AUTHOR=Lv Hongling , Zhang Wenjia , Zhao Zhu , Wei Yingpu , Bao Zhengyilin , Li Yizheng , Hu Zhulin , Deng Deyao , Yuan Wenli TITLE=The impact of oxygen content on Staphylococcus epidermidis pathogenesis in ocular infection based on clinical characteristics, transcriptome and metabolome analysis JOURNAL=Frontiers in Microbiology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1409597 DOI=10.3389/fmicb.2024.1409597 ISSN=1664-302X ABSTRACT=Introduction

This study aims to delineate the etiology and prevalence of isolated pathogens, along with the clinical characteristics of endophthalmitis patients over a 9-year period at hospital in Southwest of China. Additionally, we investigating the metabolic and cellular processes related to environmental factors may offer novel insights into endophthalmitis.

Methods

We analyzed data pertaining to endophthalmitis patients treated at the Affiliated Hospital of Yunnan University from 2015 to 2023. According to our clinical data, we conducted an experiment based on transcriptomics and metabolomics analysis to verify whether environmental factors affect behavior of S. epidermidis by culturating S. epidermidis under oxic and microoxic condition.

Results

In this study, 2,712 fungi or bacteria strains have been analyzed, gram-positive bacteria constituted 65.08%, with S. epidermidis being the most predominant species (25.55%). Ophthalmic trauma was the primary pathogenic factor for S. epidermidis ocular infections. Regarding fluoroquinolones, S. epidermidis exhibited the higher resistance rate to levofloxacin than moxifloxacin. Moreover, our investigation revealed that S. epidermidis in microoxic environment increase in energy metabolism, amino acid metabolism, and membrane transport.

Conclusion

Our findings underscore the significance of S. epidermidis as a crucial pathogen responsible for infectious endophthalmitis. It is crucial to exercise vigilance when considering Levofloxacin as the first-line drug for empiric endophthalmitis treatment. The metabolites alteration observed during the commensal-to-pathogen conversion under microoxic condition serve as a pivotal environmental signal contributing to S. epidermidis metabolism remodeling, toward more pathogenic state.