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Genome-wide transcription 
response of Staphylococcus 
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Skin serves as both barrier and interface between body and environment. Skin 
microbes are intermediaries evolved to respond, transduce, or act in response 
to changing environmental or physiological conditions. We quantified genome-
wide changes in gene expression levels for one abundant skin commensal, 
Staphylococcus epidermidis, in response to an internal physiological signal, 
glucose levels, and an external environmental signal, temperature. We  found 
85 of 2,354 genes change up to ~34-fold in response to medically relevant 
changes in glucose concentration (0–17  mM; adj p  ≤0.05). We  observed 
carbon catabolite repression in response to a range of glucose spikes, as well 
as upregulation of genes involved in glucose utilization in response to persistent 
glucose. We  observed 366 differentially expressed genes in response to a 
physiologically relevant change in temperature (37–45°C; adj p  ≤  0.05) and 
an S. epidermidis heat-shock response that mostly resembles the heat-shock 
response of related staphylococcal species. DNA motif analysis revealed CtsR 
and CIRCE operator sequences arranged in tandem upstream of dnaK and 
groESL operons. We  identified and curated 38 glucose-responsive genes as 
candidate ON or OFF switches for use in controlling synthetic genetic systems. 
Such systems might be used to instrument the in-situ skin microbiome or help 
control microbes bioengineered to serve as embedded diagnostics, monitoring, 
or treatment platforms.
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Introduction

Skin serves as both a barrier to the external environment and home to diverse microbial 
communities. Approximately 1,000 species of bacteria reside on the skin, of which 
Staphylococcus, Corynebacterium, and Cutibacterium are the most prevalent bacterial genera 
(Byrd et al., 2018; Eisenstein, 2020). Skin bacteria play a significant role in promoting and 
maintaining human health, contributing to skin barrier homeostasis (Zheng et al., 2022), 
influencing our immune system (Leech et al., 2019; Lima-Junior et al., 2021), and limiting 
pathogen invasion (Cogen et al., 2008; Naik et al., 2015; Nakatsuji et al., 2017; Williams et al., 
2019; Heilbronner et al., 2021). Skin bacteria are also adept at adapting to and thriving in the 
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acidic, nutrient-poor, hostile environment of the human skin (Swaney 
et al., 2023).

One abundant skin commensal is Staphylococcus epidermidis, a 
Gram-positive coagulase-negative bacterium. S. epidermidis is a 
beneficial member of the skin microbiome but can become pathogenic 
in response to genetic, environmental, or host changes (Severn and 
Horswill, 2022). For example, S. epidermidis is a major implant-
associated pathogen due to its ability to form biofilms (Oliveira et al., 
2018). Transcriptomics studies on S. epidermidis and related 
staphylococcal species have investigated a variety of topics including 
survival responses to the sebaceous lipid sapienic acid (Moran et al., 
2017), transcription responses to sunlight exposure in oxic and anoxic 
conditions (McClary and Boehm, 2018), genes and pathways 
implicated in the pathogenesis of S. epidermidis endophthalmitis (Liu 
et al., 2020), and genetic factors influencing the ability of S. epidermidis 
to exist as a commensal or nosocomial pathogen (Spoto et al., 2022).

S. epidermidis has also begun to emerge as a microbial chassis for 
enabling development of engineered microbes with enhanced 
functionality. For example, Chen et al. engineered an S. epidermidis 
strain to produce tumor-associated antigens unique to melanoma, an 
aggressive type of metastatic skin cancer. When mice were colonized 
with the engineered S. epidermidis strain, a robust antitumor T cell 
response against localized and metastatic melanoma was generated 
(Chen et al., 2023). As a second example, Azitra, Inc. indicates they 
are engineering S. epidermidis strains to deliver therapeutic proteins 
to treat skin diseases including Netherton Syndrome and to improve 
skin appearance (Azitra, 2023).

Unfortunately, the tools and knowledge needed to study and 
reprogram S. epidermidis are quite limited compared to those available 
for established model organisms such as Escherichia coli or 
Saccharomyces cerevisiae. Introduction of new genes and predictable 
control of heterologous gene expression remain considerable 
challenges in bioengineering S. epidermidis. The nascent S. epidermidis 
knowledge base and toolkit contains methods for transformation 
(Monk et  al., 2012; Costa et  al., 2017), methods for conjugation 
(Brophy et al., 2018), and a small number of functionally validated 
promoters for control of gene expression including sarA-P1 (Bayer 
et al., 1996), Ppen (Meredith et al., 2008), IPTG-inducible Pspank (Rokop 
et al., 2004), and xylose-inducible PxylR (Franke et al., 2007). While 
successful attempts have been made to identify and characterize 
constitutive promoters in related staphylococcal species including 
Staphylococcus aureus (Liu et al., 2022), native transcription control 
elements that can serve as starting points for endogenous and dynamic 
control of bioengineered circuits, as well established in E. coli 
(Borkowski et al., 2017; Moser et al., 2018; Ni et al., 2021), are not yet 
developed in S. epidermidis.

One application of bioengineered skin microbes could be to detect 
or respond to blood glucose levels, which could help in the diagnosis 
or treatment of diabetes. Commensal skin microbes such as 
S. epidermidis reside in subepidermal compartments of the skin with 
proximity to blood vessels, such as the dermis and subcutaneous 
adipose tissue (Nakatsuji et al., 2013; Bay et al., 2020). Such proximity 
could potentially facilitate the development of an engineered 
S. epidermidis strain that can sense and respond to elevated blood 
glucose levels (i.e., above 7 mM glucose) as a therapeutic strategy for 
diabetes, a chronic endocrine disorder characterized by elevated blood 
glucose levels and poor glycemic control (World Health Organization, 
2023). To make such work practical, one would need to implement 

within S. epidermidis a transcription-based biosensor responsive to 
elevated blood sugar levels that results in well-regulated and rapid 
production of a single-chain insulin analog (Glidden et al., 2018), a 
stable form of insulin whose successful production does not depend 
on disulfide bond formation, a process that can be impaired by active 
reducing systems in bacteria (delCardayré et al., 1998; Manta et al., 
2019). Such a use case supports the need for better characterization of 
glucose-inducible S. epidermidis regulatory elements.

Another class of applications for bioengineered skin microbes 
could be in response to environmental or physiological (e.g., exercise-
induced) changes in temperature. With globally increasing intensity, 
frequency, and duration of heat waves (Perkins-Kirkpatrick and Lewis, 
2020), there may also be  value in better understanding how 
commensal skin bacteria, including S. epidermidis, adapt and respond 
to increases in temperature. While the heat-shock response has been 
well characterized in related staphylococcal species and other 
prokaryotes, only three efforts have investigated the S. epidermidis 
heat-shock response by using semi-quantitative protein assays 
(Ooronfleh et al., 1990), focusing on only a small number of genes 
(Vandecasteele et al., 2001), or using comparative genomics (Chastanet 
et al., 2003). We thus chose to also quantitatively explore the genome-
wide transcription response of S. epidermidis to heat shock, both as a 
reference case for glucose response and for its own merits.

We investigated the genome-wide transcription response of 
S. epidermidis strain (ATCC 12228) to heat shock and medically 
relevant glucose concentrations. We  chose ATCC 12228  in part 
because it is a non-biofilm forming (i.e., non-pathogenic) strain and 
thus should be  safer for future applications. We  performed RNA 
sequencing on samples exposed to a sudden temperature increase and 
a glucose challenge to investigate the ability of the organism to adapt 
and respond to changing environmental conditions. We  used 
differential expression analysis of samples taken during the 
mid-exponential growth phase to identify candidate genes that are 
either upregulated or downregulated in response to each condition. 
We further curated a subset of glucose-responsive genes that might 
serve as templates for ON or OFF switches.

Materials and methods

Bacterial strain and culture

We started each S. epidermidis ATCC 12228 culture from a fresh 
colony plate (<7 days old) using a single colony. We used Tryptic Soy 
Broth (TSB) without Dextrose (BD 286220) as the culture medium for 
all experiments.

Heat-shock experiments

We grew overnight broth cultures in fresh medium supplemented 
with 0.2% w/v glucose for 18 h at 37°C with shaking. Cultures were 
then diluted 32-fold in fresh medium supplemented with 0.2% w/v 
glucose (OD600 ~ 0.28) so that ~1 h of continued growth at 37°C with 
shaking resulted in mid-exponential phase (OD600 ~ 0.5) cells. 
We transferred them to pre-warmed Erlenmeyer flasks followed by 
incubation at 45°C for 10 min. We then harvested cultures for RNA 
sequencing (below). Control cultures in mid-exponential phase were 
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not exposed to heat shock but instead were immediately harvested for 
RNA sequencing. We  performed our heat-shock experiments in 
triplicate to generate three biological replicates.

Glucose challenge experiments

We grew overnight broth cultures in fresh medium supplemented 
with 13.9 mM glycerol for 25 h at 37°C with shaking. We then diluted 
cultures 50-fold in fresh medium supplemented with 13.9 mM glycerol 
(OD600 ~ 0.15) so that ~2.25 h of continued growth at 37°C with 
shaking resulted in mid-exponential phase (OD600 ~ 0.5) cells. We then 
added glucose and measured the glucose concentration (2, 5, 10, 17, 
or 50 mM) of each culture using the Contour NEXT ONE Blood 
Glucose Monitoring System. We added an equivalent volume of fresh 
medium lacking glucose to the control cultures. We grew cultures at 
37°C with shaking for an additional 20 min and then harvested for 
RNA sequencing (below). We  performed our glucose challenge 
experiments in triplicate to generate three biological replicates.

Step-down experiments

We grew overnight broth cultures in fresh medium supplemented 
with 13.9 mM glycerol for 25 h at 37°C with shaking. We  diluted 
cultures 50-fold in fresh medium supplemented with 13.9 mM glycerol 
and continued growth at 37°C with shaking. When cultures were in 
mid-exponential phase (OD600 ~ 0.5), we added glucose and measured 
the glucose concentration (10 mM) of each culture using the Contour 
NEXT ONE Blood Glucose Monitoring System. Cultures were then 
grown at 37°C with shaking for 20 min and then pelleted at 5,000 × g 
for 10 min at 24°C. We then resuspended the pellets in fresh medium 
supplemented with 2 mM glucose. We grew cultures at 37°C with 
shaking for an additional 20 min and harvested for RNA sequencing 
(below). We used the 10 mM glucose challenge condition (above) as 
the control condition for our step-down experiments. We performed 
our step-down experiments in triplicate to generate three 
biological replicates.

Batch culture experiments

We grew overnight broth cultures in fresh medium supplemented 
with glucose (0.2% w/v or 1% w/v) for 18 h at 37°C with shaking. 
We measured the glucose concentration of each culture using the 
Contour NEXT ONE Blood Glucose Monitoring System. We diluted 
cultures 32-fold in fresh medium supplemented with glucose (0.2% 
w/v or 1% w/v) and grew at 37°C with shaking. We  harvested 
mid-exponential phase cultures (OD600 ~ 0.5) for RNA sequencing 
(below). We performed our batch culture experiments in duplicate to 
generate two biological replicates.

RNA stabilization and extraction

Immediately after each experiment, we  pelleted samples by 
centrifugation at 5,000 × g for 10 min at 4°C and then resuspended the 
pellets in RNAlater (Invitrogen AM7021); samples were incubated in 

RNAlater at 4°C for 24 h. After incubation, we pelleted samples by 
centrifugation at 5,000 × g for 10 min at 4°C and resuspended the 
pellets in 1 μL of 100X TE Buffer, 50 μL of lysostaphin (1 mg mL−1), 
and 50 μL of mutanolysin (5KU mL−1). We performed lysis for 25 min 
at 37°C with vortexing at 5-min intervals. We then treated samples 
with 25 μL of Proteinase K (Qiagen 19131) and incubated for an 
additional 30 min at 37°C. We added 700 μL of Buffer RLT (Qiagen 
79216) to each sample and vortexed vigorously for 5–10 s. 
We transferred the resulting suspension to a 2 mL Safe-Lock tube 
(Eppendorf 0030123620) and mechanically disrupted the samples 
using a TissueLyser LT (Qiagen 85600) for 5 min at maximum speed 
with intervals of 30 s of bead beating and 30 s of resting on ice. After 
bead beating, we centrifuged the samples in an Eppendorf MiniSpin 
(022620100) for 15 s at maximum speed (12,100 × g) and then 
transferred the supernatant to a new tube. We mixed the supernatant 
well with an equal volume of 100% ethanol by pipetting. We applied 
this mixture to a RNeasy Mini spin column and extracted RNA 
according to the manufacturer’s instructions using a RNeasy Mini Kit 
(Qiagen 74106). We performed on-column DNase digestion using the 
RNase-Free DNase Set (Qiagen 79254). We eluted samples in RNase-
free water according to the manufacturer’s instructions and stored 
recovered RNA at −80°C until library preparation. We used RNaseZap 
RNase Decontamination Solution (Invitrogen AM9780) on all 
surfaces to prevent RNA degradation. RNA quality was analyzed using 
an Agilent Bioanalyzer and quantified by a Qubit fluorometer 
according to manufacturer’s instructions. Our RNA integrity number 
(RIN) values ranged from 8.0 to 10.

Library preparation and sequencing

We used Novogene Co., Ltd. (Beijing, China) to carry out our 
rRNA depletion, cDNA library preparation, and sequencing as part of 
their Prokaryotic RNA Sequencing service. cDNA libraries were 
sequenced on an Illumina NovaSeq 6,000 Sequencing System with a 
150 bp paired-end run configuration to a depth of ~30 million reads.

Raw sequence data quality control and 
processing

We processed raw reads (FASTQ files) using FastQC v0.12.1 
(Andrews, 2010) with default settings to assess initial read quality and 
then examined the results using MultiQC v1.14 (Ewels et al., 2016). 
We processed FASTQ files using Trim Galore v0.6.10 (Krueger, 2012) 
with default settings to trim low-quality (Phred score < 20) ends from 
reads and to trim auto-detected adapters. Reads that became shorter 
than 20 bp because of either quality or adapter trimming 
were discarded.

Reference genome for mapping

We used the S. epidermidis ATCC 12228 genome assembly 
ASM987345v1 (GenBank accession GCA_009873455.1, RefSeq 
accession GCF_009873455.1) from NCBI in the FASTA format along 
with information on genes and other features in the GFF format. The 
genome consists of a chromosome (GenBank accession CP043845.1, 
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RefSeq accession NZ_CP043845.1) of size 2,504,425 bp and a plasmid 
(GenBank accession CP043846.1, RefSeq accession NZ_CP043846.1) 
of size 21,978 bp. We converted GFF features to GTF format by using 
the gffread program in the Cufflinks v2.2.1 package (Trapnell et al., 
2010) and to BED format by using the AGAT v1.0.0 toolkit (Dainat, 
2019) for use in downstream analysis.

Mapping and transcript quantification

We used Bowtie2 v2.5.1 (Langmead and Salzberg, 2012) to build 
a Bowtie index from the S. epidermidis ATCC 12228 genome assembly 
ASM987345v1 before mapping the RNA-Seq reads in the paired-end 
FASTQ files to this reference genome using default settings. The 
resulting BAM files were coordinate-sorted and indexed; alignment 
summary statistics were reported using SAMtools v1.17 (Danecek 
et al., 2021). We ran RSeQC v5.0.1 (Wang et al., 2012) on the sorted 
BAM files to determine the strandedness of the reads for the strand-
specific RNA-seq data. We used featureCounts in the Subread v2.0.6 
package (Liao et  al., 2013) to count mapped reads at both the 
transcript and gene levels from sorted BAM files for genomic features 
such as CDSs, based on previously determined read strandedness. 
We merged counts from each sample at both the transcript and gene 
levels. We used the resulting merged count matrices in subsequent 
differential expression analysis.

BLASTP homology search

The KEGG Pathway Database (Kanehisa and Goto, 2000) Genome 
Entry T00110 (Org code: sep) lists genome assembly ASM764v1 
(GenBank accession GCA_000007645.1, RefSeq accession 
GCF_000007645.1) as the reference genome for S. epidermidis ATCC 
12228. Genome assembly ASM764v1 uses alternate gene designations 
compared to the genome assembly ASM987345v1 used in this study. 
To leverage KEGG pathway gene sets for Gene Set Enrichment 
Analysis (GSEA), we conducted a BLASTP homology search between 
the two genome assemblies using NCBI BLAST+ executable v2.14.0+ 
(Camacho et  al., 2009) to find genes in genome assembly 
ASM987345v1 with the highest degree of homology to genes in 
genome assembly ASM764v1 thereby enabling cross-mapping of the 
genes represented in KEGG Pathway Gene Sets.

Differential expression analysis

We used principal component analysis (PCA) to first visualize the 
expression data; we applied a regularized log (rlog) transformation to 
all expression data. We then visualized sample-to-sample distances via 
PCA and found that one replicate from the step-down experimental 
condition was over 4-fold off on the second principal component 
against all other experimental samples, and over 10-fold off on the first 
principal component against the other two step-down samples 
(Supplementary Figure S1). We thus excluded the data from this one 
step-down replicate in all further analyses. We then analyzed data 
from non-transformed count matrices using the DESeq2 R package 
(Love et al., 2014), which can evaluate differential expression on as few 
as two biological replicates. We defined differentially expressed genes 

(DEGs) of significance using the following criteria: |log2 fold change| 
(i.e., log2FC) ≥ 1.5 and adjusted p ≤ 0.05. We applied the apeglm (log 
fold change shrinkage) method (Zhu et al., 2018) to the raw counts to 
stabilize variability in log fold change calculations. We  then 
constructed volcano plots using the EnhancedVolcano R package 
(Blighe et  al., 2023) and further customized them using ggplot2 
(Wickham, 2016). We designed Circle plots using shinyCircos (Yu 
et al., 2017). We also constructed the two scatter plots, visualizing the 
relationship between the heat-shock and G17 experimental conditions 
and between the step-down and G2 experimental conditions, 
using ggplot2.

Pathway and gene identification

We explored gene functions using the KEGG and GO pathways 
database and manually curated a gene annotation table, drawing from 
the KEGG (organism code sep), BioCyc (GCF_000007645), and 
UniProt databases. After determining gene-to-pathway annotations, 
we used the GSEA tool (Mootha et al., 2003; Subramanian et al., 2005) 
and the fgsea R package (Korotkevich et al., 2021) to conduct gene set 
enrichment analysis. We used Fisher’s method to combine results that 
overlapped across GSEA and fgsea, creating a single p-value that 
reflected the two independent adjusted p-values. We reduced GO term 
redundancy using REVIGO (Supek et  al., 2011), with default 
parameters and a “small (0.5)” resulting list. Once KEGG and GO 
enriched pathways were identified, we  performed independent 
research to cross-validate the results and combined pathways that 
were identified in both KEGG and GO databases.

Switch identification

We identified switches using the DRomics package, a tool used for 
concentration-response (or dose–response) characterization from 
-omics data (Larras et  al., 2018; Delignette-Muller et  al., 2023). 
We  modeled all genes with an absolute log fold change ≥2. 
We  performed a rlog transform on gene counts and then used 
DRomics to identify the appropriate best-fit monophasic or biphasic 
model; genes that failed to model due to a slope near zero were 
deemed dose-insensitive.

Batch culture bioinformatics analysis

Novogene (Beijing, China) completed bioinformatics analyses for 
our batch culture experimental condition as part of their Prokaryotic 
RNA Sequencing standard analysis. Raw Sequence Data Quality 
Control: Novogene processed raw reads (FASTQ files) using Fastp 
(Chen et al., 2018). Clean data for downstream analysis were obtained 
by removal of low-quality reads, adapters, and poly-N sequences. 
Reference Genome and Mapping: Novogene obtained the reference 
genome (GenBank accession GCA_009873455.1, RefSeq accession 
GCF_009873455.1) and gene model annotation files from NCBI and 
aligned clean reads to the reference genome using Bowtie2 (Langmead 
and Salzberg, 2012). Transcript Quantification: Novogene used 
FeatureCounts (Liao et al., 2013) to count reads mapped to each gene 
and then calculated the fragments per kilobase of transcript per 
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million fragments mapped (FPKM) of each gene based on gene length 
and read counts mapped to the gene (Trapnell et al., 2010). Differential 
Expression Analysis: Novogene performed differential expression 
analysis using the DeSeq2 R package (Love et al., 2014) and adjusted 
p-values using the Benjamini and Hochberg method for controlling 
the false discovery rate (Benjamini and Hochberg, 1995). DEGs of 
significance were defined using the following criteria: |log2 fold 
change| (i.e., log2FC) ≥ 1.5 and adjusted p-value <0.05.

Results

The heat-shock response (HSR), a transcription program observed 
in several eukaryotes and prokaryotes, is crucial for cells adapting to 
a sudden temperature increase or other environmental stresses (Cao 
et  al., 1999). HSR helps cells maintain protein homeostasis by 
protection from heat-induced protein denaturation, misfolding, and 
aggregation. HSR has been studied in detail in Escherichia coli, 
Streptomyces spp., and Bacillus subtilis (Lemaux et al., 1978; Guglielmi 
et al., 1991; Schumann, 2003). While the HSR is highly conserved 
across prokaryotes, the regulatory mechanisms that govern the 
expression of heat-shock genes exhibit great diversity among bacterial 
species (Schumann, 2016; Roncarati and Scarlato, 2017). Prior studies 
of the HSR in S. aureus (Chastanet et al., 2003; Anderson et al., 2006; 
Fleury et al., 2009) and the Gram-positive model organism B. subtilis 
provide a context from which to increase our understanding of the 
HSR of S. epidermidis and other low-GC content Gram-
positive bacteria.

Differential gene expression in S. 
epidermidis under heat stress

To identify differentially expressed genes in heat-shocked 
S. epidermidis ATCC 12228 cells, we shifted mid-exponential phase 
cells from physiological growth (37°C) to heat-shock conditions 
(45°C) for 10 min (Figure 1A). We used RNA sequencing to analyze 
gene expression profiles and then compared the expression profiles of 
heat-shocked cells to those of unstressed cells. Differentially expressed 
genes (DEGs) of significance were defined using the following criteria: 
|log2 fold change| (i.e., log2FC) ≥ 1.5 and adjusted p value ≤0.05. By 
these criteria, we identified 366 of 2,354 genes (~15.5% of the genome) 
with log2FC values ≥1.5, among which 235 were upregulated and 131 
were downregulated (Supplementary Tables S1, S2). Downregulated 
and upregulated genes were expressed over a −4 to +6 log2FC range 
(Figure 2A).

We observed increased expression of several heat-shock genes 
well-characterized in other organisms (Schumann, 2003; Anderson 
et al., 2006; Fleury et al., 2009). For example, transcript levels of the 
dnaK (hrcA, grpE, dnaK, dnaJ, prmA), groESL (groES, groL), and clpC 
(F1613_RS04215 (CtsR family transcription regulator), F1613_
RS04220 (UvrB/UvrC motif-containing protein), F1613_RS04225 
(protein arginine kinase), F1613_RS04230 (ATP-dependent Clp 
protease ATP-binding subunit clpC)) operons, encoding the major cell 
chaperones and proteases, were upregulated ~8–15, ~10–11, 
and ~ 42–53 absolute fold, respectively (Supplementary Table S1). 
Other known heat-shock genes including clpB, clpP, the Hsp33 family 
molecular chaperone hslO, and MecA, an adaptor protein necessary 

for ClpC chaperone activity (Schlothauer et al., 2003) were upregulated 
by 71-, 8.9-, 4.14-, and 3.84-fold, respectively (Supplementary Table S1). 
Among the most upregulated genes (~22-61-fold) were members of 
the lac operon (lacA, lacB, F1613_RS11920 (tagatose-6-phosphate 
kinase), lacD, F1613_RS11910 (PTS lactose/cellobiose transporter 
subunit IIA), F1613_RS11905 (lactose-specific PTS transporter 
subunit EIIC), lacG), vraX, F1613_RS03870 (ArgE/DapE family 
deacylase), cytochrome ubiquinol oxidase subunits I and II (F1613_
RS06745 and F1613_RS06750), F1613_RS01555 (MarR family 
transcription regulator), F1613_RS12445 (hypothetical protein), 
F1613_RS01550 (NAD(P)/FAD-dependent oxidoreductase), and 
F1613_RS03780 (MFS transporter) (Supplementary Table S1).

We observed other upregulated genes of potential interest. For 
example, BlaZ, blaI, and blaR1, components of the bla operon that 
encode for a β-lactamase (Llarrull et al., 2010) were upregulated ~4.8–
18.3-fold. Members of the urease operon (F1613_RS12320, ureE, 
F1613_RS12330) along with two competence protein ComK orthologs 
(F1613_RS10000 and F1613_RS06475) displayed increased transcript 
levels, consistent with previous observations of genes induced by heat 
shock in S. aureus (Anderson et al., 2006; Fleury et al., 2009). Twenty-
three hypothetical proteins and 24 uncharacterized genes (47 total) 
were also upregulated under heat-shock conditions.

Among the most downregulated genes (~10-21-fold) were F1613_
RS05940 and dltABCD, components of the dlt operon required for the 
d-alanylation of teichoic acids in Gram-positive bacterial cell walls 
(Kovacs et al., 2006; Supplementary Table S2). Several genes encoding 

FIGURE 1

Environmental perturbation of S. epidermidis. Log-phase cultures 
were exposed to (A) a 10-min increase in temperature from 37 to 
45°C or (B) a range of 20-min glucose spikes (concentrations as 
noted) and a 10  mM spike followed by a step down to 2  mM.
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ribosomal proteins (rplJ, rplL, rplT, rpmI, rpsF, rpsO, rpsR) and tRNA-
ligases (ileS, thrS, serS) were also downregulated (~2.9–8.3-fold) 
(Supplementary Table S2), consistent with the transient inhibition of 
protein synthesis that occurs in response to heat shock in other 
organisms (Duncan and Hershey, 1989). Components of the psmβ 
operon (F1613_RS07060, F1613_RS07065, F1613_RS07070, F1613_
RS07075) that encode for β-class phenol-soluble modulins (PSMs) 
(Wang et al., 2011; Cheung et al., 2014), and the PSM transporter 
system (pmtA, pmtB, and pmtC) (Chatterjee et  al., 2013) were 
downregulated ~3-5-fold. In total, 24 genes involved in transport were 
downregulated up to ~11-fold (Supplementary Table S2), with more 
than half of them belonging to the ATP-binding cassette (ABC) 
transporter superfamily. Two cold-shock genes (cspA and F1613_
RS05710) displayed decreased transcript levels, consistent with 
previous observations of genes repressed by heat shock in S. aureus 
(Fleury et al., 2009). Two helix-turn-helix transcription regulators 
(F1613_RS10440 and F1613_RS09035) were downregulated ~8.5 
and ~ 3.5-fold, respectively (Supplementary Table S2). We  also 
observed downregulation of other transcription regulators including 

rsp., F1613_RS11065 (GntR family transcription regulator), and pyrR 
by 5.5-, 4.6-, and 4.1-fold, respectively (Supplementary Table S2). 
Sixteen hypothetical proteins and 23 uncharacterized genes (39 total) 
were also downregulated under heat-shock conditions.

Functional classification of differentially 
expressed genes in S. epidermidis under 
heat stress

The genome of S. epidermidis ATCC 12228 contains 2,354 protein-
coding genes, of which 207 are hypothetical and 71 are uncharacterized 
(278 total or ~ 12% of all genes), indicating their biological functions 
are unknown or not yet established. We manually grouped 280 of 366 
heat shock DEGs (~77%) into functional groups using GO and KEGG 
databases (Figure  2B); 23% of heat shock DEGs had no assigned 
functions. We observed known functional classes that are upregulated 
under heat-shock conditions in all domains of life (Richter et  al., 
2010), namely Metabolism, Transport, Regulation, DNA/RNA Repair, 

FIGURE 2

A sudden temperature increase causes transcript levels to change up to  ~  71-fold. (A) Volcano plot showing the differentially expressed genes (DEGs) 
for the heat-shock experimental condition with |log2 FC|  ≥  1.5 and adjusted p ≤   0.05 as the threshold. The red dots represent 235 significantly 
upregulated genes, and the blue dots represent 131 significantly downregulated genes. (B) Summary of the significantly upregulated and 
downregulated genes during the heat-shock response in S. epidermidis assigned to functional groups according to GO and KEGG pathways (in %).
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Molecular Chaperones, Protein Degradation, and Detoxification 
(Figure 2B). A significant proportion (85; ~36%) of upregulated genes 
were involved in metabolism, including sugar, amino acid, and fatty 
acid metabolism (Supplementary Table S1; Supplementary Figure S2). 
We  also observed increased expression of genes in the Virulence 
Factors, Secretion, and Stress Response functional classes (Figure 2B). 
Ribosome/Translation, tRNA Biosynthesis, and Ribosome Biogenesis 
functional classes accounted for a significant proportion (22; ~17%) 
of downregulated genes (Figure  2B; Supplementary Table S2), 
consistent with a transient inhibition of protein synthesis. Genes 
involved in Transport, Metabolism, Cell Wall Structure, Regulation, 
DNA/RNA Repair, and Stress Response were also downregulated 
under heat-shock conditions (Figure 2B). We assigned DEGs grouped 
into minor functional classes that contained only a small number of 
genes to the “Others” category in each pie chart (Figure 2B). Fourteen 
upregulated genes and 10 downregulated genes were assigned to the 
“Others” category and their functions are detailed in 
Supplementary Tables S1, S2.

Transcription responses to glucose in 
S. epidermidis

Six-carbon sugars (hexoses) such as glucose are the preferred 
carbon and energy sources for many prokaryotes including 
S. epidermidis. Prior studies in staphylococcal species demonstrated 
that glucose utilization supports faster growth and higher metabolic 
rates (Halsey et al., 2017). The presence of glucose also inhibits the 
expression of genes required for uptake and utilization of alternative 
carbon sources, an adaptive regulatory mechanism called carbon 
catabolite repression (CCR) (Görke and Stülke, 2008). We performed 
RNA sequencing on cultures exposed to 20-min glucose spikes across 
a range of concentrations and to persistent glucose to better 
understand the ability of S. epidermidis to adapt and respond to 
glucose. Our underlying goal was to support development of 
commensal microbes bioengineered to diagnose, monitor, or 
treat diabetes.

Identifying genes that might be useful 
starting points for controlling 
bioengineered bacteria in treating diabetes

Normal fasting human blood glucose levels range from 3.9 mM 
(70 mg/dL) to 5.6 mM (100 mg/dL). Hypoglycemic and hyperglycemic 
blood glucose levels are defined as below 3.9 mM (70 mg/dL) or above 
10 mM (180 mg/dL), respectively (Riley, 2023). We thus challenged 
mid-exponential phase cells by subjecting them to 2, 5, 10, 17, or 
50 mM glucose spikes for 20 min (Figure 1B).

We used RNA sequencing to analyze gene expression profiles 
and compared the resulting expression profiles of glucose-challenged 
cells to those of unchallenged cells (Figure  3A). DEGs of 
significance were identified using the following criteria: |log2 
fold change| (i.e., log2FC) ≥ 1.5 and adjusted p-value ≤0.05 
(Supplementary Tables S3–S7). We examined rlog transformed counts 
data from the medically relevant (G2–G17) glucose concentrations, 
searching for candidate transcripts that might be potential starting 
points for glucose-responsive switches. We found 38 potential switches 

by modeling all genes with absolute log2 fold change values ≥2 in at 
least one medically relevant glucose challenge experimental condition 
(Supplementary Figure S3).

We identified twenty genes as representative starting points for 
potentially interesting glucose-responsive switches (Figure  3B). 
Among the potential genes that exhibited an OFF-to-ON transition 
were two DUF2871 domain-containing genes (F1613_RS03065 and 
F1613_RS02965), F1613_RS00340 (ABC transporter ATP-binding 
protein), F1613_RS00345 (ABC transporter permease), pyrR 
(bifunctional pyr operon transcriptional regulator), ffs (signal 
recognition particle sRNA), and four tRNA genes. We also identified 
genes likely subject to carbon catabolite repression (CCR) that might 
serve as potential ON-to-OFF switches, including F1613_RS01060 
(PTS sugar transporter subunit IIC), lacA, pfkB, and F1613_RS09950 
(proline dehydrogenase) (Görke and Stülke, 2008; Nuxoll et al., 2012). 
Other promising ON-to-OFF switch candidates include pflB (formate 
C-acetyltransferase), raiA (ribosome-associated translation inhibitor), 
mqo (malate dehydrogenase (quinone)), F1613_RS05750 (hypothetical 
protein), F1613_RS07845 (homoserine dehydrogenase), and F1613_
RS06465 (IDEAL domain-containing protein) (Figure 3B). We also 
examined counts data from the medically relevant (G2–G17) glucose 
concentrations and identified a class of genes whose expression did 
not change in response to a glucose spike compared to an unchallenged 
(0 mM) control. These glucose-independent genes included lqo 
(L-lactate dehydrogenase (quinone)), F1613_RS08490 
(transglycosylase domain-containing protein), typA (translational 
GTPase TypA), rnr (ribonuclease R), and noc (nucleoid 
occlusion protein).

Genes repressed in response to 20-min 
glucose spikes

We observed 18 genes that were downregulated across all five 
glucose spike conditions and an additional 10 genes that were 
downregulated across the top four glucose spike conditions (Figure 4B; 
Supplementary Figure S4). For example, genes involved in lactose 
metabolism (F1613_RS11920 (tagatose-6-phosphate kinase), lacB, 
and lacA), ribose transport (rbsU, rbsD), fructose utilization (F1613_
RS05160 (PTS fructose transporter subunit IIABC), pfkB, and F1613_
RS05150 (DeoR/GlpR family DNA-binding transcription regulator)), 
proline catabolism (F1613_RS09950 (proline dehydrogenase)), the 
glyoxalase pathway (F1613_RS05685 (glyoxalase)), the succinate 
dehydrogenase complex (F1613_RS07025 (succinate dehydrogenase 
cytochrome b558 subunit)), and ethanol degradation (adhP) were 
downregulated, consistent with previous observations of gene 
expression changes that occur during CCR (Penninckx et al., 1983; 
Nam, 2005; Arndt and Eikmanns, 2007; Gutierrez-Ríos et al., 2007; 
Görke and Stülke, 2008; Nuxoll et  al., 2012; Halsey et  al., 2017; 
Supplementary Tables S3–S7). We also observed decreased expression 
of sdaAB (L-serine ammonia-lyase iron–sulfur-dependent subunit 
beta), raiA, F1613_RS03360 (universal stress protein), F1613_
RS00870 (GntR family transcription regulator), F1613_RS06465 
(IDEAL domain-containing protein), F1613_RS10135 (AAA family 
ATPase), F1613_RS07845 (homoserine dehydrogenase), F1613_
RS10140 (DUF4238 domain-containing protein), F1613_RS06500 
(fatty acid desaturase), and genes involved in formate metabolism 
(pflA and pflB) across at least four glucose spike conditions. Four 
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hypothetical proteins and one uncharacterized gene (five total) were 
also downregulated across at least four glucose spike conditions 
(Supplementary Tables S3–S7).

S. epidermidis transcription response to a 
20-min 17  mM glucose spike

We identified 85 of 2,354 genes (~4% of the genome) that change 
in response to a 17 mM glucose spike with log2FC values ≥1.5, among 
which 43 were upregulated and 42 were downregulated 
(Supplementary Table S6). Downregulated and upregulated genes 
were expressed over a − 5 to +5 log2FC range (Figure 4A). While gene 
expression changes are similar across all glucose levels, we observed a 
more robust change (i.e., −5 to +5 log2FC), a higher number of 
upregulated genes, and a higher total number of DEGs in the 17 mM 
glucose condition (Supplementary Tables S3–S5, S7).

Among the most downregulated genes (~6 to 34-fold) in the 
17 mM glucose spike condition were pflB and members of the glpR-
pfkB operon, which plays an essential role in the utilization of 
fructose, (F1613_RS05150 (DeoR/GlpR family DNA-binding 
transcription regulator), pfkB, and F1613_RS05160 (PTS fructose 
transporter subunit IIABC)) (Ge et al., 2024; Supplementary Table S6). 
We  found that L-serine ammonia-lyase iron–sulfur-dependent 
subunits alpha and beta (sdaAA and sdaAB), raiA, F1613_RS01060 
(PTS sugar transporter subunit IIC), and F1613_RS00520 (nitrate 
reductase subunit alpha) were also downregulated (~6 to 10-fold) 
(Supplementary Table S6). Six hypothetical proteins and one 

uncharacterized gene (seven total) were downregulated in the 17 mM 
glucose spike condition. tRNA genes accounted for almost 60% (24 
of 43) of the upregulated genes in the 17 mM glucose spike condition, 
consistent with increased protein synthesis and faster growth rates 
in the presence of glucose (Halsey et  al., 2017). F1613_RS07200 
(solute carrier family 23 protein) and ffs were among the most 
upregulated genes (~7 to 11-fold) in the 17 mM glucose spike 
condition. Two hypothetical proteins and three uncharacterized 
genes (five total) were also upregulated.

Functional classification of downregulated 
genes in S. epidermidis in response to a 
17  mM glucose spike

To further understand the functions of significantly 
downregulated genes we used the data from the 17 mM glucose spike 
condition to assign functional pathways against the GO and KEGG 
databases. We ordered pathways based on increasing significance level 
(p-value) (Figure 4C). Functional pathways with decreased expression 
include Carbohydrate Metabolism, Butanoate Metabolism, TCA 
Cycle, Propanoate Metabolism, Lipoic Acid Metabolism, Carbohydrate 
Transport, Hexose Metabolism, Oxidative Phosphorylation, 
Phosphoenolpyruvate-Dependent Sugar Phosphotransferase system 
(PTS), and Amino Acid Metabolism (Figure  4C; 
Supplementary Table S6). We  observed several downregulated 
pathways likely consistent with carbon catabolite repression (CCR) 
(Görke and Stülke, 2008).

FIGURE 3

Eighty-five S. epidermidis genes change expression levels in response to glucose. (A) Circular transcriptome map showing normalized gene expression 
levels in the S. epidermidis genome in response to glucose. Log2 fold change relative to control for cells exposed to 2  mM (G2), 5  mM (G5), 10  mM 
(G10), 17  mM (G17), or 50  mM (G50) glucose spikes. Each bar denotes a single gene; red bars represent significantly upregulated genes and blue bars 
represent significantly downregulated genes. Roman numerals i (sdaAB, rbsU), ii (pflB), iii (glpR-pfkB operon), iv (F1613_RS07845 (homoserine 
dehydrogenase), and v (members of the lac operon) correspond to select groups of genes that are downregulated across all five glucose spike 
conditions. (B) Glucose concentration-response curves for a representative subset of genes that have potentially interesting glucose-responsive switch 
properties.

https://doi.org/10.3389/fmicb.2024.1408796
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Benjamin et al. 10.3389/fmicb.2024.1408796

Frontiers in Microbiology 09 frontiersin.org

S. epidermidis transcription response to 
persistent glucose via batch culture

To identify differentially expressed genes in S. epidermidis exposed 
to persistent glucose via batch culture, we  grew cells overnight in 
medium containing 0.2% w/v or 1% w/v glucose. We  used RNA 
sequencing to analyze gene expression profiles and compared the 
expression profiles of cells exposed to 1% w/v glucose against cells 
exposed to 0.2% w/v glucose. DEGs of significance were defined using 
the following criteria: |log2 fold change| (i.e., log2FC) ≥ 1.5 and 
adjusted p value <0.05. By these criteria, we identified 195 of 2,354 
genes (~8% of the genome) with log2FC values ≥1.5, among which 133 
were upregulated and 62 were downregulated (Supplementary Table S8). 
We observed more upregulated genes, a higher total number DEGs, 
and unique gene expression changes in the persistent glucose via batch 
culture experimental condition compared to the 20-min glucose spike 
experimental condition (Supplementary Tables S3–S8).

Among the most upregulated genes (~13 to 30-fold) in the 
persistent glucose condition were members of the nrdDG operon 
(nrdD and nrdG), which encodes for an oxygen-independent 
ribonucleotide reductase (Masalha et al., 2001), and the dha operon 
(F1613_RS03960 (glycerol dehydrogenase), dhaK, dhaL, dhaM), 
which encodes for components of the glycerol dehydrogenase- and 
PTS-dependent dihydroxyacetone kinase system (Monniot et  al., 
2012; Supplementary Table S8). Genes involved in nitrate/nitrite 
reduction (narGHJI, nirBD, nreABC, and F1613_RS00485 (NarK/
NasA family nitrate transporter)) were also upregulated (~4.8 to 11.9-
fold) (Kamps et al., 2004; Supplementary Table S8). Sixteen genes 
involved in glycolysis, gluconeogenesis, and the TCA cycle including 
the glycolytic gapA operon (gap, F1613_RS05590 (phosphoglycerate 
kinase), tpiA, gpmI, and eno), the alsS/budA operon, F1613_RS00620 
(2,3-diphosphoglycerate-dependent phosphoglycerate mutase), 
F1613_RS01410 (fructose bisphosphate aldolase), fdaB, F1613_
RS01355 (L-lactate dehydrogenase), sdaAA, pyk, ilvB, F1613_RS06110 

FIGURE 4

A 17  mM glucose spike causes transcript levels to change up to ~ 34-fold. (A) Volcano plot showing the differentially expressed genes (DEGs) for the 
17  mM glucose spike experimental condition with |log2 FC|  ≥  1.5 and adjusted p ≤   0.05 as the threshold. The red dots represent 43 significantly 
upregulated genes, and the blue dots represent 42 significantly downregulated genes. (B) Venn diagram illustrating the number of unique and shared 
DEGs from the 10, 17, and 50  mM glucose spike experimental conditions. (C) Summary of the significantly downregulated genes for the 17  mM glucose 
spike experimental condition assigned to functional classes according to GO and KEGG pathways.
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(glucose-6-phosphate isomerase) and sdhB were slightly upregulated 
(~3 to 8-fold) in the persistent glucose condition, consistent with 
previous observations of glucose-responsive genes in S. aureus (Seidl 
et  al., 2009). Seven hypothetical proteins were also upregulated 
(Supplementary Table S8).

We observed downregulation (up to ~7-fold) of the energy-
coupling factor (ECF) transporter module components (F1613_
RS11970 (energy-coupling factor transporter ATPase), F1613_
RS11965 (energy-coupling factor transporter ATPase), F1613_
RS11960 (energy-coupling factor transporter transmembrane protein 
EcfT)) (Slotboom, 2013), F1613_RS03610 (isoprenylcysteine carboxyl 
methyltransferase family protein), and ugpC (Supplementary Table S8). 
F1613_RS05940, dltC, and dltD, components of the dlt operon 
required for the d-alanylation of teichoic acids in Gram-positive 
bacterial cell walls (Kovacs et al., 2006), were also downregulated (~3 
to 4-fold). We  observed downregulation of four transcription 
regulators including rsp., F1613_RS01465 (GbsR/MarR family 
transcription regulator), F1613_RS08735 (AraC family transcription 
regulator), and F1613_RS10440 (helix-turn-helix transcription 
regulator) by 3.3-, 3.5-, 3.7-, and 4.2-fold, respectively 
(Supplementary Table S8). Two hypothetical proteins were also 
downregulated in the persistent glucose condition 
(Supplementary Table S8).

S. epidermidis transcription response to a 
step down in glucose concentration from 
10 to 2  mM

To identify differentially expressed genes in S. epidermidis exposed 
to a step down in glucose concentration, we  challenged 
mid-exponential phase cells by subjecting them to a 10 mM glucose 
spike for 20 min immediately followed by a 2 mM glucose spike for 
20 min (Figure  1B). We  used RNA sequencing to analyze gene 
expression profiles and compared the expression profiles of cells 
exposed to a step down in glucose concentration against cells exposed 
to a 10 mM glucose spike only. DEGs of significance were defined 
using the following criteria: |log2 fold change| (i.e., log2FC) ≥ 1.5 and 
adjusted p ≤ 0.05. By these criteria, we identified 43 of 2,354 genes 
(~1.8% of the genome) with log2FC values ≥1.5, among which 10 
were upregulated and 33 were downregulated (Supplementary Table S9; 
Supplementary Figure S5). Downregulated and upregulated genes 
were expressed over a − 6 to +3 log2FC range (Figure 5A).

We observed upregulation (~3 to 6-fold) of F1613_RS03760 
((NAD(P)-binding domain-containing protein), betB, betA, F1613_
RS03755 (nucleoside recognition domain-containing protein), rpsN, 
F1613_RS06020 (NAD(P)-binding domain-containing protein), 
F1613_RS00615 (putative metal homeostasis protein), F1613_
RS02245 (putative sulfate exporter family transporter), F1613_
RS03765 (zinc ABC transporter substrate-binding protein), and 
F1613_RS01245 (aminotransferase class I/II-fold pyridoxal 
phosphate-dependent enzyme) in the step-down experimental 
condition. Among the most downregulated genes (~5 to 50-fold) were 
members of the purine biosynthetic operon (purEKCSQLFMNHD), 
which encodes for 11 enzymes that convert phosphoribosyl 
pyrophosphate (PRPP) to inosine-5′-monophosphate (IMP) 
(Goncheva et al., 2019), purine biosynthesis-associated gene purB, and 
glycine cleavage system genes (gcvT, gcvPA, gcvPB). One hypothetical 

protein was also downregulated in the step-down experimental 
condition (Supplementary Table S9).

Functional classification of differentially 
expressed genes in S. epidermidis in 
response to a step down in glucose 
concentration from 10 to 2  mM

We used the data from the step-down experimental condition to 
assign functional pathways against the GO and KEGG databases. 
We ordered pathways based on increasing significance levels (p-value) 
(Figure 5C). Functional pathways with decreased expression include 
Purine Metabolism, Nucleotide Biosynthesis, Amino Acid 
Metabolism, Nitrogen Compound Metabolism, Vitamin Metabolism, 
Lipid Acid Metabolism, Organic Compound Biosynthesis, and 
Sulphur Compound Metabolism (Figure 5C; Supplementary Table S9). 
Among upregulated pathways Protein Transport scored the highest 
significance, according to both GO and KEGG pathway enrichment 
analysis, under the step-down experimental condition (Figure 5B).

We constructed a Venn diagram to understand the relationship 
between our step-down, 10 mM glucose spike (G10), and 2 mM 
glucose spike (G2) data sets (Supplementary Figure S5); we observed 
no shared DEGs in common among the step-down condition (from 
10 to 2 mM glucose) and G10 (from 0 to 10 mM glucose). There were 
also no shared differentially expressed genes among the step-down 
(from 10 to 2 mM glucose) and G2 (from 0 to 2 mM glucose) 
experimental conditions either, indicating potentially unique gene 
expression changes as a function of increasing versus decreasing 
glucose concentrations (Supplementary Figure S5; 
Supplementary Tables S3, S9).

We sought to further understand if and how genes might 
be differentially expressed at an intermediate glucose concentration 
(2 mM glucose) as a function of whether cells had been previously 
exposed to a lower (0 mM) or higher (10 mM) glucose concentration. 
If prior glucose concentrations do not matter, we would expect no 
such differences. We performed scatter plot analysis of expression 
levels for all genes at 2 mM glucose as a function of prior glucose 
concentration (Figure 6). Most genes differentially expressed under a 
0 to 2 mM glucose spike were similarly expressed under a 10–2 mM 
glucose step down (Figure 6 blue dots). Over 14 genes differentially 
expressed under a 10–2 mM glucose step down were not similarly 
expressed under a 0–2 mM glucose spike (Figure  6 red dots; 
Discussion). Further analysis indicated these genes are primarily 
involved in purine metabolism (above; Supplementary Table S9).

Discriminating between glucose and heat 
shock conditions

Differential gene expression analysis of and within the skin 
microbiome might be  useful as a potential platform for clinical 
diagnosis. To explore this idea, we compared gene expression levels 
during heat shock to those observed during high (17 mM) glucose 
levels. Most (~93.6%) genes are similarly expressed (95% c.i.) under 
both conditions (Figure  7). However, 341 and 60 genes are 
differentially expressed under heat shock or high glucose, but not 
both conditions, respectively. Such genes may offer a starting point 
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for developing nucleic acid amplification-based methods for 
determining the current or prior physical experience of microbes 
on patients.

Discussion

To support bioengineering of skin microbes to diagnose, monitor, 
or treat disease, we sought to understand how S. epidermidis responds 
to environmental perturbations including heat shock and changes in 
glucose levels. We used RNA sequencing to investigate differential 
gene expression followed by gene set enrichment analysis (GSEA) to 
understand the functions of differentially expressed genes. 
We  observed an S. epidermidis heat-shock response that mostly 
resembles the heat-shock response of related staphylococcal species 
and other Gram-positive bacteria (below). We  observed carbon 
catabolite repression in response to a range of glucose spikes, 
upregulation of genes involved in glycolysis, gluconeogenesis, and the 
TCA cycle in response to persistent glucose via batch culture, as well 
as a potentially unique gene expression signature in response to a step 

down in glucose concentration from 10 to 2 mM. Building on our 
analyses, we curated a subset of glucose-responsive genes that can 
serve as starting points for engineering endogenous dynamic control 
of circuits in S. epidermidis.

We observed contrasting patterns of gene expression depending 
on whether cells were exposed to a spike or persistent level of glucose. 
For example, we observed downregulation (up to ~34-fold) across all 
five glucose spike conditions for genes involved in lactose metabolism, 
ribose transport, fructose utilization, proline catabolism, the 
glyoxalase pathway, the succinate dehydrogenase complex, and 
ethanol degradation (Supplementary Tables S3–S7). We believe this 
repression of genes involved in secondary carbon source utilization is 
evidence of carbon catabolite repression (CCR) in our glucose spike 
data (Görke and Stülke, 2008); yet we found no evidence of CCR in 
our persistent glucose via batch culture data (Supplementary Table S8). 
As a second example, while we observed the induction (~3–8-fold) of 
several essential glycolytic genes, the dha operon, gluconeogenesis 
genes, and TCA cycle genes in our persistent glucose via batch culture 
samples (Supplementary Table S8), we did not observe such gene 
expression patterns among the upregulated genes in our glucose spike 

FIGURE 5

Genes involved in purine metabolism are significantly downregulated in response to a step down in glucose concentration from 10 to 2  mM. 
(A) Volcano plot showing the differentially expressed genes (DEGs) for the step-down experimental condition with |log2 FC|  ≥  1.5 and adjusted p value 
≤  0.05 as the threshold. The red dots represent 10  significantly upregulated genes, and the blue dots represent 33 significantly downregulated genes. 
Summary of the significantly upregulated (B) and downregulated (C) genes for the step-down experimental condition assigned to functional classes 
according to GO and KEGG pathways.
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data. Instead, tRNA genes accounted for most of the upregulated 
genes in our glucose spike data (Supplementary Tables S3–S8).

One explanation for differences in gene expression response 
between spike and persistent glucose levels could be that S. epidermidis 
first adapts to glucose exposure by preferentially downregulating 
genes involved in secondary carbon source utilization to avoid the 
production of proteins that are not useful in the presence of glucose; 
only following sufficiently prolonged exposure to glucose does 
S. epidermidis adjust its transcriptome to upregulate genes involved in 
glucose utilization. We note that Seidl et al. found in S. aureus that a 
30-min exposure to 10 mM glucose was sufficient to realize gene 
expression changes like our prolonged exposure conditions, suggesting 
that between 20 and 30 min could be sufficient to fully transition to a 
persistent glucose transcriptome in S. epidermidis (Seidl et al., 2009). 
We  chose to measure the response of S. epidermidis to changing 
glucose levels at 37°C. Normal human skin temperatures can vary 
from 33 to 37°C (Bierman, 1936). Depending on the desired location 
for deploying a future bioengineered skin microbe it may be important 
to reconfirm changes in gene expression levels in response to glucose 
at the exact local skin temperature.

Under heat shock conditions we found patterns of gene expression 
like other Staphylococcus species. For example, at 45°C, we observed 
upregulation of F1613_RS04215 (CtsR family transcription regulator) 
and hrcA (Supplementary Table S1), known heat-shock gene 
expression regulators in S. aureus, B. subtilis, and other firmicutes 
(Derre et al., 1999; Chastanet et al., 2003; Schumann, 2003). We also 
observed rapid induction of clpB, clpP, and the dnaK, groESL, and clpC 
operons (Supplementary Table S1). Our data also provides evidence 
of an S. epidermidis heat-shock regulatory network that utilizes both 

the hrcA- and ctsR-encoded repressors. For example, we carried out 
DNA motif analysis and found CtsR (GGTCAAA/T) and CIRCE 
(controlling inverted repeat of chaperone expression) operator 
sequences arranged in tandem upstream of the dnaK and groESL 
operons consistent with previous observations of dual heat-shock 
regulation by HrcA and CtsR in S. aureus and S. epidermidis (Derre 
et al., 1999; Chastanet et al., 2003; Supplementary Figure S6). We also 
found CtsR recognition sequences upstream of clpB, clpP, and the clpC 
operon also consistent with previous observations of CtsR regulons in 
B. subtilis and Streptococcus pneumoniae (Derre et al., 1999; Chastanet 
et al., 2001; Supplementary Figure S6).

While we  observed upregulation of universal stress proteins 
(F1613_RS09680 and F1613_RS09700) in response to a heat shock, 
we  did not detect upregulation of the general stress-responsive 
alternative sigma factor sigB, which is a component of the heat-shock 
regulon in S. aureus, B. subtilis, and Listeria monocytogenes (Kullik and 
Giachino, 1997; Ferreira et al., 2001; Schumann, 2003). By contrast, 
we did observe upregulation (~5-fold) of F1613_RS09995, another 
sigma-70 family RNA polymerase sigma factor 
(Supplementary Table S1). This difference suggests that the 
S. epidermidis heat-shock regulatory network may differ slightly from 
that of S. aureus and other Gram-positive bacteria.

We compared the genome-wide S. epidermidis heat-shock 
response to the 17 mM glucose spike (G17) and step-down responses 
(Figure 8). We observed a more robust increase in gene expression in 
response to heat shock (i.e., −4 to +6 log2FC range) compared to G17 
(i.e., −5 to +5 log2FC) and step down (i.e., −6 to +3 log2FC range) 
and detected more differentially expressed genes in the heat-shock 
condition (366 genes) compared to G17 (85 genes) and step-down 

FIGURE 6

Expression levels of purine biosynthesis genes at intermediate glucose levels are sensitive to prior glucose levels. Scatter plot visualizing the relationship 
between the step-down and 2  mM glucose spike (G2) experimental conditions. Each dot denotes a single gene. The red and blue dots represent step-
down, and G2 differentially expressed genes (DEGs) respectively. The gray dots represent genes with no significant change. A 95% confidence interval 
was calculated around the residuals of gene expression differences between the two experimental groups. Genes that fall within the green highlighted 
region are predicted to have near identical average expression levels with 95% certainty.
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conditions (43 genes) (Figures 2A, 4A, 5A). In response to acute heat 
stress and subsequent loss of protein homeostasis (e.g., due to heat-
induced protein denaturation, misfolding, and aggregation), 
we observed a rapid and global reprogramming of gene expression, 
unlike the transcription changes observed when S. epidermidis adapts 
to a preferred carbon source (e.g., glucose) at non-toxic 
concentrations (Figures  3A, 8). We  believe these disparate gene 
expression profiles could be  of limited clinical utility; more 
specifically, DEGs unique to heat shock (341 genes) or high glucose 
(60 genes) may be a promising starting point for the development of 
simple nucleic acid-based tools for the diagnosis and monitoring of 
disease (Figure 7).

We observed downregulation (up to ~50-fold) of genes involved 
in purine biosynthesis (purEKCSQLFMNHD) in response to a step 
down in glucose concentration from 10 to 2 mM 
(Supplementary Table S9). We did not observe such downregulation 
in the G2 (from 0 to 2 mM glucose) or G10 (from 0 to 10 mM glucose) 
glucose spike conditions (Supplementary Tables S3, S5). Further, 
we  found no DEGs in common among the step-down and G10 
conditions and the step-down and G2 conditions 
(Supplementary Figure S5). Taken together we wondered if there is a 
unique step-down gene expression signature that does not resemble 
that of G2 or G10. We performed scatter plot analysis to visualize the 
relationship between the step-down and G2 conditions (Figure 6). 
We noticed that, while most genes are similarly expressed under both 
conditions, over 14 genes differentially expressed under step-down 
conditions were not similarly expressed under G2 conditions 

(Figure 6, red dots). Further analysis revealed that these genes were 
mainly involved in purine biosynthesis. We note that our step-down 
samples underwent two rounds of centrifugation while our G10 
samples underwent a single round of centrifugation prior to RNA 
harvesting (Methods); this methodological difference may account for 
the unique step-down gene expression signature observed here.

Finally, we sought to identify glucose-responsive promoters that 
might eventually be used to control the expression of an insulin gene 
in a bioengineered S. epidermidis strain developed to aid in treating 
diabetes. To this end, we constructed glucose concentration-response 
curves across medically relevant (2–17 mM) glucose level; blood 
glucose levels above 10 mM are hyperglycemic and would warrant 
insulin expression. We identified 38 glucose-responsive genes that 
might serve as ON or OFF switches for controlling synthetic genetic 
systems (Supplementary Figure S3; Figure 3B). Most (~70%) of the 
potential switches that exhibited an OFF-to-ON transition were tRNA 
genes (Supplementary Figure S3). We suspect these switches are not 
specific to glucose given that increased tRNA expression might also 
occur in response to various other carbon sources (Dong et al., 1996). 
We  also observed 19 potential ON-to-OFF switches 
(Supplementary Figure S3). Each glucose-responsive gene reported 
here is a starting point requiring additional characterization (e.g., 
response specificity) to identify those most appropriate for any 
given application.

For example, using a bioengineered skin microbe to help treat 
type 2 diabetes would require each bacterial cell to make between 0.03 
and 300 molecules of insulin per second, presuming a bacterial density 

FIGURE 7

Heat shock and glucose spikes create statistically unique signatures. Scatter plot visualizing the relationship between the heat-shock and 17  mM 
glucose spike (G17) experimental conditions. Each dot denotes a single gene. The red and blue dots represent heat-shock, and G17 differentially 
expressed genes (DEGs) respectively. The green dots represent DEGs found in both conditions and the gray dots represent genes with no significant 
change. A 95% confidence interval was calculated around the residuals of gene expression differences between the two experimental groups. Genes 
that fall within the green highlighted region are predicted to have near identical average expression levels with 95% certainty.
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of 2 × 1013 to 2 × 109 bacteria per square centimeter of skin (Benjamin, 
2024). An essential aspect of bioengineering S. epidermidis strains to 
treat diabetes is precise and reliable control of single-chain insulin 
(SCI) analog production. One strategy is to implement within 
S. epidermidis a synthetic transcription response specific to glucose 
(i.e., not responsive to off-target inputs such as acetate or fructose), 
that activates at the appropriate threshold (i.e., fasting blood glucose 
≥126 mg/dL) (American Diabetes Association, 2023), and results in 
well-regulated and rapid production of an SCI analog. The glucose-
responsive genes we identified here can serve as a starting point for 
such genetically-encoded controllers.

More broadly, bioengineered sensors and actuators could be used 
to create a diversity of potentially useful skin microbes. For example, 
environmentally friendly sunscreen production (Yang et al., 2018) 
controlled by UV intensity. As a second example, mosquito repellents 
and feeding-deterrents (Kajla et al., 2019) controlled by time of day. 
As a third example, odorant molecules (i.e., perfume or deodorant) 
controlled by body temperature or salt content. As a final example, the 
delivery of therapeutic proteins for the treatment of disease 
(Azitra, 2023).

The human skin microbiome is a diverse and dynamic microbial 
community that plays an essential role in maintaining our health and 
well-being. A more intimate understanding of how our skin microbes 
adapt to environmental perturbations (e.g., stress or increased glucose 
levels) is required to ultimately enable development of bioengineered 
skin microbes that can help diagnose and treat disease. We hope our 

investigation of the genome-wide transcription response in 
S. epidermidis to heat shock and medically relevant glucose 
concentrations helps further motivate ongoing work. We are excited 
to imagine a future in which the bioengineering of skin microbes has 
been made routine, helping doctors and patients to realize healthier 
lives and better clinical outcomes.
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