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Introduction: Carbohydrates, which make up 20 to 25% of tea beverages, are 
responsible for their flavor and bioactivity. Carbohydrates of pu-erh tea change 
during microbial fermentation and require further research. In this study, 
we examined the carbohydrate metabolism and expression of carbohydrate-
active enzyme genes during the fermentation of tea leaves with Aspergillus 
luchuensis.

Methods: Widely targeted metabolomics analysis, high-performance anion-
exchange chromatography measurements, and transcriptomics were used in 
this study.

Results: After fermentation, the levels of soluble sugar, hemicellulose, lignin, eight 
monosaccharides, and seven sugar alcohols increased. Meanwhile, the relative 
contents of polysaccharides, D-sorbitol, D-glucose, and cellulose decreased. 
High expression of 40 genes encoding 16 carbohydrate enzymes was observed 
during fermentation (FPKM>10). These genes encode L-iditol 2-dehydrogenase, 
pectinesterase, polygalacturonase, α-amylase, glucoamylase, endoglucanase, 
β-glucosidase, β-galactosidase, α-galactosidase, α-glucosidase, and glucose-
6-phosphate isomerase, among others.

Discussion: These enzymes are known to break down polysaccharides and cell 
wall cellulose, increasing the content of monosaccharides and soluble sugars.
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1 Introduction

Microorganisms play a crucial role in determining the metabolism and quality of 
fermented food (Wang et al., 2023). Fermented food has a fundamental microorganism that 
plays a vital role in enhancing its quality. For instance, lactic acid bacteria are commonly used 
in various dietary sources such as curd, pickles, milk, and wheat dough. They are also available 
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in the form of supplements to improve flavor and overall quality 
(Khushboo et al., 2023). Similarly, Aspergillus, Zygosaccharomyces, 
Candida, and Clavispora contribute to the formation of rich soy sauce 
flavor (Feng et  al., 2023). The production of enzymes by 
microorganisms significantly affects the metabolites in food. Recently, 
studies have reported the importance of Lactobacillus gasseri in 
producing fructooligosaccharides (de Lima et al., 2021) and Monascus 
purpureus in synthesizing esters (Xu et  al., 2021). Microbial 
fermentation is the critical step in the manufacturing of pu-erh tea; 
Aspergillus luchuensis induces dramatic changes in the chemical 
composition and content of tea (Chen et al., 2022). It is worth studying 
the changes in metabolism caused by A. luchuensis during the 
fermentation process of ripened pu-erh tea (RPT).

RPT is a renowned traditional Chinese tea that is crafted exclusively 
in Yunnan Province, located in Southwest China. It is made by 
fermenting sun-dried green tea from fresh leaves of Camellia sinensis 
var. assamica using microbial fermentation (Huang et  al., 2019). 
Recently, it has been reported that this tea has various health benefits, 
such as bacteriostatic properties, lipid-lowering effects (Jia et al., 2022), 
antioxidation, antimutation (Wang et  al., 2022), and antitumor 
properties (Armstrong et al., 2020). The metabolism of carbohydrates 
in RPT during post-fermentation is attributed to the core microbiota 
and their activities. Bian et al.(2022) has discovered that 
monosaccharides like glucose, fructose, arabinose, ribose, and ribulose 
are consumed by microbes during early and middle fermentation 
stages, whereas carboxylic acids and other monosaccharides such as 
galactose, rhamnose, mannose, xylose, talose, allose, and galactinol 
accumulate during the middle and late pile-fermentation stages. In our 
previous study, we identified microbial carbohydrate-active enzymes 
(CAZymes) that are involved in the degradation of various 
polysaccharides such as cellulose, xylan, xyloglucan, pectin, starch, 
lignin, galactomannan, and chitin (Zhao et al., 2019). Recently, Ma 
et  al. (2021) has detected CAZymes such as endoglucanases, 
glucosidases, and cellulases involved in the degradation of cellulose, 
starch, lignin, pectin, xylan, and xyloglucan during the fermentation of 
tea leaves by Aspergillus niger, Aspergillus tamarii, and Aspergillus 
fumigatus. During pu-erh tea fermentation, the impact of fungal 
species A. luchuensis on carbohydrate metabolism remains unclear, 
despite its significance in fermented food (Mageswari et al., 2016). 
Therefore, further investigation is required to establish a foundation for 
Pu-erh tea fermentation and the wider food fermentation industry.

High-performance liquid chromatography (HPLC), high-
performance anion-exchange chromatography (HPAEC), and ultra-
performance liquid chromatography–tandem mass spectrometry 
(UPLC–MS/MS) were used to study the carbohydrate metabolism of 
A. luchuensis in the pure culture fermentation of sterile sun-dried 
green tea. Expressions of fungal CAZymes genes were surveyed using 
transcriptomics. This study has advanced knowledge regarding 
CAZymes genes and carbohydrate metabolism in fungal fermentation 
of plant mass, especially on tea leaves.

2 Materials and methods

2.1 Pure culture fermentation of tea leaves 
and metabolomic analysis

Pure culture fermentation (FT) and control tests (CK) with 
inoculation with or without A. luchuensis in sterilized sun-dried green 

tea leaves were developed according to our previous study (Ma et al., 
2022). Sterilized sun-dried green tea leaves were fermented for 16 d, 
and six tea samples were collected. Fermented tea leaves were 
subjected to Metware Biotechnology Co., Ltd. (Wuhan, China), and 
analyzed by ultra-high-performance liquid chromatography (UPLC) 
and tandem mass spectrometry (MS/MS) in a widely targeted 
metabolomics approach. The extraction of metabolites in tea leaves, 
UPLC separation, ESI-MS/MS monitoring, and data processing were 
performed as described previously (Ma et al., 2022).

2.2 Measurement of saccharides in tea 
leaves

Saccharides in fermented tea leaves were sent to Sanshu 
Biotechnology Co., Ltd. (www.sanshubio.com, Jiangsu, China) and 
analyzed by using a Thermo ICS-5000 (Dionex, Thermo Scientific, 
Waltham, US) ion chromatography system with an electrochemical 
detector; 5 mg of the sample was hydrolyzed with trifluoroacetic acid 
(2 M) at 121°C for 2 h in a sealed tube and dried with nitrogen. The 
sample was washed with methanol two to three times and then blow-
dried. The residue was re-dissolved in deionized water and filtered 
through 0.22-μm microporous filtering film for measurement. The 
sample extracts were analyzed by HPAEC on a CarboPac PA-20 anion-
exchange column (3 × 150 mm; Dionex) using a pulsed amperometric 
detector (PAD; Dionex ICS-5000 system). The flow rate was 0.5 mL/min, 
and the injection volume was 5 μL. The solvent system consisted of A 
(0.1 M NaOH) and B: (0.1 M NaOH, 0.2 M NaAc). The gradient program 
was 95:5 (v/v) at 0 min, 80:20 (v/v) at 30 min, 60:40 (v/v) at 30.1 min, 
60:40 (v/v) at 45 min, 95:5 (v/v) at 45.1 min, and 95:5 (v/v) at 60 min.

2.3 Measurement of polysaccharides in tea 
leaves

Approximately 5 mg of the sample was hydrolyzed with 
trifluoroacetic acid (2 M) at 121°C for 2 h in a sealed tube. The extracts 
were dried with nitrogen and washed with methanol two to three 
times. The residue was re-dissolved in deionized water and filtered 
through a 0.22-μm microporous filtering film for measurement. The 
sample extracts were analyzed by HPAEC on a CarboPac PA-20 
anion-exchange column (3 × 150 mm; Dionex) using a pulsed 
amperometry detector (PAD; Dionex ICS 5000 system). The flow rate 
was 0.5 mL/min, and the injection volume was 5 μL. The solvent 
system consisted of A (0.1 M NaOH) and B (0.1 M NaOH, 0.2 M 
NaAc). The gradient program was as follows: 95:5 (v/v) at 0 min, 80:20 
(v/v) at 30 min, 60:40 (v/v) at 30.1 min, 60:40 (v/v) at 45 min, 95:5 (v/v) 
at 45.1 min, and 95:5 (v/v) at 60 min.

2.4 Expression of CAZymes genes in 
fermentation

The expression of CAZymes genes in fermentation was analyzed 
through a transcriptomics analysis. Fungal mycelia were collected and 
submitted to Gene Denovo Biotechnology Co., Ltd. (Guangzhou, 
China) to perform transcriptomics analysis of gene expression in 
fermentation. Detailed approaches are described in our previous 
report (Ma et al., 2022).
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2.5 Data analysis

Principal component analysis (PCA) and orthogonal partial least-
squares discriminant analysis (OPLS-DA) on the platform of 
MetaboAnalyst 5.01 were used to compare the metabolite profiles and 
the sample compositions. Variable importance in projection (VIP) was 
used to rank the overall contribution of each variable in the OPLS-DA 
model, and variables with VIP > 1.0, p < 0.05 (t-test), and fold change 
(FC) of >2 or < 0.5 were considered differentially changed metabolites 
(DCMs). All experiments were repeated three times.

3 Results

3.1 Metabolism of polysaccharides

The content of soluble sugar increased from 2.35% ± 0.03 to 
2.63% ± 0.02% after fermentation. The content of polysaccharides was 
67.05 ± 2.77 mg/g in CK, and it decreased to 46.00 ± 1.70 mg/g after 
fermentation. Total lignin and hemicellulose were 14.95% ± 0.20 and 
2.32% ± 0.06% in CK, which increased to 20.60% ± 0.45 and 
2.87% ± 0.08%, respectively, in FT. However, the contents of cell wall 
cellulose decreased from 18.55% ± 0.16 to 16.72% ± 0.16% (Table 1). 
Sharma reported that some Aspergillus species have the capability to 
break down cellulose and other polysaccharides into lignin (Sharma 
Ghimire et  al., 2016); this can explain the increase of lignin 
in fermentation.

3.2 Metabolism of soluble sugars

In total, 20 monosaccharide metabolites were identified by 
metabolomics (Supplementary Table S1). The relative levels (RLs) of 
13 monosaccharides were significantly higher in FT (VIP > 1.0, 
p < 0.05, FC > 2) (Figure 1A), including mannitol, sorbitol, dulcitol, 
glucuronic acid, ribitol, xylitol, arabitol, arabitol, arabinose, trehalose-
6-phosphate, glucose, gluconic acid, and glucose-1-phosphate. Among 
them, the RLs of eight monosaccharides increased more than 10-fold, 
including mannitol, sorbitol, dulcitol, glucuronic acid, ribitol, xylitol, 
arabitol, and arabinose. Meanwhile, the RLs of seven monosaccharides 
significantly decreased in FT (VIP > 1.0, p < 0.05, FC < 0.5), including 
inositol, anhydrous trehalose, isomaltulose, sucrose, galactinol, 
glucarate-O-phosphoric acid, and turanose. This study reveals that the 

1 https://www.metaboanalyst.ca/

RLs of mannitol exhibit a significant increase during fermentation, 
which is in agreement with previous findings that suggest the highest 
concentration of mannitol is produced by fungi after the fermentation 
of dark tea, particularly Pu-erh tea, when compared to other teas 
(Shevchuk et al., 2020).

To verify the metabolism of monosaccharides in fermentation, 13 
monosaccharides in tea leaves were measured through HPAEC 
(Figure  1B). These had levels ranging from 0.01 ± 0.00 mg/g to 
60.07 ± 2.14 mg/g, with sum contents of 67.13 ± 2.28 mg/g and 
24.83 ± 0.37 mg/g in FT and CK, respectively. The level of fructose was 
highest in both groups, with contents of 60.07 ± 2.14 mg/g and 
19.35 ± 0.21 mg/g in FT and CK, respectively. The contents of eight 
monosaccharides were increased by fermentation, including trehalose, 
fucose, rhamnose, arabinose, galactose, glucose, fructose, and 
raffinose. The contents of sucrose decreased from 3.42 ± 0.10 mg/g to 
undetectable. The high levels of arabinose, glucose, and sucrose in FT 
were in accordance with the results of widely targeted metabonomic 
measurements. Both confirmed the increase in arabinose and glucose 
as well as the decrease in sucrose.

To summarize, the fermentation of A. luchuensis led to an 
increase in the levels of soluble sugar, total lignin, total hemicellulose, 
and monosaccharide, whereas it reduced the amounts of 
polysaccharide and cell wall cellulose. Previous studies have also 
reported an increase in the levels of arabinose (Gong et al., 2010), 
glucose (Wang et al., 2022), mannitol (Zhang et al., 2023), xylitol, 
sorbitol (Shao et al., 2022), and dulcitol (Li et al., 2022), which is 
consistent with the findings presented here.

3.3 Expression of CAZymes genes in 
fermentation

The fungal mycelia in fermented tea leaves were collected, and 
their transcriptomes were sequenced to yield 5.58 × 107 clean reads. A 
total of 40 genes (FPKM >10) with relatively high expression in 
fermentation were identified and encoding 16 CAZymes, including 
β-glucosidase (6 genes), endoglucanase (5 genes), cellobiohydrolase 
(4 genes), arabinofuranosidase (4 genes), α-amylase (4 genes), pectate 
lyase (3 genes), α-L-arabinofuranosidase (2 genes), rhamnose 
carboxylic acid acetylesterase (2 genes), xylanase (2 genes), and 
β-galactosidase (2 genes).

Based on the previous analysis of CAZymes in Aspergillus (Pel 
et al., 2007; Coutinho et al., 2009; Culleton et al., 2013, 2014), and the 
function in UniProt annotation, 16 genes encoding CAZymes were 
hypothesized to degradation of cellulose, galactomannan, pectin, 
starch, xylan, and xyloglucan, as well as the release of other substances, 
such as trehalose, fucose, rhamnose, glucose, mannitol, sorbitol, 
dulcitol, ribitol, and glucuronic acid (Figure  2). For example, 
endoglucanase is involved in the degradation of complex natural 
cellulosic substrates; cellobiohydrolase releases the disaccharide 
cellobiose from the non-reducing end of the cellulose polymer chain 
and β-1,4-glucosidases hydrolyzes the cellobiose and other short 
cello-oligosaccharides into glucose units (Supplementary Table S2).

In summary, A. luchuensis P1 is capable of producing CAZymes 
during fermentation, such as extracellular inulinase, α-amylase, 
α-glucosidase, arabinofuranosidase, β-galactosidase, pectin 
methylesterase, and β-mannosidase. These enzymes can break down 
cellulose, pectin, starch, xylan, and other polysaccharides, resulting in 

TABLE 1 Content of polysaccharides in tea leaves.

Carbohydrates CK FT

Soluble sugar (%) 2.35 ± 0.03 2.63 ± 0.02*

Total lignin (%) 14.95 ± 0.20 20.6 ± 0.45*

Total hemicellulose (%) 2.32 ± 0.06 2.87 ± 0.08*

Cell wall cellulose (%) 18.55 ± 0.16 16.72 ± 0.16*

Polysaccharide (%) 6.71 ± 0.28 4.60 ± 0.17*

Content, mean ± SD (n = 2); significant difference compared with samples (*p < 0.05).
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FIGURE 1

RLs of differentially changed monosaccharides by widely targeted metabolism (A) and the content of monosaccharides differentially changed by 
HPAEC (B) of CK and FT. “NA” indicates that the compound was not detected.

FIGURE 2

CAZymes gene expression, function, and carbohydrate changes.
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an increase in soluble sugars, D-glucose, D-arabinitol, xylitol, and 
sucrose. Our findings align with previous studies, which have shown 
that glucose production increases when bacteria and yeast are 
combined (Tan et al., 2020). Microbial fermentation also increases the 
contents of arabinose, galactose, rhamnose, and mannose as reported 
in a study on the proliferation of microorganisms (Huang et al., 2019). 
Mannose content increases due to the degradation of microbial 
exopolysaccharides, as it is a component of such polysaccharides (Tian 
et al., 2021). The decrease in D-galacturonate content is consistent 
with a previous report on the lack of microorganisms with transport 
systems in inoculated fermentation tea (Jeong et al., 2018).

3.4 Pathway for carbohydrate metabolism

After fermentation, the relative content of D-galacturonate 
decreased nearly 4-fold, whereas the RLs of D-glucuronate, xylitol, 
D-arabitol, and L-arabinose increased approximately 4- to 32-fold. 
Ribitol was also increased, whereas D-galacturonate and D-xylose 
were decreased. L-Iditol 2-dehydrogenase (eight genes), pectinesterase 
(five genes), polygalacturonase (three genes), galacturan 
1,4-α-galacturonidase (four genes), α-L-arabinofuranosidase (three 
genes), non-reducing-end α-L-arabinofuranosidase (three genes), and 
6-phosphogluconate dehydrogenase (two genes) were observed in 
fermentation. According to the function annotation in the UniProt 
database, pectinesterase modifies cell walls by demethylesterifying cell 
wall pectin. Polygalacturonase decomposes pectin and pectic acid, 
while the arabinose residues in cell wall polysaccharides are primarily 
degraded by α-L-arabinofuranosidase. The non-reducing-end 

α-L-arabinofuranosidase hydrolyzes neutral sugars such as 
arabinogalactan and arabinomannan in the cell wall, promoting the 
solubilization and degradation of pectin (Supplementary Table S3). A 
pathway for the metabolism of D-galacturonate, D-gluconate, xylitol, 
D-arabitol, and L-arabinose is illustrated in Figure 3. It was suggested 
that pectinesterase (A-luc_G05086, A-luc_G05532, etc.), 
polygalacturonase (A-luc_G07899, A-luc_G09504, etc.), and 
galacturan 1,4-α-galacturonidase (A-luc_G01065, A-luc_G02154, etc.) 
hydrolyzed pectin into D-galacturonate. D-galacturonate was 
hydrolyzed to D-gluconate by aldonolactonase and further hydrolyzed 
to D-ribose by 6-phosphogluconate dehydrogenase (A-luc_G06289, 
A-luc_G06632). L-Iditol 2-dehydrogenase (A-luc_G03670, A-luc_
G04242, etc.) dehydrogenated xylitol to D-arabitol, and D-arabitol 
further released D-arabinose and ribitol. α-L-Arabinofuranosidase 
(A-luc_G00815, A-luc_G01237, etc.) and non-reducing-end 
α-L-arabinofuranosidase (A-luc_G10378) hydrolyzed arabinan, 
releasing L-arabinose (Figure 3).

After fermentation, the RLs of glucose-1-phosphate and 
D-gluconate increased 2.4- and 91-fold, respectively. Furthermore, 
D-glucose and D-galactose were also increased by 4.1- and 3.7-fold. 
In the transcriptome, 2 to 12 genes encoding α-amylase, cellulose 
1,4-β-cellobiosidase, glucoamylase, endoglucanase, β-glucosidase, 
β-galactosidase, and glucan-1,3-β-glucosidase were highly expressed 
(Figure  4). For example, according to the function annotation in 
UniProt database, these genes may be involved in increasing glucose-
1-phosphate and D-gluconate; starch, glycogen, oligosaccharides, or 
polysaccharide molecules can be hydrolyzed by α-amylase to produce 
maltose, oligosaccharides, and glucose; Starch and glycogen can also 
be  hydrolyzed by glucoamylase to produce glucose. Therefore, a 

FIGURE 3

Pathway for the metabolism of D-galacturonate, D-gluconate, xylitol, D-arabitol, and L-arabinose.
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pathway for the metabolism of glucose-1-phosphate, D-gluconate, 
D-glucose, and D-galactose was drawn as follows: cellulose 
1,4-β-cellobiosidase (A-luc_G00810 and A-luc_G07036), α-amylase 
(A-luc_G03892, A-luc_G05728, etc.), glucoamylase (A-luc_G05061), 
β-glucosidase (A-luc_G05285 and A-luc_G06292), endoglucanase 
(A-luc_G03733, A-luc_G04815, etc.), and glucan-1,3-β-glucosidase 
(A-luc_G00671, A-luc_G02839, etc.) hydrolyze D-glucose, releasing 
D-gluconate; α-amylase (A-luc_G03892, A-luc_G05728, etc.) 
hydrolyzed D-glucose 1p, releasing maltose and β-galactosidase 
(A-luc_G02017, A-luc_G03779, etc.), and hydrolyzed glucose-1-
phosphate, releasing lactose and maltose (Figure 4).

The widely targeted metabolic analysis identified that the RLs of 
D-sorbitol and D-glucose increased 145- and 4-fold, respectively. 
HPAEC revealed that the contents of sucrose (3.4-fold) decreased, 
whereas the content of trehalose (13.5-fold), fructose (3.1-fold), 
D-glucose (1.7-fold), and raffinose (1.1-fold) increased. Fucose, 
rhamnose, and galactose were generated after fermentation. 
Furthermore, glucose-1-phosphate increased, whereas galactinol and 
inositol decreased after fermentation. Genes encoding enzymes 
including α-galactosidase (five genes), α-glucosidase (two genes), and 
glucose-6-phosphate isomerase (one gene) were suggested to cause 
these metabolisms of compounds. For example, according to the 
function annotation in the UniProt database, α-galactosidase can 
hydrolyze polysaccharides containing α-galactoside bonds; 
α-Glucosidase can hydrolyze α-glucosides and oligosaccharides 
(Supplementary Table S3). Together, starch and sucrose metabolism, 
pentose phosphate pathway, and galactose metabolism were constructed 
as follows: α-galactosidase (A-luc_G01310, A-luc_G03267, etc.) 
hydrolyzed D-galactose, releasing inositol; D-sorbitol, mannose, and 
galactinol. α-Galactosidase hydrolyzed stachyose, releasing D-galactose, 
D-glucose, and raffinose. α-Galactosidase hydrolyzed raffinose, 

releasing D-glucose and sucrose; α-Glucosidase (A-luc_G03671 and 
A-luc_G05729) hydrolyzed sucrose, releasing D-fructose and 
D-glucose; glucose-6-phosphate isomerase (A-luc_G09590) catalyzed 
D-fructose, releasing D-glucose and glucose-1-phosphate (Figure 5).

During pile fermentation, sun-dried tea leaves undergo a series of 
chemical reactions (oxidation, degradation, and condensation), and 
the composition and content of the main quality-related metabolites 
such as tea polyphenols, catechins, amino acids, flavonoids and their 
glycosides, phenolic acids, and alkaloids significantly change (Zhu 
et  al., 2020). The genera Aspergillus, Penicillium, Rhizopus, and 
Saccharomyces are the most frequently identified microorganisms 
during the process of pile fermentation and in commercial products 
(He et  al., 2023). A. luchuensis was isolated from pu-erh tea 
fermentation and identified as a dominant fungus. In a previous study, 
gene-encoding enzymes that catalyze the metabolism of phenolic 
compounds were revealed (Ma et al., 2022). In this study, we found 
that fermentation by A. luchuensis primarily leads to the degradation 
of polysaccharides and cell wall cellulose, as well as an increase in the 
content of monosaccharides, soluble sugars, and total lignin; therefore, 
making a significant contribution to the flavor of RPT; we  also 
observed genes encoding CAZymes highly expressed in fermentation 
(FPKM >10), which assumed to cause the metabolism of carbohydrates 
(Figure 6).

4 Discussion

The metabolism of carbohydrates by fungi is important in the 
biological world. Fungi use carbohydrates as a source of energy and 
carbon, which help them survive and grow. Fungi also play a role in 
important biogeochemical cycles such as the carbon, nitrogen, and 

FIGURE 4

Pathway for metabolism of glucose-1-phosphate, D-gluconate, D-glucose, and D-galactose.
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FIGURE 5

Pathway for starch and sucrose, pentose phosphate, and galactose metabolism.

FIGURE 6

Polysaccharide-related degrading enzyme or hydrolase.
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sulfur cycles (Yousaf et al., 2021). These metabolites have applications 
in areas such as food fermentation, drug development, and industrial 
production. The study found that A. luchuensis produces CAZymes to 
degrade polysaccharides and cellulose, which has potential 
applications in fields such as bioengineering or bio-energy and is 
worth further research.

Pu-erh tea has a unique flavor that is mainly attributed to diverse 
microorganisms. The traditional fermentation process of Pu-erh tea 
involves spontaneous microbial solid-state pile fermentation for 
several weeks under high temperatures and humidity. During this 
process, the genera Aspergillus, Penicillium, Rhizopus, and 
Saccharomyces are usually identified and isolated microorganisms. 
These microorganisms are also present in commercial products (He 
et al., 2023). Pile fermentation changes tea leaves, creating a unique 
flavor of RPT. Most saccharides and purine alkaloids showed 
increasing tendency or remained stable (Ma et al., 2021); the change 
in saccharides was consistent with the research in this study. 
Aspergillus produces abundant hydrolases, such as cellulase, 
hemicellulase, xylanase, pectinase, and protease. These enzymes 
hydrolyze cellulose, pectin, and protein substances to form soluble 
sugars, amino acids, soluble pectin, and other components (Hu et al., 
2021). After the inoculation of A. luchuensis, the soluble sugar content 
increased, which has been consistent with previous studies. Tea 
polyphenols in tea do not have an inhibitory effect on mold. 
Additionally, some metabolites produced by mold can produce a 
series of reactions in tea, including degradation, oxidation, 
methylation, which can improve the quality of tea (Hu et al., 2022). A 
recent study showed that A. luchuensis fermentation increases 
monosaccharides, soluble sugars, and total lignin. Enzymatic reactions 
increase specific compounds. These findings provide insight into 
Pu-erh tea fermentation and flavoring compounds (Wu et al., 2022). 
A series of reactions such as degradation, glycosylation, 
deglycosylation, methylation, and oxidative polymerization occurred 
during solid-state fermentation (Xiao et al., 2022). In a recent study, 
genes encoding enzymes such as glycoside hydrolases, phenolic acid 
esterases, laccases, tyrosinases, dehydrogenases, peroxidases, 
dioxygenases, monooxygenases, decarboxylases, and 
O-methyltransferases were identified. These enzymes catalyze 
hydrolysis, oxidation, ring cleavage, hydroxylation, decarboxylation, 
and O-methylation of phenolic compounds, significantly (p < 0.05) 
changing the phenolic compound composition. Phenolic compounds 
were found to be  degraded through the degradation of aromatic 
compounds pathways and xenobiotics biodegradation and metabolism 
pathways (Ma et al., 2022).

This study found that A. luchuensis can effectively break down 
cellulose and increase the number of monosaccharides during tea 
fermentation. However, there is currently a lack of research on 
carbohydrate metabolism and mechanisms involved in the processing 
of Pu-erh tea. This article provides a foundation for further study in 
this area.

The focus of this study is on the metabolism and mechanism of 
carbohydrates during the fermentation process of Pu-erh tea. Previous 
research has shown that carbohydrates are related to the abundance 
of responsible proteins in varying degrees and potentially contribute 
to the comprehensive flavor of tea (Wu et al., 2020). Another study 
found that stress-induced carbohydrates change the flavor formation 
of oolong tea during the enzymatic-catalyzed process (Wu et  al., 

2022). Additionally, there are differences in the isolation, identification, 
and community diversity of microorganisms between tank and pile 
fermentation (Long et al., 2023). Our study examined the effects of 
A. luchuensis fermentation on tea leaves, including the cell wall, 
cellulose, pectin, and composition of polysaccharides. We identified 
the enzymes involved in tea fermentation and discovered the types 
and amounts of monosaccharides produced from the degradation of 
cellulose and pectin. Our research provides a foundation for 
developing processing technologies and utilizing microbial strains to 
produce dark teas.

5 Conclusion

The results of the study indicate that tea fermentation led to an 
increase in a variety of monosaccharides, including trehalose, fucose, 
rhamnose, arabinose, galactose, glucose, fructose, and raffinose, as 
well as other substances such as mannitol, sorbitol, dulcitol, soluble 
sugar, total hemicellulose, and total lignin in FT (p < 0.05). Conversely, 
the relative content of D-sorbitol, D-glucose, and cell wall cellulose in 
CK was increased (p < 0.05). The study also analyzed the changes in 
tea carbohydrates and the expression of CAZymes genes of 
A. luchuensis. The results suggest that during fermentation, enzymes 
such as cellobiohydrolase, cellulase, endoglucanase, β-glucosidase, 
α-galactosidase, β-galactosidase, and others can break down cellulose, 
galactomannan, pectin, starch, xylan, and xyloglucan. Additionally, 
α-glucosidase, β-galactosidase, and β-glucosidase can hydrolyze 
glucoside and pyran glucoside. These findings provide insight into the 
metabolism of tea carbohydrates fermented with a dominant fungus 
and lay the groundwork for further understanding carbohydrate 
changes in RPT fermentation.
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