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1 Introduction

The gut microbiota is a key regulator of various metabolic pathways in the host,

including homeostasis, immunostasis, mucosal permeability, metabolic support, and

even brain development. Animal models have substantially provided most of the

current information about the gut microbiota, particularly gnotobiotic experimentation.

In research, the term “gnotobiotic” describes a controlled environment where all

microorganisms are known or excluded. This experimental setup allows for precise

observation of interactions between host and their gut microbiota, giving a solid

foundation for the study of the effects of specificmicroorganisms on host health and disease

(Kubelkova et al., 2016).

Gnotobiotic models have been successfully applied to several animals, including mice,

piglets, fish, insects, and nematodes. Mice have been the most used model for a variety of

purposes, including predicting the human gut microbiota’s response to a variety of factors

in gnotobiotic mice (Faith et al., 2011), determining the effect of the gut microbiota on

brain development (Lu et al., 2018), identifying gut microbe-host phenotype relationships

(Faith et al., 2014), studying the role of probiotics and commensal microbiota in the

development of the mucosal immune system, creating and characterizing communities of

human gut microbes (Faith et al., 2010), and several others.

Depending on the study design, gnotobiotic models may consider germ-free,

conventionalized (germ-free animals inoculated with the total fecal microbial community

of their conventionally born and raised siblings), or standardized mice (germ-

free mice inoculated with an in vitro standardized microbial consortia) (Turnbaugh

et al., 2008; Williams, 2014). Standardized microbial consortia have been developed

to permanently colonize gnotobiotic mice while providing fundamental functions to

the host and serving as a comparative control. This is fundamental to researching

and comprehending suspected interactions between the host and its microbiota and

between varying components of such microbiota while representing a precise approach
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to translating associations into functions (Basic and Bleich,

2019). Fundamental aspects of gnotobiotic research are not

only producing sterile embryos or larvae but sterilizing animal

enclosures, food, and materials to avoid any microbial interference.

To advance research in this field, using standardizedmicrobiota

or synthetic bacterial communities (syncoms) is essential in studies

involving gnotobiotic animals. The Oligo-Mouse-Microbiota

(OMM12) is an example of a synthetic 12-bacterial species

consortium created about a decade ago to facilitate functional

microbiome research in mouse models (Brugiroux et al., 2016;

Eberl et al., 2020). Despite other consortia developed for the

same purposes (Stecher, 2021), the OMM12 is presently the

most extensively employed strain collection for laboratory-based

research. The bacterial strains have been fully sequenced and made

publicly available; these strains were isolated from mice and are

relatively easy to culture.

Conversely, synthetic bacterial communities like the OMM12

are not common or do not have the same standardization level as

other animal models with valuable biological features. An example

is the zebrafish (Danio rerio), the most used biological model. Here,

we advocate for developing synthetic microbial communities or

syncoms for the zebrafish model.

2 Oligo-mouse-microbiota 12

The OMM12 consortium offers several advantages over

other defined consortia based on the available evidence. These

benefits include a wide phylogenetic diversity, the accessibility of

genomic sequences, strains from collections, and their stability

for long periods in diverse mice strains (Brugiroux et al., 2016).

Thus, OMM12 refers to a synthetic collection of microorganisms

that mimic the naturally occurring microbiota in the mice’s

gastrointestinal tract that perform synergic functions for the host,

including protection against pathogens. This consortium is formed

by five phyla that include seven Bacillota species (Clostridium

innocuum, Clostridium clostridioforme, Lactobacillus reuteri,

Enterococcus faecalis, Acutalibacter muris, Flavonifractor plautii,

Blautia coccoides), two Bacteroidota (Bacteroides caecimuris,

Muribaculum intestinale), one Actinomycetota (Bifidobacterium

animalis subsp. animalis), Verrucomicrobia (Akkermansia

muciniphila), and Pseudomonadota (Turicimonas muris), all

belonging to the mouse intestinal bacterial collection (miBC)

(Lagkouvardos et al., 2016).

Research using OMM12 has focused on studying digestive tract

colonization dynamics, infectious processes, mucosal immunology,

microbial ecology, host-microbiome cross-talk, probiotics, etc

(Brugiroux et al., 2016; Hernández-Mendoza et al., 2022). Beneficial

adaptations have been developed for this bacterial consortia; for

example, specific fluorescence in situ hybridization probes were

designed and successfully proved to detect and quantify OMM12

(Brugiroux et al., 2022). Furthermore, considering that criticism

has arisen due to the possible incompatibility of OMM12 with

certain strains of mice, strains that are fully compatible with this

bacterial consortium have been defined; in this case, C57BL/6 mice

that have been stably colonized with OMM12 are referred to as

stable defined moderately diverse microbiota mice (sDMDMm2)

(Li et al., 2015). Recent evidence has demonstrated that theOMM12

inoculated germ-free mice reached the same stable gut microbiota

composition regardless of the experimental facility (five European

germ-free rodent facilities participated) (Eberl et al., 2020).

The OMM12 has been expanded with selected bacteria from

a collection of over 200 bacterial strains. The collection was

constructed using an enabled metagenome-educated prediction

of synthetic communities to capture key functional differences

between microbiomes. The OMM19 was elaborated by adding

strains compensating for phenotype differences between OMM12

and specific pathogen-free mice (Afrizal et al., 2022). Thus,

adaptations and improvements have been performed to address

several research questions. However, other synthetic microbiota has

been successfully used for decades, such is the case of the Altered

Schaedler Flora (ASF) composed of only eight bacteria, a reduced

consortium exempt of pathobionts, totally harmless to the intestinal

cavity, and capable of being stable throughput generations and

used in biomedical research. As a reduced consortium, advantages

in applications, management and synthesizing have been reported

(Wymore Brand et al., 2015).

3 Zebrafish

The unique natural features of zebrafish have made it the

most used fish in biological research. Its ease of handling and

manipulation at each stage of its life cycle, including reproduction,

has led multiple laboratories to use it as an animal model, even

above mice.

The fish undergoes external embryonic development

(ovoviviparous) and produces abundant offspring that hatch

within 48–72 h. The eggs have a translucent, semipermeable

membrane that allows for easy observation of embryonic

development (Castillo-Salas et al., 2022). Also, tissue regeneration

of most organs, including vital organs like the heart and brain,

is one of the particularities of the species and has been used to

comprehend regeneration mechanisms in humans (Gemberling

et al., 2013). Furthermore, this species displays early organogenesis,

sharing similarities with mammalian organs. It boasts anatomical

and genetic homologies with humans and possesses a well-

developed immune system akin to humans—complete with innate

and adaptive immunity; herein, around 70% of human genes

are detected in zebrafish (Howe et al., 2013). As such, the fish

species’ immune mechanisms and receptors are preserved within

the vertebrate class (Lieschke and Currie, 2007; Sullivan and

Kim, 2008). The utilization of zebrafish as a model organism

has proved to be an immensely valuable tool in progressing our

understanding of various biological disciplines; for instance, it is

useful in characterizing human diseases and identifying and testing

new drugs to treat the diseases being modeled, developmental and

toxicological research, etc. (Kari et al., 2007; Yang et al., 2009).

The similarities in the digestive system between zebrafish

and humans have led to using this fish as a model to generate

knowledge about the gut microbiota and related aspects requiring

gnotobiotic specimens. Several techniques have been documented

for producing zebrafish embryos, isolating and raising germ-free

fish, and introducing microorganisms into the gut microbiota

of zebrafish (Pham et al., 2008). In the zebrafish, for example,

gnotobiotic models are carried out by producing germ-free fish
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FIGURE 1

Considerations for designing a standardized synthetic microbial community for zebrafish.

and inoculating single bacterial species (monoassociation) such

as Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia

coli (Rawls et al., 2004, 2006). However, other methods involve

euthanizing adult zebrafish, removing the intestinal contents, and

transferring them to germ-free fish (Pham et al., 2008). However,

standardizing a synthetic microbial community analogous to the

OMM12 or similar is still a pending task for the zebrafish and any

fish models.

Numerous studies have thoroughly documented the gut

microbiota of zebrafish, revealing that it is influenced by

various internal and external factors. Evidence indicates that

the gut microbiota of juvenile and adult zebrafish is consistent

across different habitats and stabilizes around the juvenile phase

(∼75 days) (Cornuault et al., 2022), with Proteobacteria and

Fusobacteriota as the dominant phyla. In this regard, the most

influential factor determining the gut microbiota of zebrafish is the

internal condition established by the fish. Like in many other fish

species, this microbiota maintains a symbiotic relationship with the

host and plays crucial roles in protecting against pathogens, as well

as in nutritional, endocrine, neural, and physiological functions

(Vargas-Albores et al., 2023).

4 Discussion

Developing a synthetic microbial community to improve

the zebrafish model focusing on studying the gut microbiota is

still challenging. Designing and defining a synthetic microbiota

for zebrafish may require not only considering bacterial strains

belonging to the most abundant phyla but also coping with the

criteria established for the OMM12, ASF, etc., which include three

important characteristics that the microbial model system should

possess: first, the ability to maintain a consistent composition

across multiple generations reared under sterile conditions; second,

perform efficient colonization in the germ-free animal to create

subsequent gnotobiotic lines across different laboratories; third,

possess metabolic pathways that allow for the emulation of complex

ecosystems, including colonization resistance and the replication

of microbiota-based host effects (Macpherson and McCoy, 2015)

(Figure 1).

Approaches for developing a synthetic microbiota for the

zebrafish have been made; for instance, 13 culturable and

morphologically different bacterial species were reported as the

most prevalent in zebrafish, including Aeromonas hydrophila,

Aeromonas sobria, Vibrio parahaemolyticus, Photobacterium

damselae, Pseudomonas aeruginosa, Pseudomonas fluorescens,

Pseudomonas luteola, Comamonas testosteroni, Ochrobactrum

anthropi, Staphylococcus cohnii, Staphylococcus epidermidis,

Staphylococcus capitis, and Staphylococcus warneri (Cantas et al.,

2012). Also, a meta-analytic approach performed in our laboratory,

retrieving most of the available 16S sequences of the zebrafish

gut microbiota reported in databases, revealed a zebrafish core

microbiota that included representative bacteria from six phyla:

Proteobacteria, Fusobacteriota, Planctomycetota, Firmicutes,

Actinobacteriota, and Bacteroidota (Supplementary material 1).

This information could serve as a first approach, but designing

a synthetic microbiota for aquatic animals has additional

challenges, starting with delivering viable microorganisms to the

intestinal tract.

Gnotobiotic zebrafish models based on monoassociation

provide a single bacteria through inoculation water at

concentrations between 102 and 104 CFU/mL, trying to maintain
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such levels by microbial titration (Rawls et al., 2006). This

technique may be applied to inoculate a bacterial consortium;

however, this has complications associated with the biological

requirements of the different bacteria, as all of them should be

capable of at least surviving in water while incorporated in fish.

Another strategy involves individual force-feeding; however, it

is time-consuming, implies the manipulation and handling of

animals, and is only viable for small groups of fish.

Developing a synthetic microbial community for fish and

mice presents additional challenges due to the exclusive focus

on cultivable bacteria. While the majority of microbes in the gut

microbiota are prokaryotic, the eukaryotic counterpart also plays

a significant biological role. Critics of synthetic microbiota based

solely on bacteria argue that although designed consortia can

confer benefits and restore functions in gnotobiotic models, they

do not fully replicate the multitrophic reality (Vargas-Albores et al.,

2023). Besides, such synthetic microbial communities only contain

cultivable bacteria, which some environmental microbiologists

estimate is a minor proportion compared to non-culturable

bacteria, while others argue that such a percentage is significantly

higher in bacterial communities associated with an animal host

(Wade, 2002; Steen et al., 2019); however, this is a limitation

that cannot be easily overcome due to the difficulty of developing

culture media with conditions that allow the growth of a higher

percentage of bacteria.

Although there have been difficulties, utilizing synthetic

microbial communities like the OMM12, ASF, and others in

mice has yielded valuable insights into the gut microbiota and

represents progress toward understanding the intricate interplay

between the microbiota and its host. Consequently, developing and

standardizing a synthetic microbial community for zebrafish would

undoubtedly bolster the production of fundamental and applied

scientific knowledge while taking advantage of its high fecundity,

external fertilization, optical transparency, and rapid development.

Furthermore, the relationship between gut microbiota and major

neuromodulator systems, including neurotransmitter receptors,

transporters, and enzymes involved in synthesis and metabolism,

could be studied, as they are similar to those observed in humans

and rodents.
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