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Sterols are essential for eukaryotic cells and are crucial in cellular membranes’ 
structure, function, fluidity, permeability, adaptability to environmental stressors, 
and host-pathogen interactions. Fungal sterol, such as ergosterol metabolism, 
involves several organelles, including the mitochondria, lipid droplets, endoplasmic 
reticulum, and peroxisomes that can be regulated mainly by feedback mechanisms 
and transcriptionally. The majority of sterol transport in yeast occurs via non-vesicular 
transport pathways mediated by lipid transfer proteins, which determine the quantity 
of sterol present in the cell membrane. Pathogenic fungi Candida, Aspergillus, 
and Cryptococcus species can cause a range of superficial to potentially fatal 
systemic and invasive infections that are more common in immunocompromised 
patients. There is a significant risk of morbidity and mortality from these infections, 
which are very difficult to cure. Several antifungal drugs with different modes of 
action have received clinical approval to treat fungal infections. Antifungal drugs 
targeting the ergosterol biosynthesis pathway are well-known for their antifungal 
activity; however, an imbalance in the regulation and transport of ergosterol could 
lead to resistance to antifungal therapy. This study summarizes how fungal sterol 
metabolism and regulation can modulate sterol-targeting antifungal drug resistance.
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1 Introduction

Invasive fungal infections increased considerably in immunocompromised or critically ill 
patients, such as HIV-positive patients, cancer patients undergoing chemotherapy, and organ 
transplant recipients, which poses a significant global threat to human health (Pfaller and 
Diekema, 2007; Low and Rotstein, 2011; Garnacho-Montero et al., 2024). Worldwide, 150 
million immunocompromised individuals suffer from fungal diseases, which claim the lives 
of about 1.7 million of them annually (Bongomin et al., 2017; Kainz et al., 2020). Usually, 
Candida, Aspergillus, and Cryptococcus spp., infections account for more than 90% of 
nosocomial fungal infections, primarily affecting immunocompromised individuals (Brown 
et al., 2012). Numerous species of Candida can cause invasive candidiasis, a severe infection 
that can affect the heart, brain, eyes, bones, blood, and other body parts of patients (Pfaller 
and Diekema, 2007; McCarty and Pappas, 2016; Lass-Flörl et al., 2024). The prevalence of 
Candida albicans and non-albicans species has grown, particularly in the last two decades 
(Deorukhkar et al., 2014; Pfaller et al., 2014). This is attributable to a rise in immune-related 
disorders, the overuse of immunosuppressive medicines, and the prolonged use of medical 
equipment. The C. albicans mainly cause candidiasis, however, several non-albicans species 
such as C. parapsilosis, C. glabrata, C. krusei, C. tropicalis, C. dubliniensis, C. lusitaniae also 
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reported from clinical samples of candidiasis patients (Deorukhkar 
et al., 2014; Hani et al., 2015; Makanjuola et al., 2018).

Several classes of antifungal drugs with different modes of action 
have been approved for use in clinical settings to treat fungal infections 
(Fuentefria et  al., 2018). These antifungal drugs include azoles, 
allylamines, morpholines, polyenes, nucleoside analogs, and 
echinocandins. Azoles (e.g., fluconazole, voriconazole, and 
isavuconazole) mainly inhibit the ergosterol biosynthesis pathway 
enzyme lanosterol-14α-demethylase encoded by ERG11 and interrupt 
the ergosterol biosynthesis (Chen and Sobel, 2005; Allen et al., 2015; 
Lee et al., 2023). Allylamines (e.g., terbinafine and naftifine) inhibit 
the squalene epoxidase encoded by ERG1, and morpholine (e.g., 
amorolfine, fenpropimorph, and tridemorph) inhibits the biosynthesis 
of sterol by blocking two successive enzymes (a) C-14 sterol reductase 
(ERG24) and (b) C-8 sterol isomerase (ERG2) (Debieu et al., 2000). 
Polyene (e.g., amphotericin B, nystatin, and natamycin) interacts with 
ergosterol in the cell membrane, creating pores and causing cell lysis, 
while echinocandin (e.g., caspofungin and micafungin) mainly 
inhibits the enzyme β-1,3-D-glucan synthase encoded by FKS1 
(Perlin, 2015; Ahmady et  al., 2024). Nucleoside analogs, such as 
5′-flucytosine (5-FC), are taken up by cytosine permease, a membrane 
transporter of fungal cells. Cytosine deaminase then transforms the 
5-FC into 5-fluorouracil (5-FU), which is its active form. 5-fluorouracil 
is metabolized to produce 5-fluorouridine monophosphate (5-FUMP) 
and 5-fluorodeoxyuridine monophosphate (5-FdUMP), which, 
respectively, blocks RNA and DNA synthesis (Bhattacharya et al., 
2020; Sigera and Denning, 2023). The chemical structure of antifungal 
drugs that selectively target the ergosterol production pathway of 
S. cerevisiae is shown in Figures 1A,B.

The existence of intrinsic, acquired, or clinical resistance poses a 
significant challenge that limits the potential for the development of 
novel therapeutics against Candida species (Sanguinetti et al., 2015; 
Chowdhary et al., 2017; Spivak and Hanson, 2018). The rise in clinical 
isolates of fungal pathogens that are highly virulent and resistant to 
drugs poses a severe threat to human health (Taei et  al., 2019; 
McDermott, 2022). Public health worldwide is seriously threatened by 
the emergence of pan-resistant C. auris clinical isolates (Lockhart, 
2019). Therefore, a fundamental comprehension of the molecular 
pathways that an appropriate drug can target aids in preventing the 
development of fungal drug resistance.

Ergosterol, a key sterol in fungal membranes, primarily regulates 
membrane fluidity, membrane-bound enzyme activity, growth, and 
other cellular processes, which makes them a potentially valuable 
target for drug development (Iwaki et al., 2008; Rodrigues, 2018). 
After being produced in the endoplasmic reticulum (ER), ergosterol 
is transferred to the plasma membrane (PM), which contains an 
enormous amount of the cell’s free ergosterol pool (Mesmin et al., 
2013). Newly produced ergosterol equilibrates with the PM localized 
sterol pool, with roughly 105 ergosterol molecules entering and exiting 
the PM per second (Hu et al., 2017). Sterols are insoluble in water, 
hence equilibration of free/available sterols between organelles needs 
lipid transfer proteins between membranes. Soluble lipid transfer 
proteins take a lipid from a donor membrane and deposit it to an 
acceptor membrane (Wong et al., 2019). Oxysterol-binding protein 
(OSBP) and OSBP-related proteins (ORPs) are key candidates of the 
eukaryotic gene family, including ORP in humans and oxysterol-
binding homologous (Osh) proteins in yeast that transfer and regulate 
sterols and phospholipids between organelle membranes 

(Weber-Boyvat et  al., 2013). Although ergosterol production and 
transport are well understood in model yeast, little is known about 
how they contribute to antifungal drugs. This study describes the key 
steps in ergosterol production and transport pathways that lead to 
antifungal drug resistance.

2 Ergosterol biosynthesis pathway

Ergosterol is mainly synthesized in the ER and transferred to 
various organelles such as mitochondria, Golgi body, and PM through 
vesicular and non-vesicular transport mechanisms (Lv et al., 2016; 
Jordá and Puig, 2020; Zheng Koh and Saheki, 2021). Sterol 
concentrations are low in the ER but raised in secretory organelles, 
with the maximum concentration in the PM (Zinser et  al., 1993; 
Hannich et al., 2011). Ergosterol comprises four rings, an acyl side 
chain, and a hydrophilic hydroxyl group that makes it easy to 
introduce into membranes. Ergosterol’s structure varies from 
cholesterol by two additional double bonds (at position C7 and C8) 
and an extra methyl group (at position C22 and C23) in the side chain 
(Vanegas et al., 2012).

Sterol biosynthesis in the model yeast Saccharomyces cerevisiae 
begins with the condensing two acetyl-CoA molecules to produce 
acetoacetyl-CoA, catalyzed by Erg10p (Liu et  al., 2019). Erg13p 
catalyzes the conversion of a third acetyl-CoA to acetoacetyl-CoA, 
resulting in 3-hydroxy-3-methylglutarylCoA (HMG-CoA) (Miziorko, 
2011). HMG-CoA is then reduced to mevalonate by HMG-CoA 
reductase encoded by Hmg1p and Hmg2p (Basson et al., 1986). Sterol 
intermediates block these reductases, making this a critical metabolic 
checkpoint. Erg12p phosphorylates mevalonate during the subsequent 
process (Oulmouden and Karst, 1991). Erg8p, a phosphomevalonate 
kinase, further phosphorylates to produce mevalonate-5-
pyrophosphate (Tsay and Robinson, 1991). Next, Erg19p, a mevalonate 
pyrophosphate decarboxylase, decarboxylates isopentenyl 
pyrophosphate (IPP) (Berges et  al., 1997). IDI1 encodes the IPP 
isomerase, which converts IPP to dimethylallyl pyrophosphate (DPP). 
DPP then condenses with another IPP molecule to produce geranyl 
pyrophosphate, a further addition of IPP results in the formation of 
farnesyl pyrophosphate (FPP). The geranyl/FPP synthase, Erg20p, 
catalyzes both processes (Anderson et al., 1989).

Next, squalene synthase (Farnesyl-diphosphate farnesyl 
transferase) enzyme Erg9 uses two farnesyl-pyrophosphate 
(farnesyl-PP) molecules to form squalene. The enzymes squalene 
epoxidase ERG1 and lanosterol synthase ERG7 work in tandem to 
convert squalene to lanosterol. Lanosterol is converted into 
4,4-dimethyl-cholesta 8,14, 24-trienol by lanosterol 14α-demethylase 
encoded by ERG11 which is further converted into 4,4-dimethyl-
zymosterol which is catalyzed by C14 sterol reductase (ERG24). 
4,4-dimethyl-zymosterol is further converted into zymosterol by 
involving enzymes such as ERG25, ERG26, and ERG27. Finally, the 
enzyme C24-methyltransferase (Erg6p) converts the zymosterol into 
fecosterol. In the next step, fecosterol is converted into episterol, a 
reaction catalyzed by the C8 isomerase enzyme ERG2, and in the last 
step, episterol is transformed into ergosterol through a complex 
process involving C5-sterol desaturase (ERG3), C22-sterol desaturase 
(ERG5) and C24-sterol reductase (ERG4) reactions (Shakoury-Elizeh 
et al., 2010; Kathiravan et al., 2012; Joshua and Höfken, 2017; Ward 
et al., 2018; Liu et al., 2019; Vil et al., 2019). The sterol-desaturase 
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enzyme, encoded by CaERG3, is known to utilize 14α-methyl-
fecosterol in C. albicans. This enzyme catalyzes the conversion of 
14α-methyl-fecosterol to 14α-methyl-ergosta-8,24(28)-dienol-3,6-
diol, a toxic sterol linked to the antifungal activity of triazoles. 
Ergosterol biosynthesis in yeast depends on oxygen and iron at 
multiple steps such as enzymatic reactions catalyzed by ERG1, ERG3, 
ERG5, ERG11, and ERG25 use molecular oxygen and heme as the 
electron acceptor (Jordá et al., 2022).

3 Ergosterol mediated antifungal drug 
resistance

3.1 Allylamine resistance

These days, allylamines such as naftifine and terbinafine are a 
relatively new class of synthetic antifungal medications against 
filamentous, dimorphic, yeast-like fungi (Hammoudi Halat et  al., 
2022). Allylamines act as non-competitive inhibitors mainly by 
interfering with the initial rate-limiting step of ergosterol biosynthesis 
catalyzed by squalene epoxidase encoded by ERG1 (Petranyi et al., 
1984). C. albicans, and C. parapsilosis squalene epoxidase, are 
susceptible to allylamine, while mammalian liver squalene epoxidase 

is significantly less sensitive to allylamines (Ryder, 1987; Ryder and 
Dupont, 1985). Naftifine is a topical fungicidal that is efficient against 
dermatophytes and is used to treat cutaneous candidiasis. Terbinafine 
hypersusceptibility was observed in strains overexpressing ERG1, 
ERG9, and ERG26. Erg9p converts FPP to produce squalene, a 
substrate for Erg1p. The overexpression of Erg9p or Erg1p may cause 
FPP or squalene pools to be diverted toward ergosterol biosynthesis 
rather than other cellular functions, leading to susceptibility in these 
strains (Bhattacharya et  al., 2018). The C. albicans erg2Δ/Δ and 
erg24Δ/Δ mutants are also susceptible to terbinafine, due to the 
enhanced fluidity and permeability of their PMs (Luna-Tapia et al., 
2015). Low terbinafine susceptibility was observed in oropharyngeal 
C. albicans isolates from HIV-positive individuals in a prior 
investigation (Odds, 2009). Another study also revealed that, except 
for C. lusitaniae, C. parapsilosis, and C. krusei, other Candida spp., 
isolates were resistant to terbinafine (MIC >32 mg/L) (Tøndervik 
et al., 2014).

3.2 Azole resistance

The azole-antifungal is the most extensive and frequently utilized 
class of antifungal drugs (Jangir et  al., 2023). Azole targets the 

FIGURE 1

(a) The chemical structures of various antifungal drug that specifically targets the ergosterol biosynthesis pathway. (b) Schematic representation of 
ergosterol biosynthesis pathway reported in S. cerevisiae. The production of ergosterol molecules begins with the condensation of acetyl-Co and 
takes place mainly in the ER, whereas farnesyl-PP biosynthesis occurs in the vacuole. Allylamine inhibitors inhibit squalene epoxidase, which is 
encoded by ERG1. Azole inhibitors primarily target ERG11, resulting in the generation of hazardous sterols. Morpholines target step catalyzed by ERG24 
and ERG2, inhibiting ergosterol production, whereas polyene targets membranes’ ergosterol [Adapted and modified from Onyewu et al., 2003].
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ergosterol biosynthesis leading to the formation of unusual sterols 
disrupting the fungal cell membrane. Azoles inhibit the enzyme called 
lanosterol 14α-demethylase, encoded by ERG11 (CYP51), which is a 
fungal cytochrome P450-(CYP50) family-dependent enzyme that 
converts lanosterol into 14α-dimethyl-lanosterol in the ergosterol 
biosynthesis pathway. The inhibition of this enzyme increases 
lanosterol and 14α-methyl sterol levels while ergosterol levels decrease. 
This causes the fungal cell membrane’s typical permeability and 
fluidity to change, which inhibits the growth of fungal cells (Peyton 
et  al., 2015; Zhang et  al., 2019). ERG2 deletion or HMG1 
overexpression strains showed increased susceptibility when treated 
with azoles due to lower ergosterol contents (Donald et  al., 1997; 
Bhattacharya et al., 2018). In S. cerevisiae and C. albicans Δerg3 and 
Δerg6 deletion strains are resistant to fluconazole due to their inability 
to manufacture toxic dienol, which accumulates in the wild-type cell 
after azole treatment (Kodedová and Sychrová, 2015). Fluconazole 
resistance is also observed in ERG3 deletion/missense mutant strains 
of Cryptococcus neoformans, C. glabrata, C. parapsilosis, and C. albicans 
(Branco et al., 2017; Sanglard et al., 2003). Mutation in ERG25 leads 
to sterol intermediate accumulation and decreases fluconazole’s 
binding affinity (Kodedová and Sychrová, 2015; Cavassin et al., 2021). 
Overexpression of ERG11 in C. albicans, C. glabrata, C. krusei, and 
multidrug resistance C. auris showed higher resistance to azoles (He 
et al., 2015; Feng et al., 2017; Bhattacharya et al., 2019).

3.3 Morpholine resistance

The ergosterol production pathway enzymes, mainly C14-sterol 
reductase (ERG24), and C8-sterol isomerase (ERG2) are targeted by 
the morpholine class of antifungals e.g., amorolfine, fenpropimorph 
(FEN) and tridemorph, which leads to the accumulation of abnormal 
sterols ignosterol (ergosta-8,14 dieno) (Polak, 1988; Lorenz and Parks, 
1992; Parks and Casey, 1995). The observation of FEN resistance in 
strains overexpressing ERG24 supports that Erg24p is the principal 
morpholine drug target (Henry et  al., 2000). In addition, FEN 
resistance was observed in disruption mutants of ERG4. FEN 
hypersusceptibility was detected in the strains that overexpressed 
NCP1, ERG1, and HMG1 or in Δerg3 and Δerg6 deletion strains 
(Bhattacharya et al., 2018). It was discovered that C. albicans sensitivity 
to the morpholines can be decreased by overexpressing the ERG2 or 
ERG24 genes (Luna-Tapia et al., 2015). The erg2Δ deletion mutant of 
C. albicans was sensitive to FEN, whereas the erg24Δ deletion mutant 
was hypersensitive to amorolfine, FEN, and tridemorph. Mutation in 
the open reading frame of gene FEN2 from S. cerevisiae that encodes 
a PM H+-pantothenate symporter was shown to be FEN resistance 
(Stolz and Sauer, 1999). These findings support the theory that the 
morpholine’s antifungal action depends on the simultaneous 
inhibition of Erg2p and Erg24p.

3.4 Polyene resistance

Polyene class includes amphotericin B (AmB), nystatin, 
natamycin, and filipins that target PM ergosterol and create a pore in 
the membrane (Madaan and Bari, 2023). Changes in ergosterol 
content or the substitution of sterol intermediates are the causes of 
polyene resistance (Ahmady et al., 2024). Previous research concluded 

that C. lusitaniae may become resistant to AmB due to mutations in 
or changes in the expression of ergosterol biosynthesis genes (Young 
et al., 2003). Elevated ERG6 transcript levels and decreased ergosterol 
content were observed in C. lusitaniae resistant to AmB, indicating 
mutations or dysregulation in the ergosterol biosynthesis pathway 
(Bhattacharya et al., 2018). In clinical isolates of C. glabrata, ERG6, 
and ERG2 are important targets associated with reduced susceptibility 
to AmB (Ahmad et al., 2019). AmB-resistant isolates also showed 
lower expression of the ERG3 gene, which codes for C5 sterol 
desaturase, suggesting a possible involvement of ERG3 in the clinical 
emergence of AmB resistance (Young et al., 2003). C. neoformans 
strains with sterol compositions corresponding to ERG2 deletion 
mutant of S. cerevisiae are resistant to AmB (Kelly et al., 1994). A 
previous study in S. cerevisiae reported that, as compared to the 
parental strain, the mutant lacking ERG4 was slightly more sensitive 
to nystatin; moreover, the deletion of ERG2, ERG6, and, to a lesser 
extent, ERG3, also conferred resistance to this polyene, most likely 
because of the decreased drug binding affinity for the accumulated 
fecosterol, zymosterol, and episterol in these mutants (Kodedová and 
Sychrová, 2015). Natamycin and nystatin-induced loss of inhibition 
was demonstrated by the loss of double bonds in the B-ring of 
ergosterol produced by deletions of ERG3 (5,6 position) and 
particularly ERG2 (7,8 position) (te Welscher et al., 2010).

mRNA expression levels of ERG3 and ERG6 were decreased but 
increased for ERG11 in AmB-resistant isolates of C. parapsilosis 
(Lotfali et  al., 2017). The loss of function of ERG5 (C22 sterol 
desaturase) or substitution in ERG11 has been associated with AmB 
resistance in C. albicans (Martel et al., 2010; Vincent et al., 2013). 
Inactivation of ERG2 (C8 sterol isomerase) and ERG6 (C24 sterol 
methyl-transferase) was reported to have a similar impact on 
C. glabrata (Ahmad et al., 2019). One of the only mechanisms of AmB 
resistance in C. neoformans that has been described involves a 
mutation that renders ERG2 inactivated (Kelly et al., 1994). Altered 
sterol profile due to mutations in several ergosterol biosynthetic 
pathways genes ERG11, ERG3, ERG2, and ERG6 also cause AmB 
resistance in Candida species (Vandeputte et al., 2008; Vincent et al., 
2013; Carolus et al., 2021; Rybak et al., 2022). Table 1 lists the genes 
related to ergosterol metabolism and transport pathways that are 
implicated in resistance to antifungal drugs.

4 Ergosterol biosynthesis regulation

Ergosterol biosynthesis and degradation must be  balanced and 
regulated to prevent the buildup of free sterols, which can be harmful to 
cells. Yeast cells have evolved distinct regulatory systems that carefully 
control the ergosterol composition of lipids. Feedback regulation of 
ergosterol biosynthesis at the biosynthetic level and transcriptional 
regulation is responsible for regulating the amount of ergosterol (Jordá 
and Puig, 2020). Furthermore, the ergosterol pathway enzymes exhibit 
differential localization. For example, ERG1 localizes exclusively to the 
ER to enhance ergosterol synthesis; ERG6 localizes to the ER, 
mitochondria, and cytoplasm; however, ERG1 and ERG6 also localize 
in a lipid particle (Leber et al., 1998; Shakoury-Elizeh et al., 2010).

Several enzymes involved in the process of ergosterol biosynthesis 
work together to control the level of ergosterol produced. Squalene, 
epoxy squalene, and polyepoxyl squalene, for instance, increase when 
ERG27 is inhibited, but not lanosterol, which is identical to that in the 
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erg7∆ mutant and suggests that ERG7 and ERG27 interact genetically 
(Teske et al., 2008). Subsequent research demonstrated that ERG27 
can interact with ERG7 and facilitate a relationship between ERG7 and 
lipid particles to inhibit ERG7 degradation; additionally, ERG27 
regulates ERG7 activity in lipid particles (Layer et al., 2013). Similarly, 
double deletion mutants of ERG24 and ERG4 cannot grow in either 
nutrient-rich medium YEPD or a synthetic complete medium in the 
presence of calcium. This phenomenon is also observed when ERG24 
is altered with three additional genes, namely ERG3, ERG5, and ERG6 
(Luna-Tapia et al., 2015). Furthermore, the expression of ergosterol 
synthesis is also regulated by the intracellular transportation 
of ergosterol.

Two endoplasmic reticulum-localized acyl-coenzyme A: sterol 
acyltransferases, ARE1 and ARE2, which are significantly implicated 
in sterol esterification, are encoded by S. cerevisiae (Yang et al., 1996). 
Under normal growth conditions, Are2p esterifies the final product, 
while Are1p primarily esterifies intermediates in sterol biosynthesis 
(Valachovic et al., 2001). In S. cerevisiae, neutral lipids are generated 
by four enzymes: Are1p and Are2p, which generate stearyl esters; and 
Lro1p and Dga1p, which generate triacylglycerol and are stored as 
lipid droplets (Jacquier et  al., 2011). ARE genes are differently 

regulated in response to variations in sterol metabolism. The major 
isoform of the enzyme in a wild-type cell developing aerobically is 
Are2p. The accumulation of ergosterol pathway intermediates or heme 
deficiency causes the ARE1 gene to be up-regulated, while ARE2 is 
repressed under heme deficiency. This suggests that the controlled 
removal of intermediates in the biosynthesis process before they 
become toxic or contribute to accumulation in the final product is a 
novel form of sterol homeostasis (Jensen-Pergakes et  al., 2001). 
Despite altered sterol composition, in an ARE1, ARE2 double mutant, 
stearyl esters (SE) biosynthesis is blocked without any growth defects 
(Ploier et al., 2015). The double mutant exhibits an increase in free 
sterols and a decrease in total sterol biosynthesis, suggesting that the 
formation of SE can also regulate sterol biosynthesis (Ploier et al., 
2015). Optimizing culture conditions and metabolic pathway 
engineering are the two primary techniques for increasing ergosterol 
productivity since ergosterol biosynthesis is controlled by genes that 
regulate the biosynthesis and environmental factors (Náhlík et al., 
2017). For example, ergosterol biosynthesis can be markedly increased 
by overexpressing sterol biosynthesis genes (e.g., ERG1, ERG4, EGR9, 
and ERG11) or ARE2. Thus, ergosterol biosynthesis regulation is a 
complicated process influenced by various factors.

TABLE 1 A list of ergosterol metabolic and transport pathways genes involved in antifungal drug resistance.

Antifungal 
drugs

Name of the genes 
involved in ergosterol 
biosynthesis

Fungal species Type of genetic 
approach (Resistance 
or Sensitive)

References

Amphotericin B ERG2, ERG3, ERG5, ERG6, ERG1 C. albicans, C. neoformans,C. 

lusitaniae, S. cerevisiae, C. 

haemulonii

Deletion (R) Ahmad et al. (2019), Lotfali et al. 

(2017), Martel et al. (2010), and 

Young et al. (2003)

ERG26, ERG6 S. cerevisiae Overexpression (S) Bhattacharya et al. (2018)

LAM1, LAM2, LAM3 S. cerevisiae, C. neoformans Deletion (S) Choy et al. (2003) and Sokolov et al. 

(2020)LAM2, LAM4 S. cerevisiae Deletion (S)

ERG2 C. albicans Double deletion Luna-Tapia et al. (2015)

OSH2 S. cerevisiae Deletion (R) Bojsen et al. (2016)

OSHB, OSHE A. nidilans Deletion(R) Bühler et al. (2015)

OSHC, OSHD A. nidulans Deletion(S)

Azoles ERG11 C. glabrata, C. albicans, S. cerevisiae Overexpression (R) Bhattacharya et al., 2018, Kodedová 

and Sychrová (2015), Lotfali et al. 

(2017), and Young et al. (2003)
HMG1, ERG6, ERG3 C. lusitaniae, C. albicans, S. cerevisiae Deletion (R)

ERG2 C. neoformatus Deletion(S)

ERG24 C. glabrata Deletion (R)

HMG1 S. cerevisiae Overexpression (S) Bhattacharya et al. (2018)

OSH1, ERG3, ERG6, ERG28 S. cerevisiae Deletion (R) Anderson et al. (2003)

LAM2, LAM4 S. cerevisiae Deletion (R) Sokolov et al. (2020)

Fenpropimorph ERG2, ERG24 C. albicans Deletion (S) Luna-Tapia et al. (2015)

HMG1, ERG1 S. cerevisiae Overexpression (S) Bhattacharya et al. (2018) and Young 

et al. (2003)ERG6, ERG3 C. lusitaniae, S. cerevisiae Deletion (S)

ERG24 S. cerevisiae Overexpression (R)

Tridemorph ERG2 S. cerevisiae Deletion (R) Valachovic et al. (2001)

Terbinafine ERG24, ERG2 C. albicans Deletion (S) Onyewu et al. (2003) and Luna-Tapia 

et al. (2015)

ERG6 C. lusitaniae Deletion (S) Young et al. (2003)

ERG9, ERG1, ERG26 S. cerevisiae Overexpression (S) Bhattacharya et al. (2018)
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Another important metabolic checkpoint for the biosynthesis of 
ergosterol is the synthesis of HMG-CoA, which is catalyzed by 
HMG-CoA reductase (HMGR) (Burg and Espenshade, 2011). Excessive 
sterols in S. cerevisiae can cause HMGR (Hmg2) to be degraded via the 
ER-related degradation (ERAD) pathway, which lowers mevalonate 
synthesis and down-regulates sterol production (Espenshade and 
Hughes, 2007). The ERAD process primarily initiates HMGR 
degradation with the help of membrane-spanning ubiquitin-protein 
ligase Hrd1, ubiquitin-conjugating enzyme Ubc7, and the chaperone 
proteins NSG1 and NSG2 (Hampton and Bhakta, 1997; Burg and 
Espenshade, 2011; Theesfeld and Hampton, 2013; Figure 2A). ERG1 is 
also degraded by the ERAD pathway via ubiquitin ligase Doa10 when 
lanosterol concentration increases to prevent the accumulation of toxic 
sterol intermediates (Foresti et al., 2013; Huang and Chen, 2023). As a 
result, ERAD is crucial for preserving cellular sterol homeostasis.

Most fungi including fission yeast Schizosaccharomyces pombe and 
opportunistic pathogen C. neoformans contain a homolog of the 
mammalian sterol regulatory element binding protein (SREBP) known 
as Sre1, while in Aspergillus fumigatus called SrbA (Brown and Goldstein, 
1997; Willger et al., 2008; Chang et al., 2009). SREBP-like proteins are 
activated upon cleavage by SREBP activating protein (SCAP) known as 
Scp1, that is absent in A. fumigatus (Willger et al., 2008). Sre1 localizes 
to the ER and regulates sterol-specific gene expression (Gómez et al., 
2020). Under low sterol conditions, Sre1 gets cleaved and enters the 
nucleus, binds to sterol regulatory elements (SREs), and increases the 
expression of sterol-synthesizing genes (Hughes et al., 2005). In addition, 
hypoxic conditions also induce cleavage of Sre1 and lead to the 
expression of oxygen-dependent enzymes in the ergosterol biosynthesis 
pathway including Erg3 and Erg25 (Bien and Espenshade, 2010; Tong 
et al., 2018). Nevertheless, ergosterol production and absorption are 
regulated differently depending on the kind of yeast. Fission yeast 
without Sre1 and Scp1 cannot grow in anaerobic conditions as they 
cannot manufacture ergosterol at low oxygen levels (Hughes et al., 2005; 
Stewart et al., 2011; Chong and Espenshade, 2013). Similarly, budding 
yeast does not take up exogenous sterol, under aerobic or normal growth 
conditions. But in hypoxic/anaerobic environments, budding yeast does 
take up exogenous sterol; in fact, sterol absorption is critical to the 
survivability of budding yeast during anaerobic growth when sterol 
production is restricted by low oxygen supply (da Costa et al., 2018). 
Under aerobic circumstances or in the presence of azoles, C. glabrata can 
also absorb cholesterol (Nakayama et  al., 2007; Nagi et  al., 2013). 
Moreover, C. glabrata can import cholesterol and use it instead of 
ergosterol when vital genes ERG1, ERG7, or ERG11 are knocked down, 
but this is not the case when ERG25 and ERG26 are knocked down 
(Okamoto et al., 2022).

While budding yeast lacks SREBP homologs, it does have a unique 
sterol regulatory mechanism that controls ergosterol production. This 
mechanism involves Upc2 and its paralog Ecm22, both are 
transcription factors specific to the fungal family able to bind with 
sterol regulatory elements (SRE) through their amino-terminal 
Zn2Cys6 DNA binding domain (Vik and Rine, 2001; Yang et al., 2015). 
Lethality results from the deletion of Ecm22 and Upc2, indicating that 
both proteins are crucial for controlling sterol metabolism in budding 
yeast (Shianna et al., 2001). Upc2 has a hydrophobic pocket in its 
C-terminal domain that binds to sterol and controls the protein’s 
transition between the cytosol and nucleus (Vik and Rine, 2001; Marie 
et  al., 2008). Under normal conditions, ergosterol binds with the 
UPC2 carboxy-terminal domain causing repression of the UPC2 

transcription factor (Shianna et al., 2001). Under ergosterol depletion 
or hypoxic conditions, ergosterol ligand dissociation causes 
conformational changes and the Upc2 transcription factor 
translocated to the nucleus and activates SRE-containing genes 
including ergosterol biosynthesis genes, sterol uptake genes (AVS1, 
PDR11), and DAN1/TIR mannoprotein genes during the anaerobic 
remodeling of the cell wall (Abramova et al., 2001; Figure 2A).

Dimerization of UPC2 essential for regulatory function, gain of 
function mutation in UPC2 leads to azole resistance while deletion of 
UPC2 in C. albicans sensitizes them toward azoles (Whaley et al., 
2014; Yang et  al., 2015). According to previous research, the 
transcription factors ECM22 and UPC2, the SRE region of the sterol 
biosynthesis genes enhance their expression under hypoxic conditions 
(Davies and Rine, 2006; Woods and Höfken, 2016). AUS1 and PDR11, 
two ATP-binding transporters, can also be expressed in response to 
UPC2, which promotes yeast to absorb sterols from its surroundings. 
Ergosterol production is further impacted by additional environmental 
variables such as oxidation, ethanol stimulation, and iron availability 
(Barchiesi et al., 2005).

5 Ergosterol transport pathways

Sterol transport between organelles and release into the medium 
rely on vesicular or nonvesicular transport pathway (Jacquier and 
Schneiter, 2012). Under aerobic conditions, yeast does not incorporate 
exogenous sterols, however, under hypoxia/anaerobic conditions 
ability to synthesize sterol is decreased which is compensated by the 
import of sterol from the medium through nonvesicular intracellular 
trafficking (Lev, 2010). Newly produced lipids are transported 
non-selectively from the ER to the PM via secretory vesicle flux (Wong 
et al., 2019). Lipid transfer proteins and sterol binding proteins are two 
evolutionarily conserved families of proteins that mediate intracellular 
sterol distribution (Lin et  al., 2023). All eukaryotes have the 
evolutionarily conserved lipid transport proteins (LTPs) known as 
Oxysterol-binding protein Homology [Osh] in yeast, and Oxysterol-
binding Protein [OSBP] and OSBP-Related Protein [ORP] in 
mammals (Schulz and Prinz, 2007; Lev, 2010; Ngo et al., 2010). The 
primary biological functions of OSBP and ORP include signaling, 
vesicular trafficking, lipid metabolism, and non-vesicular transport 
(Raychaudhuri and Prinz, 2010; Jackson et  al., 2016). It has been 
demonstrated that these proteins can bind and transport different 
lipids, such as phosphoinositides (PIPs), and sterols (Ngo et al., 2010; 
Delfosse et al., 2020; Lin et al., 2023; Nakatsu and Kawasaki, 2021).

There is evidence supporting the function of a cytoplasmic 
nonvesicular protein sterol transporter, and the structure of an 
oxysterol-binding protein homolog (OSH) in yeast (Osh4p/Kes1p) has 
been solved, without a ligand and in complexes with many oxysterols, 
cholesterol, and ergosterol, identifying it as a sterol-binding protein 
(Schulz and Prinz, 2007). A seven-member oxysterol-binding protein 
family (Osh1-7) in S. cerevisiae performs redundant, overlapping roles 
in sterol metabolism collectively necessary for maintaining 
intracellular sterol distribution and homeostasis. All seven proteins 
are demonstrated to have the highest homology within the restricted 
region of 150–200 amino acid residues that make up OSBP-related 
domains (ORD) involved in oxysterol binding and intracellular sterol 
distribution is significantly changed in mutants lacking any of these 
proteins, which is consistent with an involvement of Osh proteins in 
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intracellular sterol transport (Beh et al., 2001; Beh and Rine, 2004; 
Schulz and Prinz, 2007).

All these proteins may have a hydrophobic binding tunnel that is 
important for interaction with sterol. PH domain located at N- the 

terminal of Osh1p, Osh2p, and Osh3p proteins may control protein 
targeting to membranes and function as membrane adaptors by 
interacting with phospholipids (Powis et  al., 2023). Osh1p 
demonstrated a remarkable dual localization at the Golgi and 

FIGURE 2

(a) Ergosterol biosynthetic pathway regulatory mechanism contributes to antifungal drug resistance. Overabundance of ergosterols may cause HMG-
CoA reductase (HMGR) to be degraded via the proteasome, reducing mevalonate synthesis and down-regulating ergosterol biosynthesis. The ER-
related degradation (ERAD) pathway mediates the proteasome recognition process of HMGR. The ERAD process primarily initiates HMGR breakdown 
by HRD1 and the chaperone proteins NSG1 and NSG2 recognizing sterols (Omelchuk et al., 2018). (1) In excessive sterol conditions, the ergosterol 
pathway, specifically transcription factor UPC2, binds with ergosterol and Hsp90 and stays in the cytosol as a repressed state. (2) Under low ergosterol, 
dissociation of ergosterol leads to the relocalization of Upc2 from cytosol to the nucleus by nuclear transport proteins such as importins α. 
transcription factors UPC2 can bind to the SRE of the sterol biosynthesis genes to promote their expression or Activated Upc2 also triggers the 
expression of the Adr1 transcription factor, which further serves to direct the expression of ergosterol biosynthesis genes. Activation of Upc2 or Adr1-
enhanced azole, AmB, and terbinafine resistance in Candida (Shrivastava et al., 2023). (3) Three members of the heme-binding damage resistance 
proteins (Dap) family—DapA, DapB, and DapC in A. fumigatus modulate cytochrome P450 enzymes Erg5 and Erg11 in a coordinated manner and 
influence azole susceptibility (Song et al., 2016). (b) Overview of oxysterol binding protein-mediated sterol transport in S. cerevisiae. (1) Osh1 and 
Osh4p acts as a sterol-PI4P exchanger where it acquires the sterol from the donor membrane (ER) and exchange it for a PI4P at the acceptor 
membrane (trans-Golgi) and then carries the PI4P back to the donor membrane, completing the exchange cycle (Mochizuki et al., 2022). Sec14 
protein is involved in the transport of PI from ER to Golgi. PI4P is converted into PI at the ER by Sac1p, and PI is phosphorylated into PI4P at the trans-
Golgi by Pik1p (De Saint-Jean et al., 2011). (2) OSH2 and OSH3 contain the pleckstrin homology (PH) domain in the N-terminal region, the OSBP-
related ligand binding domain (ORD) in the C-terminal region, and the (FFAT) motif. These play a part in the counter-transport of ergosterol and PI4P 
from the ER to the PM and from the PM to the ER, respectively. PI is phosphorylated into PI4P at the PM by Stt1. (3) Lam1p, Lam2p, Lam3p, and Lam4p 
is involved in retrograde transport of sterol. (4) LAM5 and LAM6 are involved in retrograde transport from ER to mitochondria (Elbaz-Alon et al., 2015; 
Gatta et al., 2015).
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nucleus-vacuole (NV) junction (Levine and Munro, 2001). According 
to the deletion mapping of Osh1p, the PH domain is shown to 
be  targeting the Golgi while the ankyrin repeat targets the NV 
junction (Kvam and Goldfarb, 2004). Osh2p is present in the PM, 
primarily found in the budding region of G1 phase cells around the 
mother-daughter bud neck of S-phase cells and in the scattered 
cytoplasmic pool (Levine and Munro, 2001). Osh3p is distributed 
throughout the cytoplasm and Osh4p is localized into the Golgi 
membrane (Li et al., 2002). Osh4p binds to phosphatidyl inositol 
4-phosphate (PI4P) and its conserved OSBP domain is crucial for 
Osh4p localization to the Golgi membrane (Kyte and Doolittle, 1982; 
Rogaski et al., 2010). Osh5 protein is involved in the regulation of 
ergosterol biosynthesis and facilitates the transfer of phosphatidylserine 
(PtdSer) to autophagosome membranes (Muramoto et  al., 2024), 
while Osh6p and Osh7p, located in the membrane contact site 
between the ER and PM, preferentially transporting PtdSer from the 
ER to PM (Maeda et al., 2013).

Primarily all Osh proteins contain a conserved OSBP-related 
domain (ORD) made up of an N-terminal lid and a β-barrel core, 
which transports lipids including sterol and phospholipids between 
membranes. Budding yeast mutants that lack all seven Osh (Osh1-7) 
proteins are not viable; nevertheless, they can become viable again if 
they express one of the Osh proteins. Moreover, abrupt Osh protein 
depletion causes a growth arrest and a massive buildup of sterol in 
cells (Beh and Rine, 2004). This suggests that Osh proteins perform 
roles in maintaining cell viability, probably by supporting the 
distribution of sterol throughout the cell.

Specific Osh proteins mediate the directional transport of sterol 
between two distinct membrane compartments by exchanging PI4P 
with sterol. Osh4 and other Osh proteins, including Osh3 and Osh5, 
mediated sterol transport from the PM to the ER. Osh4 localizes to the 
Golgi and is involved in controlling the amount of PI4P present in this 
organelle. Osh4 mutually exclusively binds Sterol and PI4P, and Osh4 
counter-transports sterol between artificial membranes in vitro in return 
for PI4P (Rogaski et al., 2010). Previously, it was demonstrated that 
Osh4p plays a crucial role in maintaining the proper distribution of PI4P 
in yeast, a function that requires the cooperation of the oxysterol-binding 
proteins Osh1–Osh7 (LeBlanc and McMaster, 2010; Ling et al., 2014; 
Figure  2B). Two main PI 4-kinases in budding yeast oversee PI4P 
production at Golgi and PM. While Stt4 operates at the PM, Pik1 is a 
lipid kinase in the Golgi apparatus (Audhya et al., 2000). C. albicans 
contains four Osh proteins (Osh2-4 and Osh7), with Osh4 and Osh7 
sharing approximately 60% similarity with their S. cerevisiae counterparts.

A novel evolutionarily conserved family of LTPs, known as Lam 
proteins belonging to the steroidogenic acute regulatory protein-
related lipid transfer (StART) family was discovered in yeast (Gatta 
et al., 2015). These StART family proteins contain one or two StART-
like domains that are conserved in eukaryotes and involved in 
transporting sterol between intracellular membranes. Six yeast 
proteins Ysp1/Lam1, Ysp2/Lam2, Sip3/Lam3, Lam4, Lam5, and Lam6 
make up this family in budding yeast exhibit a C-terminal 
transmembrane region that attaches them to the membrane, and 
N-terminal StART-like domains, and other pleckstrin-homology (PH) 
superfamily domain (Gatta et  al., 2015; Murley et  al., 2015). The 
budding yeast that lacks Ysp1, Ysp2, or Sip3 exhibits reduced sterol 
trafficking from the PM to the ER and increased susceptibility to AmB 
and is rescued by multicopy expression of sterol-binding StART 
domains (Gatta et al., 2015). This suggests a persistent build-up of PM 

ergosterol in these yeast mutants. These experiments demonstrate that 
the Lam proteins help to maintain PM sterol homeostasis in yeast by 
transporting sterol from the PM to the ER (Figure 2B).

6 Conclusion

Finding inhibitors that target the ergosterol pathways in the fungus 
and can precisely block them without hurting the host is a significant 
challenge in the research of antifungals. The extensive use of antifungal 
drugs to treat fungal disease has led to the emergence of multidrug-
resistant clinical isolates. Ergosterol alterations in multidrug resistance 
isolates can be understood by utilizing high throughput approaches, 
such as metabolomics of clinical isolate, to analyze changes in 
metabolic pathways and processes that lead to multi-drug resistance. 
Despite substantial progress in this area, little is known about the 
relationship between ergosterol transport control and antifungal drug 
resistance. Enzymes involved in ergosterol biosynthesis, regulation, and 
transport are necessary for pathogenic fungi to thrive inside their host 
species. These enzymes also play a crucial role in the virulence of 
pathogenic fungi. Thus, the pharmaceutical disruption of the ergosterol 
biosynthesis and transport would impair their ability to respond 
appropriately to the environmental stress that host cells experience, 
restricting the proliferation and pathogenicity of pathogenic fungi. 
Aspergillosis, candidiasis, and cryptococcosis are severe invasive 
mycoses that have a high mortality rate in immunocompromised 
patients. Few antifungal drugs are available to treat such invasive 
infections, and fungus resistance is increasing quickly. Since fungal 
ergosterol differs structurally from their mammalian counterparts, the 
ergosterol biosynthesis and transport pathway provides an opportunity 
to discover novel antifungal drugs. This review improves our 
understanding of the synthesis, transport, and regulation of ergosterol, 
which will aid in creating new inhibitors that specifically target 
ergosterol metabolism.
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