration of Bifidobacterium longum (Gao 
et al., 2023). The study by Rahman et al. (2021) demonstrated that 
supplementation with Bifidobacterium longum subspecies infantis 
YB0411 significantly reduced body weight and fat accumulation in 
high-fat diet-induced obese mice. The positive anti-obesity effect of 
Bifidobacterium longum APC1472 strain in high-fat diet-induced 
obese mice, as well as the partial transformation of these positive 
effects of Bifidobacterium longum APC1472 supplementation in other 

healthy overweight and obese individuals (Schellekens et al., 2021). 
Likewise，Bifidobacterium longum subspecies infantis produces 
SCFAs through the metabolism of Human Milk Oligosaccharides 
(Chichlowski et al., 2020). Therefore, Parabacteroides_merdae and 
Bifidobacterium_longum may inhibit weight gain and reduce the risk 
of developing OSA.

In our research, we have also identified that the genus Eubacterium 
xylanophilum group is a protective factor against OSA. This genus is 
significantly associated with the synthesis of secondary bile acids 
(BAs) (Liu et al., 2022). BA metabolites have been shown to influence 
sleep regulatory centers and circadian rhythms (Yang and Zhang, 
2020), thereby impacting human sleep quality and health. Additionally, 
animal experiments conducted by Ferrell and Chiang (2015) 
demonstrated that even short-term circadian disruption (no more 
than 5 days) substantially altered the expression of hepatic clock genes 
and BA metabolism. Furthermore, Kanemitsu et al. (2017) found that 
specific BAs block the activation of circadian transcription factors and 
the nuclear receptor peroxisome proliferator-activated receptor. It has 
been observed in animal models that chronic intermittent hypoxia 
disrupts BA metabolism (Zhang et al., 2022). On the other hand, the 
genus Eubacterium xylanophilum ferments complex phytochemicals 
to produce SCFAs including butyrate (Duncan et al., 2016). Butyrate 
has been found to be antiobesogenic in human studies (Chakraborti, 
2015). The genus Eubacterium xylanophilum group is negatively 
associated with the energy-adjusted dietary inflammatory index score 
and is correlated with higher visceral adipose tissue (Lozano 
et al., 2022).

Many previous studies have shown changes in the gut microbiota 
of OSA patients (Tang et al., 2022; Wang et al., 2022; Zhang et al., 2022). 
So, we also conducted a reverse MR analysis to explore the changes in 
the microbiota of OSA patients. The reverse MR analysis showed that 
OSA was associated with 19 microbial taxa (eight BMI-adj, 11 
BMI-unadj) and two microbial species (one BMI-adj, one BMI-unadj). 
OSA was significantly negatively correlated with the genus 
Anaerostipes. Further comparison of the results of forward and reverse 
MR analyses revealed that OSA had a self-limiting effect on the genus 
Oxalobacter. Li et al. (2023) used a prospective case–control study to 
examine the fecal microbiota composition of 48 subjects (by 16S rDNA 
gene amplification and sequencing) and found that the microbiota of 
patients with severe OSA was decreased with Anaerostipes. This is 
consistent with our research findings. OSA have been well described, 
such as circulating blood D-lactic acid (D-LA) protein are increased 
(Barcelo et  al., 2016). D-LA is the product of the fermentation of 
gastrointestinal bacteria and serves as an indicator of bacterial 
translocation, intestinal injury, and intestinal permeability (Clausen 
et al., 1991; Heizati et al., 2017). The levels of D-LA are negatively 
correlated with Anaerostipes (Li et  al., 2023). Dysfunction of the 
intestinal barrier function is associated with bacterial dysbiosis in OSA.

The gut microbiome is primarily constituted of bacteria, but it 
also includes archaea, viruses, fungi, and protists. Most research has 
focused on bacteria, while other microbiome such as viruses, archaea, 
fungi, and protists are often overlooked. The composition of the 
neglected microbial community differs not only in their average 
estimated physical size but also in their absolute abundance in the 
gut. They contribute significantly to general gut metabolism, gut 
homeostasis, and provide protection from pathogenic infections. This 
study primarily elucidates the causal relationship between gut 
bacteria and OSA, but archaea, viruses, fungi, protists, and their 
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metabolites may also exert certain influences. To fully understand the 
interactions between the gut microbiome and OSA, future research 
needs to be  more inclusive, addressing multiple microbial 
components simultaneously.

This is the first two-sample MR method to study the association 
between gut microbiota and OSA, which has the following 
advantages. Firstly, according to Mendel’s law of inheritance, alleles 
are randomly allocated in offspring, similar to randomization in a 
randomized controlled trial (Zheng et  al., 2017). In addition, 
genotypes are fixed at conception and are not influenced by the 
disease (Zheng et al., 2017). Therefore, causal inference is less likely 
to be  influenced by reverse causation and confounding factors. 
Secondly, two-sample MR is based on publicly available large-scale 
GWAS summary-level data, requiring no additional experimental 
costs. Thirdly, potential causal associations determined by the IVW 
method may provide candidate bacterial taxa for future functional 
studies on the mechanisms underlying the association between gut 
microbiota and OSA. This study has some limitations. Firstly, in the 
forward MR analysis, the focus was primarily on populations of 
European ancestry, which may limit the generalizability of the 
results to other populations. In the reverse MR analysis, although 
the majority of individuals were of European and North American 
ancestry, the inevitable inclusion of mixed-race individuals may 
introduce bias in the results. Secondly, this MR analysis of the 
association between gut microbiota and OSA does not explain its 
mechanisms. Thirdly, in our study, we  utilized the summary 
statistics published and we could not adjust the rules for participate 
and exclusion. Therefore, infection and other disease might induce 
bias to our analysis. Finally, as the instrumental variables were 
derived from GWAS meta-analyses, we  were unable to explore 
stratification effects and other non-linear relationships. While 
observational studies have not yet concluded whether the impact of 
gut microbiota on OSA risk is linear, the possibility of non-linear 
models cannot be  ruled out. In the future, it is anticipated that 
individual-level GWAS data will be used for non-linear MR studies 
(Staley and Burgess, 2017), to further explore the non-linear 
relationship between gut microbiota and OSA. Despite these 
potential limitations, we confirmed the robustness of our causal 
estimates through a series of sensitivity analyses, indicating that this 
study accurately reflects the strong association between gut 
microbiota and the risk of OSA.

5 Conclusion

In this study, we utilized bidirectional MR to reveal the causal 
relationship between gut microbiota and OSA. We found that an 
increase in the abundance of gut microbiota at six genus levels, two 
family levels, two phylum levels, and one order level is associated 
with a reduced risk of OSA, while an increase in the abundance of 
gut microbiota at 4 genus levels is associated with an increased risk 
of OSA. Subsequently, we found that an increase in the abundance 
of five gut bacterial taxa is associated with a reduced risk of OSA, 
whereas an increase in the abundance of three gut bacterial taxa is 
associated with an increased risk of OSA. Our study implicates the 
potential causal effects of the gut microbiota on OSA and OSA on 
altering the composition of gut microbiota, potentially providing 

new insights into the prevention and treatment of OSA through 
specific gut microbiota.
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