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Objectives: The study aims to systematically identify the alterations in gut 
microbiota that observed in gastric cancer through comprehensive assessment 
of case–control studies.

Methods: The systematic literature search of PubMed, Embase, Cochrane 
Library, and Web of Science was conducted to identify case–control studies 
that compared the microbiomes of individuals with and without gastric cancer. 
Quality of included studies was evaluated with the Newcastle-Ottawa Quality 
Assessment Scale (NOS). Meta-analyses utilized a random-effects model, and 
subgroup and sensitivity analyses were performed to assess study heterogeneity. 
All data analyses were performed using the “metan” package in Stata 17.0, and 
the results were described using log odds ratios (log ORs) with 95% confidence 
intervals (CIs).

Results: A total of 33 studies involving 4,829 participants were eligible for 
analysis with 29 studies provided changes in α diversity and 18 studies reported 
β diversity. Meta-analysis showed that only the Shannon index demonstrated 
statistical significance for α-diversity [−5.078 (−9.470, −0.686)]. No significant 
differences were observed at the phylum level, while 11 bacteria at genus-level 
were identified significant changed, e.g., increasing in Lactobacillus [5.474, 
(0.949, 9.999)] and Streptococcus [5.095, (0.293, 9.897)] and decreasing in 
Porphyromonas and Rothia with the same [−8.602, (−11.396, −5.808)]. Sensitivity 
analysis indicated that the changes of 9 bacterial genus were robust. Subgroup 
analyses on countries revealed an increasing abundance of Helicobacter and 
Streptococcus in Koreans with gastric cancer, whereas those with gastric cancer 
from Portugal had a reduced Neisseria. Regarding the sample sources, the study 
observed an increase in Lactobacillus and Bacteroides in the gastric mucosa 
of people with gastric cancer, alongside Helicobacter and Streptococcus. 
However, the relative abundance of Bacteroides decreased compared to the 
non-gastric cancer group, which was indicated in fecal samples.

Conclusion: This study identified robust changes of 9 bacterial genus in people 
with gastric cancer, which were country-/sample source-specific. Large-scale 
studies are needed to explore the mechanisms underlying these changes.
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1 Introduction

Gastric cancer, a prevalent and malignant tumor, is a major global 
health concern and one of the leading causes of cancer-related death 
(Sung et al., 2021). According to World Health Organization (2020), it 
ranked third in terms of cancer-related mortality worldwide. The 
development of gastric cancer involves multiple factors, including 
smoking, alcohol consumption, genetics, and alterations in the gut 
microbiota (Aviles-Jimenez et al., 2014; Rawla and Barsouk, 2019). The 
gut microbiome consists of a community of microorganisms that reside 
in the intestines, including bacteria, fungi, viruses, and other types of 
microorganisms. These communities of microbes perform crucial 
functions in human physiology and metabolism, including digestion 
and regulation of the immune system. Furthermore, they are closely 
linked to human health. In healthy individuals, the gut microbiota 
tends to remain stable. However, dysbiosis, an imbalance in the gut 
microbiota, can arise due to medication use, environmental changes, 
and dietary variation. Dysbiosis of the gut microbiota has been linked 
to the development of diverse ailments (Fan and Pedersen, 2021).

The relationship between gastric cancer and the gut microbiota has 
been a primary subject of investigation. Several studies indicate variations 
in the composition of the gut microbiota between gastric cancer and 
those without, implying a crucial role of the gut microbiota in the 
development of gastric cancer. However, the specific changes in bacterial 
composition vary between studies. Some studies suggest a decrease in 
microbial diversity (Coker et al., 2018; Peng et al., 2023), whereas others 
suggest an increase in diversity (Wang et al., 2016; Castaño-Rodríguez 
et al., 2017). Besides, the specific microbial species implicated in different 
studies also vary. For example, Castaño-Rodríguez et al. (2017) research 
detected an enrichment of Lactococcus, Fusobacterium, and Veillonella in 
gastric cancer compared to precancerous stages. Wei et al. (2023) found 
notable variations in the prevalence of Streptococcus, Rhodococcus, and 
Ochrobactrum between individuals with gastric cancer and healthy 
individuals. Meanwhile, Peng et al. (2023) indicated an increase in some 
genera such as Lautropia and Lactobacillus, and a decrease in others 
notably Peptostreptococcus and Parvimonas among the gastric cancer 
group in contrast to the control group. Additionally, the exact role of the 
gut microbiota in the development of gastric cancer remains the subject 
of ongoing debate. Although some researchers contend that alterations 
in the gut microbiota may be an independent risk factor for gastric 
cancer, others argue that it is a secondary factor. Lastly, differences in the 
source of samples, gene regions selected for sequencing, sequencing 
platforms, reference databases, and data analysis methods lead to 
variations in the results of different studies (Nearing et al., 2022). Thus, 
further research is essential to investigate the mentioned issues 
thoroughly. Meta-analysis is a possible method to address above issues 
by synthesizing published studies and combining the effects of different 
factors to produce more effective results.

Therefore, this study aims to fill the gaps of previous studies by 
meta-analysis to summarize research on changes in the gut microbiota 
of people with gastric cancer and without gastric cancer to elucidate 
microbial changes during gastric cancer development.

2 Materials and methods

2.1 Registration

The systematic review and meta-analysis was registered in the 
International Prospective Register of Systematic Reviews (PROSPERO) 
with the registration number CRD42023437426, which was reported 
according to the Preferred Reporting Items for Systematic Reviews and 
Meta-analyses (PRISMA) guidelines (Liberati et al., 2009).

2.2 Data sources and search strategy

A systematic search was executed utilizing computerized 
bibliographic databases such as PubMed, Embase, Cochrane Library, 
and Web of Science, covering all records up until April 4, 2023. The 
search strategy combined MeSH and free terms using the Boolean 
operators “AND” and “OR.” For instance, PubMed was searched with 
the following query: (microbio*[Title/Abstract]) AND (“stomach 
neoplasms”[MeSH Terms] OR “cancer of stomach”[Title/Abstract] OR 
“stomach cancers”[Title/Abstract] OR “gastric cancer*”[Title/
Abstract]). The detailed search protocols for each scientific database 
are shown in Supplementary Table S1.

2.3 Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) adult diagnosed with 
gastric cancer through gastroscopic biopsy; (2) the control group 
consisted of non-gastric cancer individuals undergoing either 
endoscopy or biopsy, including healthy individuals and those with 
precancerous lesions such as chronic gastritis or intestinal metaplasia; 
(3) reporting the changes in gut microbiota composition/diversity; 
and (4) case–control study.

Study was excluded if it met any of the following situations: (1) 
people had undergone gastric cancer-related treatments, such as 
surgery, chemotherapy, radiation therapy, and immunotherapy; (2) 
pregnant women were involved; (3) samples were from oral, skin, or 
oropharyngeal; and (4) changes in the gut microbiota cultured in 
specific media were excluded since the culture conditions exert a 
significant influence on microbiota data (Goodrich et  al., 2014; 
Widder et al., 2016). Additionally, abstracts, editorials, comments, and 
studies written in languages other than English were also excluded.

2.4 Study selection and data extraction

Two researchers (Zhang and Wu) screened the searching results 
of databases according to the inclusion and exclusion criteria 
independently. Titles and abstracts were screened firstly, and then the 
full texts were reviewed to identify eligible studies. Four researchers 
(Zhang, Wu, Ju, and Wang) independently exacted the following 
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information from each eligible study: the study ID (first author and 
publication year), country, sample size, age, gender, H. pylori infection 
status, sample source, method for measuring the microbiome, DNA 
extraction methods, annotation database, composition and diversity 
of the gut microbiome in people with and without gastric cancer, and 
the differences in the gut microbiome between the two groups. The 
exacted data were cross-checked by four investigators. Any 
disagreement during study selection and data extraction was settled 
by consultation with the fifth researcher (Zhu) to reach a consensus.

2.5 Quality assessment

The quality of the included studies was evaluated using the 
Newcastle-Ottawa Quality Assessment Scale (NOS) (Wells et  al., 
2000). The NOS consists of selection, comparability, and measurement 
of exposure factors. Each study can receive a maximum of nine points. 
Two researchers (Zhang and Ju) assessed each study independently, 
and any discrepancies were resolved through consensus or with the 
assistance of a third researcher (Zhu) if necessary.

2.6 Data synthesis

Meta-analysis was conducted using the “metan” package in Stata 
17.0 with a random-effects model, and heterogeneity was assessed 
using the I2 statistic. Based on the alterations in the diversity and 
abundance of microbiota between people with and without gastric 
cancer, these results were transposed into a binary format to indicate 
whether there was an increase. The results of meta-analyses were 
presented as log odds ratios (log OR) and their 95% confidence 
intervals (CI). A log OR significantly less than 0 indicated a decrease 
in the abundance of a certain microbial community in people with 
gastric cancer compared to those without gastric cancer, while a log 
OR significantly greater than 0 indicated an increase in the abundance 
of a certain microbial community in people with gastric cancer. For a 
more intuitive evaluation, Forest plots were utilized. Meta-regression 
and subgroup analyses were performed to investigate potential 
heterogeneity, considering the country, sample source, amplification 
region of the 16S rRNA gene, and microbial database. Sensitivity 
analysis was performed on studies with a sample size exceeding 50. 
Funnel plot, Egger’s and Begg’s test were conducted to detect potential 
publication bias which was corrected by trim-and-fill analysis 
(Mavridis and Salanti, 2014). All p-values were two-tailed, and those 
p < 0.05 were considered statistically significant.

3 Results

3.1 Literature search and studies overview

A total of 2,364 studies were identified from PubMed, Embase, 
Cochrane Library, and Web of Science. After duplicates removal, 1,582 
studies remained for screening the title and abstract. Out of the 1,582 
studies, 1,491 studies were excluded. The excused studies included 
meta-analyses, reviews, protocols, meeting abstracts, experiments and 
non-English articles, and those that did not focus on gastric cancer or 
provide the required results. As a result, 91 articles entered the 

full-text review stage. Finally, 33 studies met the eligible criteria and 
were included in the meta-analysis. The selection process is illustrated 
in Figure 1.

Table 1 shows the main characteristics of the included studies 
which published between 2014 and 2023. The majority of studies were 
conducted in Asian countries, including China (n = 21), Korea (n = 8), 
and Mongolia (n = 1). Three studies were conducted in Europe, two in 
Portugal and one in Lithuania. In addition, one study was conducted 
in several countries. A total of 4,829 participants were included in 
these studies, with males outnumbering females. Fourteen studies 
reported on people infected with Helicobacter pylori. A total of 25 
studies collected samples from gastric mucosal biopsies during 
gastroscopy, while four studies used fecal samples (Liang et al., 2019; 
Qi et al., 2019; He et al., 2022; Kim et al., 2022), and four studies used 
gastric juice samples (Park et al., 2022; Sun et al., 2022; Peng et al., 
2023; Wei et al., 2023). Twenty-seven studies used 16S gene sequencing 
technology, but with different amplified regions. Of these, one study 
amplified the V1–V2 (Nikitina et al., 2023), V1–V4 (Wei et al., 2023), 
V1–V8 (Pimentel-Nunes et al., 2021), V4–V5 (Chen et al., 2019), V5 
(Eun et  al., 2014), and V5–V6 (Ferreira et  al., 2018) regions, 
respectively. Two studies amplified V1–V3 (Jo et al., 2016; Sohn et al., 
2017) and six studies amplified V4 (Coker et al., 2018; Wang et al., 
2020; He et al., 2022; Li et al., 2022; Miao et al., 2022; Peng et al., 2023). 
The most commonly amplified region was V3–V4, with thirteen 
studies using this region. Three studies did not specify the region 
amplified (Wang et al., 2016; Castaño-Rodríguez et al., 2017; Deng 
et al., 2021; Wu et al., 2021). To study the fungal composition of the 
gut microbiota, one study used the ITS2 region for PCR amplification 
(Yang et  al., 2022). Nine studies did not report the specific gene 
sequence database used, while the remaining studies mainly relied on 
databases such as SILVA (n = 9), Greengenes (n = 7), NCBI (n = 6), 
Ezbio (n = 2), EzTaxon-e (n = 2), and RDP (n = 1).

The NOS was used to assess the quality of the included studies. 
Three studies scored nine points, 10 studies scored eight points, 15 
studies scored seven points, and the remaining studies scored six 
points or less. The detailed quality assessment scores can be found in 
the Supplementary Table S2.

3.2 Primary outcomes

3.2.1 Biodiversity
Out of the 33 studies analyzed, 29 focused on investigating the 

α-diversity of the gastrointestinal microbiota and 18 studies explicitly 
reported differences in β-diversity between people with and without 
gastric cancer (refer to Supplementary Table S3). However, due to the 
diverse use of different indices and variations in expression across 
studies, quantitative analysis of β-diversity was not available. Meta-
analysis showed that only the Shannon index demonstrated statistical 
significance for α-diversity [−5.078 (−9.470, −0.686)] 
(Supplementary Figure S1).

3.2.2 Differences in the microbial composition
Eighteen studies with five phylum-level gut microbiotas were 

available for meta-analysis: Actinobacteria, Bacteroidetes, Firmicutes, 
Clostridia, and Proteobacteria. No statistically significant differences 
between people with and without gastric cancer in terms of these five 
phylum-level gut microbiotas were identified by meta-analysis. 

https://doi.org/10.3389/fmicb.2024.1406526
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2024.1406526

Frontiers in Microbiology 04 frontiersin.org

Supplementary Table S4 presents the changes in relative abundance at 
the phylum level for people with and without gastric cancer in 
individual studies.

A total of 30 studies reported data on the relative abundance of 
bacteria at genus-level in people with gastric cancer compared to those 
without it (Supplementary Table S5). The most frequently reported 
genera in gastric cancer patient samples were Lactobacillus and 
Helicobacter. Meta-analysis of the data from these studies indicated 
significant changes in the abundance of 11 out of 32 evaluated genera, 
with nine exhibiting an increase and two exhibiting a decrease. The 
increased abundance of genera such as Lactobacillus and Streptococcus 
was characterized by log odds ratio (95% CI) of 5.474 (0.949, 9.999) 
and 5.095 (0.293, 9.897), respectively. In contrast, Porphyromonas and 
Rothia exhibited a significant and identical decrease in people with 
gastric cancer, with −8.602 (−11.396, −5.808). Table  2 presents a 
detailed summary of the findings.

3.3 Subgroup analyses

Subgroup analyses in gastric cancer microbiome research 
revealed significant findings, highlighting the impact of 

methodological and geographical variables (Table 3). At the phylum 
level, Actinobacteria exhibited significant abundance changes across 
different 16S rRNA regions, with a pronounced increase in the V1–
V3 region (6.748, 95% CI, 3.608, 9.889) and a decrease in the V4 
region when annotated with Greengenes (−10.334, 95% CI: −13.116, 
−7.552). Subgroup analysis on geographical regions found a higher 
prevalence of Helicobacter and Streptococcus in the Korean 
population, with 9.936 (4.611, 15.261) and 5.651 (2.795, 8.508), 
respectively, at genus-level. In contrast, the Portuguese population 
exhibited a reduced prevalence of Neisseria with −9.006 (−11.795, 
−6.218). The prevalence of Lactobacillus varied across different 16S 
rRNA gene amplification regions, with 8.365 (5.567, 11.162) for the 
V4 region and 7.449 (4.642, 10.257) for the NR region. In gastric 
biopsy samples, Lactobacillus was less prevalent with a log OR of 
−5.939 (0.300, 11.578), while Bacteroides showed a higher abundance, 
evidenced by a log OR of 11.154 (8.227, 14.082). The analysis of 
gastric acid samples showed a higher prevalence of Helicobacter and 
Streptococcus, with 8.552 (5.757, 11.348) and 8.598 (5.803, 11.393), 
respectively. Those results suggested that the bacteria were country-/
sample source-specific. Database analysis revealed a notable increase 
in the prevalence of Lactobacillus among individuals diagnosed with 
gastric cancer in studies utilizing Greengenes, with a mean of 9.598 

FIGURE 1

Description of the selection of the included studies.
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TABLE 1 Characteristics of the included studies.

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

Eun et al. (2014) Korea Chronic gastritis: 50.4 ± 11.5

IM: 57.5 ± 7.3

GC: 65.7 ± 11.3

Chronic gastritis:10 (4/6)

IM: 10 (7/3)

GC: 11 (6/5)

Chronic gastritis: 70%

IM: 40%

GC: 64%

Gastric mucosal biopsies Phenol/chloroform method and a 

DNA clean-up kit;

16S rRNA(V5);

SILVA database

8

Jo et al. (2016) Korea GC: Hp (−), 61.8 ± 10.92; Hp (+), 

54.1 ± 12.50;

Control: Hp (−), 62.3 ± 13.61;

Hp (+), 55.9 ± 10.97

GC: 34 (24/10)

Control: 29 (12/17)

GC: 44.1%

Control: 55.1%

Gastric mucosal biopsies iNtRON Biotechnology;

16S rRNA(V1–V3);

EzTaxon-e database

8

Wang et al. (2016) China 55.8 ± 13.5 Chronic gastritis: 212

GC: 103

(200/115)

Chronic gastritis: 45.3%

GC: 49.5%

Gastric mucosal biopsies Qiagen Dneasy blood and tissue 

kit;

16S rRNA(region NR);

Ribosomal database

7

Castaño-Rodríguez 

et al. (2017)

China GC: 62.08

GU: 64.75

FD: 49.55

GC: 12 (5/7)

GU: 4 (4/0)

FD: 20 (13/7)

GC: 91.7%

GU: 100%

FD: 50%

Antral gastric biopsies Isolate II RNA mini kit and Tetro 

cDNA synthesis kit;

16S rRNA (region NR);

–

6

Li et al. (2017) China Normal: 49.13

Gastritis: 48

IM: 53.22

GC: 53.43

Eradication: 52.18

Normal: 8 (3/5)

Gastritis: 9 (2/7)

IM: 18 (8/10)

GC: 14 (10/4)

Eradication: 11 (3/8)

Normal: 0%

Gastritis: 100%

IM: 66.7%

GC: 28.6%

Eradication: 9%

Antrum and corpus gastric biopsies QIAGEN DNeasy Kit;

16S rDNA(V3–V4);

Greengene database

8

Sohn et al. (2017) Korea GC: Hp (−), 68; Hp (+): 52.8

Control: Hp (−), 53.5; Hp (+), 55.67

GC: Hp (−), 2; Hp (+),5; (3/4)

Control: Hp (−), 2; Hp (+), 3; (2/3)

GC: 28.57%

Control: 40%

Gastric mucosal (antrum and body) 

biopsies

iNtRON Biotechnology Kit;

16S rRNA(V1–V3);

EzTaxon-e database

6

Yu et al. (2017) China

Mexico

Non-malignant:

China, 60.8;

Mexico, 64.5;

Tumor, NA

non-malignant:

China, 77; Mexico, 80.

(27/130)

tumor:

China, 80; Mexico, 54.

(62/72)

– Tumor tissue and matched non-

malignant tissue

Allprep RNA/DNA/Protein mini 

kit (QIAGEN) and QIAamp DNA 

mini kit (QIAGEN);

16S rRNA(V3–V4);

Greengenes and BioProject 

database

8

Coker et al. (2018) China – AG: 77

SG: 74

IM: 17

GC: 39

Xi’an: 50.8–53.9%

Mongolia:44.8–47.5%

Antrum, body and fundus for SG, AG 

and IM.

Biopsies cancer lesions and adjacent 

non-cancerous tissues of GC.

QIAamp DNA Mini Kit;

16S rRNA(V4);

SIL VA database

7

(Continued)
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TABLE 1 (Continued)

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

Ferreira et al. 

(2018)

Portugal Chronic gastritis: 43.6 ± 7.0

GC: 58.8 ± 13.2

Chronic gastritis:81 (79/2);

GC: 54 (32/22)

– Gastric biopsies or surgical specimens of 

non-neo plastic gastric mucosa adjacent 

to the tumour

–

16S rRNA(V5–V6);

Greengenes database

7

Hsieh et al. (2018) China Gastritis: 32.2

IM: 46.3

GC: 68.6

Gastritis:9 (3/6)

IM: 7 (4/3)

GC: 11 (5/6)

Gastritis: 55.5%

IM: 85.7%

GC: 0

Gastric biopsies
TRI Reagent®;

16S rRNA(V3–V4);

NCBI database

7

Chen et al. (2019) China 60 (N = 62, gastric adenocarcinoma)

124 gastric tissue samples 

(cancerous and paired non-

cancerous tissues)

29% Subtotal gastrectomy Lysozyme, proteinase K and SDS, 

phenol chloroform isoamyl alcohol, 

glycogen, sodium acetate and cold 

isopropanol;

16S rRNA(V4–V5);

NCBI and SIL VA database

5

Gunathilake et al. 

(2019)

Korea Control: 51.53 ± 7.21

GC: 53.68 ± 9.60

Control: 288 (181/107)

GC: 268 (172/96)

Control: 93.4%

GC: 99.6%

Gastric mucosa biopsy MagAttract DNA Blood M48 kit;

16S rRNA(V3–V4);

NCBI database

7

Liang et al. (2019) China GC: 52.3 ± 11.2

HC: 53.4

GC: 20

HC: 22

– Fecal samples E.Z.N.A Stool DNA Kit;

–

–

8

Qi et al. (2019) China GC: 58.06 ± 11.24

HC: 45.58 ± 8.86

GC: 116 (96/20)

HC: 88 (53/35)

– Fecal samples
E.Z.N.A.® Stool DNA Kit;

16 S rDNA(V3–V4);

NCBI and SIL VA database

9

Gantuya et al. 

(2020)

Mongolian 46.4 GC: 48

Normal: 22

Gastritis: 20

Atrophy: 66

IM: 40

(59/137)

– Gastric mucosal biopsies DNeasy Blood & Tissue Kit;

16 S rRNA(V3–V4);

SIL VA database

7

Gunathilake et al. 

(2020)

Korea Control: 51.53 ± 7.21

GC: 53.68 ± 9.60

Control:288

GC:268

(353/203)

Control: 93.4%

GC:99.63%

Gastric mucosal biopsy MagAttract DNA Blood M48 kit;

16 S rRNA(V3–V4);

Ezbio database

9

(Continued)
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TABLE 1 (Continued)

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

Wang et al. (2020) China HC: 45.63

CG: 49.04

IM: 56.93

IN: 62.16

GC:57.35

HC: 30 (15/15)

CG: 21 (10/11)

IM: 27 (16/11)

IN: 25 (18/7)

GC:29 (18/11)

HC: 0%

CG: 28.57%

IM: 29.63%

IN: 60%

GC:58.62%

Gastric mucosal biopsy QIAamp DNA Mini Kit;

16S rRNA(V4);

Greengenes database

7

Deng et al. (2021) China Chronic superficial Gastritis: 45–70

GC: 46–75

Chronic superficial gastritis: 25 

(13/12)

GC: 34 (24/10)

Chronic superficial 

gastritis: 0%

GC: 26.47%

Chronic superficial gastritis: the antrum 

(n = 10), c o r p u s (n = 7) and cardia 

(n = 8)

GC: cancer in the antrum (n = 19) and 

corpus (n = 15).

–

16S rRNA(region NR);

RDP and NCBI database

9

Gunathilake et al. 

(2021)

Korea – GC: 268

HC: 288

(353/203)

– Gastric mucosal biopsies MagAttract DNA Blood M48 kit;

16 S rRNA(V3–V4);

Ezbio database

8

Kadeerhan et al. 

(2021)

China Normal/SG: 53.8 ± 7.8

CAG: 53.4 ± 9.3

IM: 58.5 ± 7.7

DYS/GC: 57.6 ± 6.4

Normal/SG: 35 (13/22)

CAG: 52 (29/23)

IM: 67 (43/24)

DYS/GC: 25 (20/5)

Normal/SG: 74.3%

CAG: 92.3%

IM: 94.0%

DYS/GC: 60.0%

Gastric mucosal biopsies QIAamp DNA Mini Kit;

16S rRNA(V3–V4);

Greengenes and SIL VA database

7

Pimentel-Nunes 

et al. (2021)

Portugal Controls: 53 (27–82)

Extensive atrophy/metaplasia: 63 

(53–87)

Early gastric cancer: 70 (43–89)

Controls: 17 (11/6)

Extensive atrophy/metaplasia: 12 

(5/7)

Early gastric cancer: 31 (17/14)

Controls: 41%

Extensive atrophy/

metaplasia: 25%

Early gastric cancer: 13%

Biopsy fragment from the antrum and 

the corpus

NZY Tissue gDNA isolation kit;

16S rRNA(V1–V8);

–

7

Wu et al. (2021) China GC: 62.50 ± 6.64

SG: 61.78 ± 6.25

GC: 18 (15/3)

SG: 32 (24/8)

– Gastric mucosa biopsy samples, samples 

were collected from the greater 

curvature of the antrum, the lesser 

curvature of the antrum, the greater 

curvature of the stomach body, the 

lesser curvature of the stomach body, 

and the fundus.

E.Z.N.A.® Stool DNA Kit;

16S rRNA(region NR);

SIL VA database

7

Zhang et al. (2021) China SG: 56.00 ± 10.25

AG: 63.58 ± 6.69

GIN: 64.80 ± 9.93

GC: 69.87 ± 11.57

SG: 17

AG: 10

GIN: 5

GC: 15

(20/27)

– Gastric mucosal biopsies
E.Z.N.A ®Stool DNA Kit;

16S rRNA(V3–V4);

SILVA database

8

(Continued)

https://doi.org/10.3389/fmicb.2024.1406526
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Z
h

an
g

 et al. 
10

.3
3

8
9

/fm
icb

.2
0

24
.14

0
6

52
6

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
0

8
fro

n
tie

rsin
.o

rg

TABLE 1 (Continued)

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

He et al. (2022) China – Gastric cancer: 30

Healthy people: 30

– Fecal samples CTAB method;

16S rDNA(V4);

–

7

Kim et al. (2022) Korea GC: 62.9 ± 10.2

Control: 50.7 ± 13.6

GC: 45 (31/14)

CG:49

IM:43

(Control:47/45)

0% Histological evaluation using 

endoscopic biopsy tissues.

DNeasy PowerSoil Kit;

16S rRNA(V3–V4);

NCBI and taxonomy databases

7

Li et al. (2022) China GC: 63.5

HC: 55

GI Cancer: 130 (93/37)

HC: 147 (84/63)

– Fecal samples NucleoSpin Soil DNA Kit;

16S rRNA(V4);

Greengenes database

6

Miao et al. (2022) China SG: 47.40 ± 12.37

AG: 45.77 ± 13.62

GMAH: 64.00 ± 11.83

GC: 69.60 ± 6.91

SG: 15 (7/8)

AG: 13 (8/5)

GMAH: 8 (5/3)

GC: 15 (11/4)

SG: 26.7%

AG: 61.5%

GMAH: 100%

GC: 73.3%

Gastric mucosal biopsies QIAamp PowerFecal Pro DNA Kit;

16S rRNA(V4);

Greengenes database

7

Park et al. (2022) Korea Gastritis: 59.8 ± 12.5

Gastric adenoma: 65.3 ± 9.6

EGC: 62.7 ± 10.8

AGC: 58.8 ± 15.8

Gastritis: 16 (6/10)

Gastric adenoma: 16 (12/4)

EGC: 36 (25/11)

AGC: 20 (14/6)

– Gastric juice DNeasy PowerSoil kit;

16S rRNA(V3–V4);

SILVA database

8

Sun et al. (2022) China SG: 50.29 ± 14.31

AG: 60.67 ± 10.71

IM: 60.27 ± 14.89

Dys: 62.71 ± 12.21

GC: 71.67 ± 9.87

SG: 56 (27/29)

AG: 9 (5/4)

IM: 27 (12/15)

Dys: 29 (15/14)

GC: 13 (7/6)

0% Gastric mucosal biopsies and Gastric 

juice
E.Z.N.A® Soil DNA Kit;

16S rRNA(V3–V4);

–

7

Yang et al. (2022) China GC: 60.59 ± 12.73

HC: 52.64 ± 10.92

GC: 22 (16/6)

HC: 11 (4/7)

– Gastric mucosal biopsies E.Z.N.A. R soil DNA Kit;

ITS2 rRNA PCR;

–

6

Nikitina et al. 

(2023)

Lithuania – GC: 76

HC: 29

– Gastric mucosal biopsies AllPrep DNA/RNA Mini kit;

16S rRNA(V1–V2);

–

8

Peng et al. (2023) China HC: 49.5 (32–60)

GPL: 48.5 (32–59)

GC: 59.5 (44–81)

HC: 22 (13/9)

GPL: 22 (10/12)

GC: 16 (10/6)

HC: 27.3%

GPL: 40.9%

GC: 68.8%

Gastric juice
QIAamp® FAST DNA Stool Mini 

Kit;

16S rRNA(V4);

–

8

(Continued)
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(6.813, 12.383). Conversely, studies referencing NCBI indicated an 
increase in Fusobacterium, with a mean of 8.163 (5.200, 11.127).

3.4 Meta-regression

Meta-regression analysis aimed to identify sources of 
heterogeneity in gastric cancer microbiome studies. Results showed 
that geographic differences significantly affect Bacteroidetes and 
Firmicutes abundance (Supplementary Table S6). Specifically, the 
analysis indicated a strong negative association of Bacteroidetes with 
country (−21.91816, p < 0.001) and a positive association for 
Firmicutes (9.307176, p = 0.018). Methodological factors, such as the 
choice of 16S rRNA gene amplification regions and databases for 
annotation, significantly impacted the abundance of Actinobacteria. 
The method used showed a negative coefficient (−20.59842, p = 0.009), 
while the database used showed a positive coefficient (18.17374, 
p = 0.008). Additionally, sample sources were found to contribute to 
the heterogeneity of Firmicutes (−19.25102, p = 0.006).

3.5 Sensitivity analysis and publication bias

After excluding studies with a sample size of less than 50, 
sensitivity analysis revealed trends in changes to microbial diversity 
indices as well as microbial community structure at the genus and 
phylum classification levels (Supplementary Table S7). As a result, 
changes in 9 out of the 11 bacterial genera identified by overall analysis 
were found to be robust. Notably, the analysis of the genus Clostridium 
showed a slight increase in the log OR from 7.994 to 8.227, and the 
p-value changed from an extremely low 7.55E-12 to 1.80E-07 when 
small-sample studies were excluded. Although the result remained 
statistically significant, the increase in heterogeneity to 17.70% 
suggested some inconsistency between studies. Regarding the 
Shannon index of α-diversity, the log odds ratio slightly decreased 
after exclusion, while the p-value rose from 0.023 to 0.048. This 
implied that the negative association’s statistical significance was 
somewhat strengthened. Overall, excluding small-sample studies 
caused only limited changes in the log odds ratios and p-values.

The funnel plots indicated possible publication bias in the meta-
analysis of microbial diversity and abundance related to gastric cancer. 
Asymmetries were observed for several bacteria. The funnel plot for 
Shannon appears symmetrical, indicating minimal bias, which was 
supported by a non-significant Egger’s test. However, a significant 
Begg’s test for Shannon suggested that further scrutiny might 
be necessary. For Actinobacteria, both Egger’s and Begg’s tests showed 
a low probability of bias. The plot for Proteobacteria displayed slight 
asymmetry, but only the trim-and-fill method indicated the need for 
adjustment, adding three studies to the left. Helicobacter, Lactobacillus, 
and Streptococcus exhibited asymmetrical plots. Begg’s test suggested 
potential bias for the latter two, although Egger’s test results did not 
align with this for all (Supplementary Table S8).

4 Discussion

This meta-analysis aggregated data from 33 studies and explored 
the evolution of the gut microbiome from pre-cancerous conditions to T
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TABLE 3 Statistically significant bacterial groups identified by the meta-analysis in subgroup analysis.

Outcome Subgroup
Bacterial 
groups

N
Sample 

size

Log odds ratio
p-value I2

(95% CI)

Phylum Method

16S rRNA(V1–V3) Actinobacteria 2 75 6.748 (3.608, 9.889) 2.54E-05 18.50%

16S rRNA(V4)
Bacteroidetes 2 409 10.334 (7.552, 13.116) 6.62E-13 97.20%

Actinobacteria 2 409 −10.334 (−13.116, −7.552) 6.62E-13 0.00%

Database

EzTaxon-e Actinobacteria 2 75 6.748 (3.608, 9.889) 2.54E-05 18.50%

Greengenes
Proteobacteria 3 469 9.531 (7.254, 11.808) 1.87E-15 0.00%

Actinobacteria 2 409 −10.334 (−13.116, −7.552) 6.62E-13 0.00%

NCBI and SILVA
Actinobacteria 2 328 10.143 (7.362, 12.923) 1.17E-12 0.00%

Firmicutes 2 328 −10.143(−12.923, −7.362) 1.17E-12 0.00%

Genus Country

Korea
Helicobacter 2 592 9.936 (4.611, 15.261) 2.78E-04 72.50%

Streptococcus 2 33 5.651 (2.795, 8.508) 1.27E-04 0.00%

Portugal Neisseria 2 195 −9.006 (−11.795, −6.218) 7.33E-10 0.00%

Method

16S rRNA (V4) Lactobacillus 2 170 8.365 (5.567, 11.162) 7.90E-09 0.00%

16S rRNA (region NR) Lactobacillus 2 86 7.449 (4.642, 10.257) 2.64E-07 0.00%

Sample source

Stomach
Bacteroides 12 680 11.154 (8.227, 14.082) 4.88E-13 9.90%

Lactobacillus 8 718 5.939 (0.300, 11.578) 0.039 93.80%

Gastric juice Helicobacter 2 175 8.552 (5.757, 11.348) 4.04E-09 0.00%

Feces
Streptococcus 2 177 8.598 (5.803, 11.393) 3.95E-09 0.00%

Bacteroides 3 306 −8.800 (−11.079, −6.520) 4.66E-13 0.00%

Database

Greengenes Lactobacillus 2 267 9.598 (6.813, 12.383) 5.69E-11 0.00%

NCBI Fusobacterium 2 151 8.163 (5.200, 11.127) 1.01E-07 10.60%

N, the number of studies.

the development of gastric cancer. In comparison to previous studies, 
our analysis was more comprehensive. Initially, we conducted a meta-
analysis, followed by subgroup analysis, sensitivity analysis, and 

meta-regression. Additionally, we  conducted a detailed analysis of 
publication bias. According to our study, a pattern of reduced microbial 
diversity was found, which is consistent with earlier studies (Liu et al., 

TABLE 2 Meta-analysis of changes on genus level between gastric and non-gastric cancer patients.

Genus No. of studies Simple size Log odds ratio 
(95% CI)

p-value I2

Lactobacillus 11 1027 5.474 (0.949, 9.999) 0.020 93.60%

Streptococcus 11 969 5.095 (0.293, 9.897) 0.038 93.80%

Achromobacter 2 184 8.716 (5.923, 11.510) 1.995e-09 0.00%

Bacillus 2 303 9.661 (6.876, 12.446) 1.058e-10 0.00%

Capnocytophaga 2 226 8.643 (5.847, 11.439) 1.995e-09 0.00%

Clostridium 3 204 7.994 (5.706, 10.283) 7.553e-12 0.00%

Dialister 2 257 8.995 (6.204, 11.787) 1.350e-09 0.00%

Klebsiella 2 253 9.141 (6.203, 12.080) 1.995e-09 9.70%

Slackia 2 254 8.909 (6.116, 11.703) 1.362e-09 0.00%

Porphyromonas 2 182 −8.602 (−11.396, −5.808) 1.995e-09 0.00%

Rothia 2 182 −8.602 (−11.396, −5.808) 1.995e-09 0.00%
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2022; Li et  al., 2023). However, it is important to note that earlier 
studies may have been limited by the scope of their sample selection, 
potentially not capturing the full spectrum of microbiome variability 
associated with gastric cancer. Our analysis builds upon and expands 
these findings by incorporating a broader and more diverse datasets, 
enhancing the comprehensiveness and generalizability of our 
conclusions. The reduction in microbial diversity observed in various 
studies emphasizes its potential impact on the immune system’s ability 
to respond to cancer. This highlights the critical role of the gut 
microbiome in the progression of gastric cancer.

The Shannon index, often used to measure species richness and 
evenness (Lozupone and Knight, 2008), was significantly reduced in 
people with gastric cancer compared to pre-cancerous conditions in 
this study, which implies a decrease in the diversity of the gastric 
microbial ecosystem when gastric cancer develops. The reasons for the 
decrease are not yet clear. A previous study suggested that it might be a 
result of factors such as gastric acid and Helicobacter pylori infection 
reshaping the microbial community during the carcinogenic process 
(Wang et al., 2018). However, changes in diet, use of antibiotics or 
other medications (David et al., 2014; Altveş et al., 2020) were reported 
to be associated with the reduction in Shannon index.

At the genus level, an increase in Lactobacillus and Streptococcus, 
alongside a decrease in Rothia and Porphyromonas, were identified in 
this meta-analysis. The variation in bacterial abundance is thought to 
influence the immune system’s ability to detect and eliminate cancer 
cells. For example, an increase in Lactobacillus correlates with higher 
counts of CD3+ T cells (Qi et  al., 2019), suggesting a complex 
relationship between microbiome composition and immune function. 
Furthermore, experimental evidence from studies such as 
Lertpiriyapong et al. (2014) highlighted how specific bacterial presences 
could trigger inflammation and promote cancer development. 
Interestingly, interventions such as post-surgical supplementation with 
Clostridium butyricum have been shown to modulate immune responses 
favorably, indicating potential therapeutic pathways (Cao et al., 2022). 
Epidemiological studies have suggested a correlation between the 
occurrence of gastric cancer and periodontal disease (Lo et al., 2021). 
Porphyromonas is one of the pathogens that cause periodontal disease 
(Darveau, 2010). Experiments have shown that lipopolysaccharide 
(LPS) from Porphyromonas can damage the gastric mucosal barrier, 
which is considered a promoting factor for cancer-related gastritis. 
Furthermore, LPS from Porphyromonas can regulate the host’s immune 
response (Oriuchi et al., 2024). Although direct research linking Rothia 
with gastric cancer is limited, it is important to note that Rothia is part 
of the core microbiota in the stomachs of healthy individuals (Nardone 
and Compare, 2015). The gut microbiota can produce butyrate, a short-
chain fatty acid that has been shown to suppress the expression of 
PD-L1 and IL-10  in immune cells and demonstrate tumor growth 
inhibition potential in mouse models (Lee et al., 2024). It is speculated 
that Rothia may influence the progression of gastric cancer through its 
metabolic products. Future studies will likely focus on elucidating the 
specific mechanisms of these associations.

The roles of Lactobacillus and Streptococcus in gastric cancer are 
nuanced, with Lactobacillus associated with both anti-inflammatory 
effects and cancer progression, potentially serving as a biomarker for 
the disease (Bali et al., 2021). Similarly, Streptococcus adheres to gastric 
mucosa, influencing cancer development through metabolic and 
immune modulation (Spiegelhauer et al., 2020). Notably, Streptococcus 
anginosus has been implicated in exacerbating gastric inflammation 
and cancer progression (Fu et al., 2024). Helicobacter pylori’s role in 

gastric cancer development is significant (Plottel and Blaser, 2011). 
The involvement of Helicobacter pylori, a well-documented factor in 
gastric cancer, showed variability in our analysis, contrasting with 
findings by Liu et  al. (2022), which could be  attributed to 
methodological and sample size differences.

Due to the high heterogeneity observed in certain microbial 
communities in the overall analysis, a series of analyses including 
subgroup analysis, sensitivity analysis, and meta-regression were 
conducted to identify the sources of heterogeneity. Subgroup analyses 
revealed regional variations in bacterial communities, suggesting that 
dietary or environmental factors contributed to a higher prevalence of 
Streptococcus in Asian populations compared to Europeans. 
Geographic differences had a significant impact on the levels of 
Bacteroidetes and Firmicutes. Research showed that there were 
significant geographic differences in the composition of the gut 
microbiota between populations from the United  States, Chile, 
South Africa, Kuwait and Malaysia, particularly in the distribution of 
Bacteroidetes and Firmicutes. In samples from the United  States, 
Firmicutes dominate, followed by other regions such as South Africa. 
In Chilean samples, however, Bacteroidetes took the lead. Moreover, 
by calculating the ratio of Firmicutes to Bacteroidetes (F:B), it was 
found that the F:B in US samples was the highest, reaching 4.15, while 
the F:B in Chilean samples was the lowest (Kumar and Bhadury, 
2023). Other studies in the Asian population also showed that 
geographic differences significantly affect the abundance of 
Bacteroidetes and Firmicutes in the gut. These differences were related 
to the unique dietary habits, cultural customs and environmental 
conditions of each region (Lim et al., 2021; Taha et al., 2023).

Additionally, methodological choices and sample sources 
introduced variability in the detection of bacteria such as Bacteroides 
and Lactobacillus. It became clear that methodological differences, 
including the choice of sample sources and DNA sequencing techniques, 
were the main cause of inconsistencies in microbiota research (Hiergeist 
et  al., 2016; Tang et  al., 2020). The choice between using feces or 
endoscopic biopsies as samples significantly affected the outcomes 
(Jalanka et al., 2015; Tropini et al., 2018), highlighting the nuanced 
impact of sample origin on research findings. Furthermore, variations 
in DNA isolation and sequencing methodologies, as well as the choice 
of database platforms, posed challenges in accurately differentiating 
microbial communities. These methodological considerations were 
crucial in microbiome studies, emphasizing the need for a rigorous and 
standardized approach to mitigate inconsistencies and enhance the 
comparability of results across studies. This comprehensive approach 
ensured that the complexities of microbial ecosystems were accurately 
interpreted, fostering advancements in our understanding of the 
microbiome’s role in health and disease. Variations in DNA isolation 
and sequencing methodologies, as well as database platforms, could 
introduce errors in microbial differentiation. Moreover, meta-regression 
also confirmed that geographic, methodological, and sample origin 
differences were the sources of heterogeneity.

Sensitivity analysis on studies with sample size no less than 50 
revealed an increase in the p-values for Lactobacillus and Streptococcus. 
This change suggested that smaller studies might have influenced the 
results due to their high variability or specific biases. These small-
sample studies sometimes showed a more significant association 
because of greater statistical variation or because of selective reporting 
and publication bias. Because most study samples were collected 
during health examinations, it was difficult to collect a large number 
of samples, which limited the ability to conduct large-scale research. 
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Therefore, future studies should aim to expand the research scale and 
include a broader population to explore the potential association 
between these bacteria and gastric cancer.

This meta-analysis presented a detailed examination of the 
changes in the gut microbiome that are linked to the development of 
gastric cancer. It highlighted the intricate relationship between 
microbial diversity and cancer, the potential of microbiome-focused 
therapies, and the need for methodological rigor in future research. 
The limitations of this study, including lack of data, potential bias, and 
inability to include all relevant factors, highlight the need for large-
scale studies. These limitations underscore the need for large-scale 
studies to confirm these findings and further explore the role of the 
microbiome in gastric cancer. Specifically, future research should 
focus on conducting long-term cohort studies to explore the dynamic 
changes in the gut microbiome during the development and 
progression of gastric cancer. In parallel, pathogenic mechanism 
studies should be conducted to understand how specific microbes 
promote or influence the development of gastric cancer. In addition, 
interventional studies could be conducted to evaluate the efficacy of 
specific microbes in the prevention and treatment of gastric cancer. 
Through these studies, we can gain a more complete understanding of 
the role of the microbiome in gastric cancer and provide guidance for 
targeted prevention and treatment strategies in the clinical setting.

5 Conclusion

This study identified robust changes of nine bacterial genus in people 
with gastric cancer, which were country-/sample source-specific, with 
lower α-diversity observed in individuals with gastric cancer. Large-scale 
studies are needed to explore the mechanisms underlying these changes.
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