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Advances in small RNAs (sRNAs)-related studies have posed a challenge for 
NGS-related bioinformatics, especially regarding the correct mapping of sRNAs. 
Depending on the algorithms and scoring matrices on which they are based, 
aligners are influenced by the characteristics of the dataset and the reference 
genome. These influences have been studied mainly in eukaryotes and to 
some extent in prokaryotes. However, in bacteria, the selection of aligners 
depending on sRNA-seq data associated with outer membrane vesicles (OMVs) 
and the features of the corresponding bacterial reference genome has not yet 
been investigated. We selected five aligners: BBmap, Bowtie2, BWA, Minimap2 
and Segemehl, known for their generally good performance, to test them 
in mapping OMV-associated sRNAs from Aliivibrio fischeri to the bacterial 
reference genome. Significant differences in the performance of the five aligners 
were observed, resulting in differential recognition of OMV-associated sRNA 
biotypes in A. fischeri. Our results suggest that aligner(s) should not be arbitrarily 
selected for this task, which is often done, as this can be  detrimental to the 
biological interpretation of NGS analysis results. Since each aligner has specific 
advantages and disadvantages, these need to be considered depending on the 
characteristics of the input OMV sRNAs dataset and the corresponding bacterial 
reference genome to improve the detection of existing, biologically important 
OMV sRNAs. Until we learn more about these dependencies, we recommend 
using at least two, preferably three, aligners that have good metrics for the 
given dataset/bacterial reference genome. The overlapping results should 
be considered trustworthy, yet their differences should not be dismissed lightly, 
but treated carefully in order not to overlook any biologically important OMV 
sRNA. This can be achieved by applying the intersect-then-combine approach. 
For the mapping of OMV-associated sRNAs of A. fischeri to the reference 
genome organized into two circular chromosomes and one circular plasmid, 
containing copies of sequences with rRNA- and tRNA-related features and no 
copies of sequences with protein-encoding features, if the aligners are used 
with their default parameters, we advise avoiding Segemehl, and recommend 
using the intersect-then-combine approach with BBmap, BWA and Minimap2 
to improve the potential for discovery of biologically important OMV-associated 
sRNAs.
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1 Introduction

The advancement of high-throughput sequencing technology has 
led to a burst of knowledge about the complexity and diversity of small 
RNAs (sRNAs), but has also raised new and specific bioinformatics 
challenges related to the analysis of sRNA-seq data (Baldrich et al., 
2019; Diallo and Provost, 2020; Bezuglov et al., 2023). Most of these 
challenges are related to the short length of different sRNAs. One of 
them is ability/reliability of distinguishing functional sRNAs 
synthesized by the cell from the degradation products released during 
Next Generation Sequencing (NGS) sample preparation. Although the 
loss of very small RNAs (vsRNAs of approximately 8–15 nt) (Diallo 
et al., 2022) could be prevented by trimming only the specific adapter 
sequences used in sRNA-seq library preparation, correct mapping still 
remains an arduous task. Due to the short length of the reads, the 
frequent presence of different sequence variations of biological origin 
(as a result of post-transcriptional modifications and RNA editing of 
sRNAs) and the fact that some sRNAs are derived from repetitive 
regions, the main problems in mapping are ambiguous mapping 
(multi-mapping, cross-mapping) and/or the lack of mapping of some 
sRNAs. Furthermore, the expression values of the sRNAs obtained 
from the NGS data may not accurately reflect their absolute expression 
levels. This is due to the observed bias that depends on the use of 
different adapters, barcodes and the presence of complex RNA 
structures and modifications, all of which affect the efficiency of 
cDNA synthesis, while the GC-content of the different specific sRNAs’ 
affects the efficiency of PCR amplification (Raabe et al., 2014).

In this paper we  focus exclusively on the correct mapping of 
bacterial sRNAs packaged in outer membrane vesicles (OMVs) to the 
bacterial reference genome and on testing different aligners to 
determine origin and biotype of bacterial sRNAs in OMVs. OMVs are 
extracellular vesicles (EVs) secreted by Gram-negative bacteria. Like 
eukaryotic EVs, OMVs are naturally secreted spherical nanoparticles 
containing all kinds of biomolecules including proteins, DNA and 
RNA, coated by a lipid bilayer (Caruana and Walper, 2020). Their 
cargo does not appear to be randomly packed cellular content, rather 
it is the result of a selection. This selected content is protected inside 
the EVs and safely delivered into the target cell, enabling efficient and 
specific intercellular communication. The interaction between cells 
mediated by EVs is considered an important, although not yet 
sufficiently explored means both for intraorganismic cellular 
communication and communication between organisms belonging to 
different species and even different kingdoms. OMVs are also 
considered to have great potential for biotechnological and biomedical 
applications (Sartorio et al., 2021).

Bacterial sRNAs are known to be 8 to 200 nucleotides long RNAs 
that originate from the bacterial chromosome, plasmids or phages and 
influence the transcriptional and post-transcriptional regulation of 
bacterial and/or host gene expression (Bloch et al., 2017; Barik and 
Das, 2018; Sousa et  al., 2023). The different biotypes of bacterial 
sRNAs differ in structure, mechanism of action and degree of 
regulation, but can be broadly categorized into the following groups: 
trans-acting sRNAs (bind to target messenger RNA (mRNAs)) and 
cis-encoded sRNAs (bind to mRNAs, proteins, and DNA) (Brantl and 
Müller, 2021; Felden and Augagneur, 2021). Like other sRNAs, they 
can often have different modifications at their 3′ and 5′ ends or the 
ones placed inside (Felden and Gilot, 2018). Some of these bacterial 
sRNAs are packaged as OMV cargo depending on the growth phase 

and environmental conditions, enabling various interactions within 
and between kingdoms, some of which are well documented, while 
others remain to be  studied (Ahmadi Badi et  al., 2020). There is 
growing evidence that bacterial vesicles deliver their RNA into 
eukaryotic cells, affect host gene expression and induce phenotypic 
changes (Dauros-Singorenko et al., 2018). Thus, knowledge of the 
properties of OMV-associated sRNAs would be  valuable in our 
attempt to understand the mechanism underlying these forms of host-
bacteria communication and to harness the basic principles for 
biotechnological applications. Conclusions on how to improve the 
correct aligning and biotype determination of bacterial OMV sRNAs 
are an important step toward achieving this goal.

To date, bacterial OMVs have been found to contain large 
amounts of differentially packaged heterogeneous sRNAs of the 
following biotypes (discovered so far): mRNA-derived, tRNA-derived, 
rRNA-derived, pseudogene-derived sRNAs and ‘other’ class sRNAs. 
mRNA-derived sRNAs are derivatives of different regions of mRNAs 
(3′ and 5′ ends and coding regions) that are transcribed from the 
regions overlapping a 3′UTR/5’UTR or are cleaved from the parental 
mRNA by ribonucleases (RNases) or are transcribed independently 
and later processed by RNases (Iosub et al., 2021). Their functions are 
numerous and varied, i.e., in the utilization of an alternative carbon 
source, as a response to oxidative stress, to balance bacteriochlorophyll-
based photosynthesis, etc. (Iosub et al., 2021; Ponath et al., 2022). The 
other major biotype is tRNA-derived sRNA as thermodynamically 
stable derivative of a polycistronic transport RNA (tRNA) precursor 
transcript or mature tRNA, which include three major types: (1) 
sequences of the external and internal transcribed spacer (ETS, ITS), 
(2) 5′ and 3’ tRNA halves, and (3) 5′ and 3’ tRNA-derived fragments 
(5’ tRFs and 3’ tRFs) (Li and Stanton, 2021). They are very abundant, 
which is consistent with the fact that tRNAs are the RNA species with 
the largest number of molecules in both eukaryotes and prokaryotes 
(Koeppen et al., 2016). Their functions are not yet fully characterized, 
but are thought to be diverse (e.g., one of many in modulating host 
nodulation (Ren et al., 2019)), as there are reports of various mRNAs 
predicted to be targets of tRNA-derived sRNAs (Diallo et al., 2022). 
The next important biotype is rRNA-derived sRNA, originating from 
ribosomal RNA (rRNA) like dodecaRNA (doRNA) with 12 core 
nucleotides and its 13-nucleotide variant C-doRNA (with 5′ cytosine). 
Pseudogene-derived sRNAs appear to be  antisense RNAs derived 
from pseudogenes with different regulatory functions (Goodhead 
et al., 2020). sRNAs labeled ‘other’ include all sRNAs that do not fit 
into the previous four biotypes, such as transfer messenger RNAs 
(tmRNA), small bacterial RNAs with structural and functional 
similarities to both tRNA and messenger RNA (Zwieb et al., 1999) and 
several others. Overall, sRNA biotypes are highly diverse and vary 
within and between bacterial species and depend on the phase of the 
life cycle, environmental conditions and interactions with other 
organisms. Considering their different and specific functions, it is very 
important that no biotype is lost during OMV-associated 
sRNA-seq analysis.

Thus, the aim of this study was to test different and widely used 
NGS mapping tools for their performance in correctly aligning 
bacterial OMV sRNA-seq reads to the bacterial reference genome and 
their impact on sRNA biotype determination. Five NGS mapping 
tools selected for testing in this study were all used with their default 
parameters for pair-end reads and are listed below in 
alphabetical order:
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 (1) BBmap is a global aligner written in the Java programming 
language based on the Smith–Waterman algorithm that uses 
sliding-window indexing with short kmers, without size or 
scaffold count limit and uses Simple Score (Levenshtein 
distance model) for mismatch evaluation (Bushnell et  al., 
2017). It looks for the alignment with the highest score, taking 
into account all bases in a sequence, but is very tolerant of 
errors and indels. The default parameters are numerous and 
include: kmer length = 13, break up fasta reads longer than 500, 
do not look for introns longer than 16,000, approximate 
minimum alignment identity to look for = 0.76, the minimum 
number of seed hits for candidate sites is 1, in case of ambiguity 
the first best site is used, pairing of reads without correct strand 
orientation is forbidden, initial average distance between 
paired reads is 100 and the maximum allowed distance between 
paired reads is 32,000, no attempt is made to try to rescue 
paired reads if the average insert size is greater than 1,200, the 
maximum allowed mismatches in the rescued read is 32, the 
band width is 0, do not analyze more than 800 alignments per 
read, discard frequently occurring kmers with low information, 
use quality scores when determining which read kmers to use 
as seeds, do not map reads with an average quality below 0, etc.

 (2) Bowtie2 is a global aligner written in the C++ programming 
language that uses the Burrows-Wheleer-Transform (BWT) 
algorithm with modified Ferragina and Manzini (FM) 
matching algorithm and Substitutional Matrices score for 
mismatch assessment (Langmead et al., 2009; Langmead and 
Salzberg, 2012). It searches for unique, valid concordant and 
discordant alignments for each read. When it finds a valid 
alignment, it continues to search for alignments that are nearly 
as good or better until it has exceeded a limit on the search 
effort or has collected all the information needed to report an 
alignment. When Bowtie2 encounters a set of equally good 
alignments, it uses a pseudo-random number for selection and 
considers overlapping and consistency with concordant 
alignment. If Bowtie2 cannot find a paired-end alignment for 
a pair-end reads it looks for unpaired alignments for the 
constituent mates. For an alignment to be considered valid by 
Bowtie2, it must have an alignment score equal to or higher 
than the minimum score threshold. The default value for the 
minimum score threshold is −0.6 + −0.6 * L, where L is the 
read length. The other default parameters are: number of 
mismatches is 0, seed length is 20, seed used as a pseudo-
random generator is 0, adding columns to allow gaps to solve 
dynamic programming problems is 15, disallow gaps within a 
certain number of positions at the beginning/end of the read is 
4, no-unpaired alignments is false, no discordant alignments is 
false, no forward orientation is false, no reverse complement 
orientation is false, no overlapping mates is false, no mates that 
contain each other is false and mismatched bases at a high-
quality position in the read are penalized.

 (3) BWA is an aligner written in the C++ programming language 
that uses BWT with an FM matching algorithm to find short 
matches so-called seeds and Simple Score (Levenshtein 
distance model) for the evaluation of mismatches (Li and 
Durbin, 2009). The BWA-MEM algorithm is based on the 
seeding alignments with maximal exact matches (MEMs) and 
extending seeds with the affine-gap Smith-Waterman 

algorithm (SW). BWA-MEM performs local alignment, using 
soft clipping for primary alignment and hard clipping for 
supplementary alignments. If the best match is not very 
repetitive, it searches for all matches that contain another 
mismatch, otherwise it only finds all equally good matches. For 
this reason, BWA-MEM can generate multiple primary 
alignments for different parts of a query sequence, while the 
quality of the bases is not considered when evaluating the 
matches. In paired-end mode, it pairs all hits found and 
performs a Smith-Waterman alignment for unmapped reads to 
rescue reads with a high error rate and to fix possible alignment 
errors in high-quality anomalous pairs. In paired-end mode, 
the mem command will infer the read orientation and the 
insert size distribution from a batch of reads. The default 
parameters include: minimum seed length is 19, internal seed 
length is 1.5, skip seed threshold is 10,000, band width is 100, 
dropoff is 100, drop chain threshold is 0.5, rounds of made 
rescues is 100, skip mate rescue is false, skip pairing is false, 
score threshold is 30, as well as a number of penalties for 
mismatch, gap, clipping and unpairing.

 (4) Minimap2 is a global aligner written in the C programming 
language based on the BWT algorithm (uses hashed 
minimizers in the reference genome and query sequences as 
seeds to find matches as seed-chain-aligner) and Substitutional 
Matrices Score for mismatch evaluation (Li, 2018). For each 
query sequence, it takes query minimizers as seeds, finds exact 
matches called anchors and identifies sets of colinear anchors 
as chains by applying dynamic programming to expand from 
the ends of the chains and regions between adjacent anchors in 
the chains. To adapt Minimap2 to short reads and to allow 
comparison with other aligners, we  had to add two 
recommended options: ‘-a’ to generate output alignments in 
SAM format (instead of Minimap2’s default output PAF) and 
‘-x sr’ to preset multiple parameters with suitable defaults for 
mapping short reads against reference genome. Minimap2 
default parameters include: kmer size of 15, minimizer window 
size of 10, split index for each 8G input bases, filtering out the 
top 0.0002 fraction of repetitive minimizers, stopping chain 
elongation if there are no minimizers in 5000 bp, maximum 
intron length is 200,000, maximum fragment length is 800, 
minimum number of minimizers on a chain is 3, minimum 
chaining score is 40, minimum secondary-to-primary score 
ratio is 0.8, retaining at most 5 secondary alignments, matching 
score is 2 and multiple mismatch/gap penalties.

 (5) Segemehl is a local aligner written in the C programming 
language based on the BWT algorithm (it uses enhanced suffix 
arrays to find the seeds with the best results) and uses 
Substitutional Matrices Score for mismatch evaluation 
(Hoffmann et al., 2009). Seeds that Segemehl finds can contain 
insertions, deletions and mismatches (differences). The number 
of allowed differences within a single seed is crucial for the 
runtime of the program. The default parameters include: detect 
splits/spliced reads = none, accuracy is 90, dropoff is 8, search 
seeds with difference of 1 and jump size 0, max E-value is 5, 
minimum length of queries is 12, minimum length of a spliced 
fragment is 20, minimum coverage for spliced transcripts is 80, 
minimum score of a spliced fragment is 18, report spliced 
alignment with score 0.9 only if it is larger than the next best 
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spliced alignment, maximum size of pair-end inserts in case of 
multiple reads is 200,000, query seed is skipped if it matches 
more than 100 times, it penalizes mismatch during extension 
and it reports only the best hits by default.

Each of these aligners performs differently, depending on the 
alignment algorithm and method of mismatch evaluation. Although 
they all aim to align reads as accurately as possible against a reference 
genome, they differ, e.g., in their accuracy, computational time, 
depending on the characteristics of the NGS data and the reference 
genome used in the analysis. While the computational time depends 
on the efficiency of the algorithm and the characteristics of the 
hardware used for its execution, the accuracy of the aligner is 
indirectly estimated based on the expected complete alignment of the 
reads to the reference genome. Therefore, the accuracy can 
be  estimated using various parameters, e.g., the alignment and 
assignment rates, the percentage of unmapped/multimapped reads, 
coverage, etc. The alignment rate indicates the percentage of the total 
number of reads that have been aligned to the reference genome and 
the assignment rate indicates the percentage of aligned reads that have 
been assigned to a position in the reference genome. The average 
number of reads covering a specific region (e.g., gene or chromosome) 
or the entire reference genome represents the gene/chromosome/
overall coverage and provides a further indication of whether or not 
there is a potential error in the alignment of the reads. If the aligner 
cannot determine which region of the reference genome is the correct 
match for the read, it leaves this read unmapped (matching region not 
found) or marks it as multimapped (match at multiple positions). If 
the reference genome is complete, a large number of unaligned reads 
can sometimes indicate a low accuracy of the aligner (Musich et al., 
2021). However, this also depends on the reads (i.e., spliced RNA-seq 
reads mapped to the DNA reference genome, sRNA-seq reads 
containing biologically post-transcriptionally edited sequences 
leading to mismatches, etc.) and the complexity of the reference 
genome (number of repetitive sequences, duplicated regions, 
homopolymeric regions, hotspots for polymorphisms, etc.). 
Paired-end reads can sometimes be helpful to resolve repetitive parts 
of the reference genome, but only if a read at either end comes from a 
non-repetitive part of the reference genome and can be  correctly 
assigned. In addition, each aligner assigns a mapping quality (MAPQ) 
score to each read, which indicates the probability that a read is 
misaligned. It is important to consider the overall performance of each 
aligner with respect to the characteristics of the specific NGS dataset 
and the reference genome. Selecting the most appropriate aligner(s) 
for a particular NGS analysis ensures the best possible biological 
interpretation of the results.

In this study, we selected a broad length range sRNAs-seq data 
from Aliivibrio fischeri OMVs, available in the National Center for 
Biotechnology Information (NCBI) database, to evaluate and compare 
the performance of five aligners. A. fischeri is a Gram negative marine 
bacterium known for its bioluminescent symbiosis with the squid 
Euprymna scolopes, in which the A. fischeri sRNA SsrA (tmRNA) and 
the associated chaperone Hfq (a ubiquitous, Sm-like RNA binding 
protein) play an essential role (Moriano-Gutierrez et  al., 2020; 
Tepavčević et al., 2022). The performance of the five mapping tools 
was evaluated in terms of alignment and assignment rates, percentage 
of unmapped/multimapped reads, computational time and 
additionally the number of different biotypes assigned to sRNAs by 

each aligner on this particular dataset. The results obtained are 
discussed in terms of the potential of the tested tools to detect all (or 
the majority) of the biologically important OMV sRNAs represented 
in the analyzed NGS dataset.

2 Materials and methods

2.1 Dataset

The Aliivibrio fischeri OMV RNAseq dataset was downloaded 
from the National Center for Biotechnology Information Sequencing 
Read Archive (NCBI SRA) database – accession number 
PRJNA6294251 and used for comparison of tools. This dataset consists 
of six samples of OMV-associated sRNA-seq reads (two sets of 
triplicates of RNA-seq data from OMVs produced by A. fischeri wild 
type strain ES114 and mutant-derived strain SMG7 lacking tmRNA 
(SsrA), obtained by Illumina HiSeq 2,500 sequencing of paired-end 
stranded RNA libraries preselected for <300 nucleotide size) and 
contains sRNAs of different lengths, varying from 10 to 76 nucleotides. 
The size of the samples was 131.3 Mb, 152.3 Mb and 132.3 Mb for 
triplicates of the wild type strain and 140.4 Mb, 153.2 Mb and 
157.1 Mb for triplicates of the mutant strain.

The reference genome and annotation file of A. fischeri wild type 
strain ES114 were downloaded from the NCBI SRA database with 
accession number PRJNA12986.2 The reference genome consists of two 
chromosomes and one plasmid: chromosome I with a total length of 
2,897,536 bp, chromosome II with a total length of 1,330,333 bp and 
plasmid pES100 with a total length of 45,849 bp. The annotation file 
shows that the A. fischeri wild type strain ES114 genome encodes the 
following RNA biotypes: mRNA (3818), rRNA (37), tRNA (118), 
pseudogenes (5) and ‘other’ (10, including one tmRNA). Of the rRNAs 
copies the A. fischeri genome contains 13 copies of 5S (12 on 
chromosome I, one on chromosome II), 12 copies of 16S (11 on 
chromosome I, one on chromosome II) and 12 copies of 23S (11 on 
chromosome I, one on chromosome II). Each tRNA in the A.fischeri 
genome was also present in certain number of copies, namely: tRNA-Trp 
(3), tRNA-Glu (6), tRNA-Ile (3), tRNA-Ala (5), tRNA-Asp (7), tRNA-Leu 
(11), tRNA-Asn (7), tRNA-Phe (4), tRNA-Thr (8), tRNA-Ser (8), 
tRNA-Arg (9), tRNA-Gln (5), tRNA-Met (7), tRNA-Pro (3), tRNA-Val 
(6), tRNA-Gly (11), tRNA-Cys (3), tRNA-Tyr (6), tRNA-Lys (4) and 
tRNA-His (2). Protein-encoding genes (3818) were present without 
copies on both chromosomes (2,586 on chromosome I and 1,175 on 
chromosome II) and on the plasmid (57). In addition, five pseudogenes 
(two on chromosome I and three on chromosome II) and ten features of 
the class ‘other’ (nine on chromosome I, including one tmRNA and one 
on chromosome II) were present in the A. fischeri genome without copies.

2.2 Comparison of the tools

Using a computer configuration based on AMD Ryzen 72,700 U 
with Radeon Vega Mobile Gfx, 8 CPUs, 8GB DDR4 memory and 

1 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA629425

2 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA12986/
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128 GB SSD + 1000GB HDD, we tested five aligners: BBmap (v39.01), 
Bowtie2 (v2.3.4.1), BWA (v0.7.17), Minimap2 (2.24) and Segemehl 
(v0.3.4) using their default settings (Figure 1).

The SAM files obtained were used to generate BAM files from 
which the aligned reads could be counted. The performances of the 
aligners were evaluated based on alignment rates (ratio of aligned and 
input reads), assignment rates (ratio of assigned and aligned reads), 
computational times and the total number and types of known sRNA 
biotypes detected. The alignment and assignment metrics used for the 
comparison were calculated with samtools (v1.3.1), multiqc (v.1.16) 
and qualimap (v2.2.2). The biotypes of the mapped reads were 
determined with featurecounts (v2.0.6) based on the annotation file 
of A. fischeri strain ES114.

In addition, for each aligner unmapped and multimapped reads 
were separated from the uniquely mapped reads, sorted and compared 
using samtools (v1.3.1) and seqkit (v.2.6.1) and the results were 
analyzed using FastQC (v.0.11.5).

Visual inspection of the mapped reads was performed using 
IGV-Linux-2.16.2.

2.3 Statistics

Prior to any statistical analysis, the normality of the data with 
continuous values was checked by applying the Shapiro-Wilks test 
(p > 0.05).

For the metrics, mapping quality, coverage, overall error rate, and 
indel types of five aligners, a general linear model was used, with 

Bonferroni correction for multiple post hoc comparisons. Because 
some results are presented in relative form and for model 
normalization, the total number of reads was included in the model 
for covariate adjustment. The results are presented as mean ± standard 
deviation. A probability level of p < 0.05 was used as the statistical 
significance threshold. Compact Letter Display (CLD) was used to 
display the results of pairwise comparisons between means, so that 
means with the same letter are not statistically significantly different 
from each other, while means with different letters are statistically 
significantly different at a specified statistical significance level.

The sensitivity (Sn) and specificity (Sp) between two aligners were 
calculated as the ratio of identified unique small RNAs and the 
number of aligner-specific small RNAs, respectively. The lower the 
specificity of the aligner, the higher the number of unique small RNAs 
identified by that aligner compared to another. Cohen’s Kappa was 
used to quantify the level of agreement between two aligners. Kappa 
values between 0.81 and 1.0 indicate an almost perfect agreement, 
while values below 0.20 indicate a low agreement. The Sn, Sp and 
Kappa values are presented as median with minimum and 
maximum values.

Statistical data analysis was performed using SPSS 21 (SPSS Inc., 
Chicago, IL, USA).

3 Results

The alignment and assignment rates and computational time were 
used to analyze how each aligner with its default parameters affects 

FIGURE 1

Schematics of the performance comparison of five aligners: BBmap (v39.01), Bowtie2 (v2.3.4.1), BWA (v0.7.17), Minimap2 (2.24), and Segemehl (v0.3.4) 
using their default settings when mapping the Aliivibrio fischeri OMV-associated sRNAseq dataset to its reference genome.
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the mapping of A. fischeri OMV sRNA reads to the bacterial reference 
genome (Table 1). The highest alignment rate (for properly paired 
reads) was obtained with BBmap, followed by Segemehl, Bowtie2 and 
BWA (these two performed the same) and Minimap2, in descending 
order, but observed differences were only statistically supported for 
BBmap and Segemehl. The highest assignment rate was obtained for 
BBmap, followed by Bowtie2, BWA, Minimap2 and Segemehl, in 
descending order, but the observed differences were only statistically 
supported for BBmap and Segemehl. Segemehl had the lowest 
assignment rate compared to the other mapping tools, which is due to 
a very high percentage of multimapped reads. The computational time 
was shortest for BBmap and Minimap2, followed by BWA, then 
Bowtie2 and finally Segemehl, which required the longest 
computational time.

Overall analysis of mean mapping quality (MAPQ), overall 
coverage and mean coverage per chromosome/plasmid (Table  2) 
showed that the highest MAPQ was recorded for BWA and 
Minimap2, followed by BBmap, Bowtie2 and Segemehl, in descending 
order, with statistical support for the observed differences. The 
highest overall coverage was recorded for BBmap, followed by 
Minimap2, Bowtie2, Segemehl and BWA, but without statistical 
significance. Examination of the mapping per chromosome/plasmid 
showed that the coverage of the first chromosome and plasmid was 
comparable between the mappers, while there were significant 
differences in the coverage of the second chromosome. While BBmap 
showed the highest coverage of the first chromosome, it had the 
lowest coverage of the second chromosome. Low coverage of the 
second chromosome was also observed in Segemehl, while it was 
statistically significantly higher in the other three aligners and close 
to the mean coverage.

The general error rates for all aligners were < 0.3% for Bowtie2, 
BWA, Minimap2 and Segemehl and < 2% for BBmap, which was 
statistically significantly higher than for other four aligners. The 
frequency of insertions was lower than that of deletions in all mappers, 
while homopolymeric indels were most frequent in all mappers. The 
highest insertion rate was observed in Segemehl and decreased in the 
following order: Bowtie2, followed by BBmap, BWA and Minimap2 
(the last three performed the same), with statistical support for the 
observed differences. The statistically significant higher deletion rate 
was observed with Segemehl compared to other aligners and 
decreased with BBmap, Bowtie2, BWA and Minimap2 (the last two 
performed equally), but these other differences were not statistically 
supported. The homopolymer indels rate was the highest with BWA, 
followed by Minimap2, BBmap, Bowtie2 and Segemehl, with 
statistically supported differences for all aligner pairs except between 
BWA and Minimap2. These results are summarized in Table 3.

The analysis of unmapped reads, which were present in all aligners 
at a generally low percentage (0.02–0.06%, from BBmap with the 
lowest to Minimap2 with the highest), showed that unmapped reads 
were present over the entire length range of the dataset. While some 
of them could not be mapped to the reference genome at all, others 
could be fully mapped at multiple locations in the genome and in 
different orientations. Their average GC ranged from 49 to 51%. 
Comparison of unmapped sequences between each pair of aligners 
showed that 35.8 to 100% of the sequences in six samples matched and 
contained a subset of 887 to 1,391 sequences that had not been 
mapped by all five aligners, as well as 27–863 overrepresented 
sequences in the six samples. In addition, two overrepresented kmers 
(‘TTTATTC’ and ‘TTTTATT’) were detected in unmapped reads of 
one sample by all five aligners.

All aligners showed a similarly high percentage of ambiguous/
multimapped reads, approximately 96.5%, containing sequences over 
the entire length range of the dataset. These reads could be  fully 
mapped at two or more sites in the genome in the same orientation. 
Comparison of ambiguous/multimapped reads between pairs of 
aligners showed a subset of 88.22 to 95.72% of multiply mapped 
sequences shared by all five aligners, with a mean GC of 51 to 52% and 
141–159 overrepresented sequences and 20 different kmers across the 
six samples. Ambiguous/multimapped reads are considered further in 
the context of the biotypes to which they were assigned by each aligner.

The five major biotypes (mRNA-, tRNA-, rRNA-, pseudogene-
derived and ‘other’ sRNAs) represented in the A. fischeri annotation 
file were all recognized in the results of each aligner, but the number 
of unique representatives of each biotype that were recognized varied 
between aligners (Figure 2). Alignment most strongly influenced the 
recognition of biotypes associated with mRNA-derived, tRNA-derived 
and rRNA-derived sRNAs. The different aligners associated the reads 
differently with the specific sRNAs of each biotype, resulting in some 
sRNAs not being recognized by some aligners and the number of 
some reads associated with specific sRNAs differed between aligners. 
In contrast, when recognizing pseudogene-derived sRNAs and sRNAs 
from the ‘other’ class all aligners recognized the same ones, only the 
number of some reads associated with specific sRNAs of these two 
biotypes differed between the aligners.

Consistently across all six samples, most unique mRNA-derived 
sRNAs were assigned by Bowtie2, followed by Segemehl, BBmap, 
BWA and Minimap2 (in descending order). Most unique tRNA-
derived sRNAs (in descending order) were assigned by Segemehl, 
BWA, Bowtie2, Minimap2 and BBmap (BWA and Bowtie2 as well as 
Minimap2 and BBmap were equal in their performance in one sample; 
additionally, in one of six samples the descending order was changed 
– again Segemehl detected the highest number of unique tRNAs and 

TABLE 1 Overview of the mean values of the metrics calculated over six A. fischeri OMV sRNAs samples for each of the five aligner tools tested, in 
alphabetic order.

Aligner BBmap Bowtie2 BWA Minimap2 Segemehl

Mapped reads (%) 99.86 ± 0.01a 99.80 ± 0.01a 99.45 ± 0.04b 99.11 ± 0.08c 99.65 ± 0.02d

Mapped and paired reads 

(%)
99.73 ± 0.02a 99.64 ± 0.03a 98.93 ± 0.08b 98.29 ± 0.15c 99.29 ± 0.03d

Properly paired reads (%) 99.40 ± 0.04a 96.49 ± 0.67b 96.49 ± 0.57b 96.00 ± 0.61b 99.26 ± 0.04a

Assigned reads (%) 97.43 ± 0.42a 96.27 ± 0.57b 96.17 ± 0.52b 95.67 ± 0.55b 26.30 ± 0.13c

Computational time (min) 3.00 35.00 5.00 3.00 37.00

The results are presented as mean ± standard deviation. Different letters in the same row denote statistical significance at the p < 0.05 level.
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BBmap the lowest, but the three remaining aligners changed their 
order so that Segemehl was followed by Minimap2, BWA and then 
Bowtie2). In contrast, for rRNA-derived sRNAs Bowtie2, BWA, 
Minimap2 and Segemehl all assigned the reads to the same unique 
sRNAs (differing only in the number of reads assigned to each), while 
BBmap assigned the reads to a smaller number of unique rRNA-
derived sRNAs than the other four mappers. The differences between 
the five aligners were consistent between samples (with a single 
exception in the tRNA-derived sRNAs of one sample), revealing the 
same preferences of each aligner in assigning reads to specific copies 
or genomic regions and affecting biotype recognition in the same way 
in six samples. All differences between the aligners in the assignment 
of sRNAs to mRNA-derived, tRNA-derived and rRNA-derived 
biotypes are listed in Supplementary Table S1.

The most important differences observed in the assignment of 
biotypes by the aligners tested are summarized below:

 (1) All aligners showed the greatest differences in the assignment 
of reads to unique protein-encoding features represented on 
two chromosomes and the plasmid (Table  4), along with 
differences in the number of reads assigned to each feature 
(Supplementary Table S1). When detecting mRNA-derived 
sRNAs, the specificity of the aligners decreased, and the 
sensitivity increased in the order Minimap2-BWA-BBmap-
Segemehl-Bowtie2. The three highest level of agreement were 
found between BWA and Minimap2, BBmap and Segemehl, 
Bowtie2 and Segemehl (Kappa 0.71, 0.74 and 0.77, respectively), 
while the three lowest level of agreement were found between 
Bowtie2 and Minimap2, Bowtie2 and BWA, Segemehl and 
Minimap2 (Kappa 0.05, 0.07 and 0.13, respectively). In 
addition, each aligner showed a portion of protein-encoding 
associated sequences within the multimapped reads, with the 
lowest number of distinct multimapped protein-encoding 
associated sequences found in BWA, followed by increasing 
numbers in Minimap2, BBmap, Bowtie2 and the highest 
in Segemehl;

 (2) All aligners showed differences in the assignment of reads to 
tRNA features, both in the number of specific tRNA genomic 
regions to which they assigned reads and in the different 
genomic copies of the same tRNAs (Table  5; 
Supplementary Table S1). When detecting tRNA-derived 
sRNAs, the specificity of the aligners decreased, and the 
sensitivity increased in the order BBmap-Minimap2-Bowtie2-
BWA-Segemehl. The three highest level of agreement were 
found between BWA and Bowtie2, Minimap2 and BBmap, 
Minimap  2 and Bowtie2 (Kappa 0.61, 0.74 and 0.74, 
respectively), while the lowest level of agreement was found 
between Segemehl and any of four other aligners (Kappa 0). In 
addition, a subset of tRNAs was detected among the 
multimapped reads in the six samples by each aligner, with the 
lowest number of different multimapped tRNAs in BWA and a 
similarly low number in Bowtie2 and BBmap (their order 
varied depending on the sample), a higher number in 
Minimap2, and the highest in Segemehl;

 (3) While BWA, Bowtie2, Minimap2 and Segemehl assigned the 
same 37 rRNA-derived sRNAs in each sample (34 from 
chromosome I and three from chromosome II) and differed 
only in the number of reads assigned to each unique rRNA T
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feature, BBmap assigned a smaller number of rRNA-derived 
sRNAs, ranging from 31 to 34 depending on the sample (28 to 
31 from chromosome I and three from chromosome II). The 
reads that were not assigned to the rRNA feature by BBmap 
were all from chromosome I and were assigned to the following 
three to six (depending on the sample) genomic regions by four 
other aligners: VF_R0013, VF_R0022, VF_R0025, VF_R0026, 
VF_R0029 and VF_R0032, all of which were labeled as 5S 
RNAs (out of a total of 12 5S rRNAs in chromosome I); in 
addition, all rRNAs assigned by each aligner in each sample 
were detected among the multimapped reads.

Given the significant differences in the performance of the five 
aligners, the intersect-then-combine approach was used with the 
three aligners that showed the best, yet different, overall performance 
as well as good combining ability – BBmap, BWA and Minimap2 to 
increase sensitivity and reduce false-positive detection of OMV 
sRNAs. This approach enabled the detection of 9–22 mRNA-derived, 
6–11 tRNA-derived and 3–6 rRNA-derived sRNAs (depending on 
the sample) in the analyzed A. fischeri dataset, that would have 
otherwise been lost (all or some of them) (Figure  3; 
Supplementary Table S1).

4 Discussion

Although various benchmarking of different aligners have been 
performed on unrelated datasets to date, the question of aligner 
choice remains open because the correct alignment by each aligner 
depends on its algorithm and matrix, but is also affected by read 
size, reference genome size and repeats distribution and because the 
effects of reference genome properties have not yet been sufficiently 
explored (Phan et al., 2015; Xin et al., 2016; Song et al., 2023). Given 
the availability and development of numerous algorithms and tools 
for extracting information from different RNAseq data and the fact 
that each of them is the best choice under certain conditions, 
selecting the right aligner for a given dataset becomes a very 
important task. Most studies so far have been performed on 
DNAseq and RNAseq data, both long and short reads, mainly on 
eukaryotic genomes (Hatem et al., 2013; Baruzzo et al., 2017). Only 
to some extent have such studies been performed on prokaryotic 
genomes, mostly involving DNAseq- and metagenomics-related 
studies or various RNAseq-related tools considered individually as 
they were developed/tested (Gaur and Chaturvedi, 2017; 
Thankaswamy-Kosalai et al., 2017). To the authors’ knowledge none 
of the studies addressed the benchmarking of different aligners for 

TABLE 3 Overview of the general error rate and indel types detected by five aligners in six A. fischeri OMV sRNAs samples.

Mismatch and 
indel type

BBmap Bowtie2 BWA Minimap2 Segemehl

General error rate 1.89 ± 0.56a 0.19 ± 0.01b 0.14 ± 0.01b 0.13 ± 0.01b 0.18 ± 0.01b

Mapped reads with 

insertion (%)
0.07 ± 0.001a 0.19 ± 0.04b 0.03 ± 0.004a 0.03 ± 0.004a 0.54 ± 0.06c

Mapped reads with 

deletion (%)
0.24 ± 0.02a 0.23 ± 0.03a 0.18 ± 0.03a 0.18 ± 0.03a 1.01 ± 0.07b

Homopolymer indels (%) 45.54 ± 1.58a 37.55 ± 3.02b 57.37 ± 1.37c 54.74 ± 5.53c 27.05 ± 3.42d

The results are presented as mean ± standard deviation. Different letters in the same row denote statistical significance at the p < 0.05 level.

FIGURE 2

Distribution of the main sRNA biotypes detected by each aligner, calculated as the mean across six A. fischeri OMV sRNAs samples.
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the alignment of small RNA associated with bacterial OMVs to the 
bacterial reference genome. In this work, we  tested five aligners 
known for their generally good performance, to map a specific set 

of small RNAs, associated with A. fischeri OMVs, to the reference 
genome. Each aligner was used with its default parameters. In 
addition to the basic metrics, we also tracked how the alignment 

TABLE 4 Overview of the sensitivity (Sn), specificity (Sp), and Kappa agreement differences between pairs of aligners for the unique mRNA-derived 
sRNAs in OMV from A. fischeri.

Aligner Parameter BBmap Bowtie2 BWA Minimap2 Segemehl

BBmap

Sn % - 96.30 (95.50–98.0) 100 100 98.80 (97.40–99.40)

Sp % - 100
14.90 (5.10–

28.60)
11.85 (4.80–27.30) 100

Kappa - 0.49 (0.44–0.58) 0.25 (0.09–0.44) 0.20 (0.09–0.42) 0.74 (0.50–0.89)

Bowtie2

Sn % 100 - 100 100 100

Sp % 33.00 (29.40–39.50) - 3.70 (3.10–7.90) 3.15 (1.20–3.90) 64.05 (54.50–77.10)

Kappa 0.49 (0.44–0.58) - 0.07 (0.06–0.18) 0.05 (0.02–0.07) 0.77 (0.69–0.87)

BWA

Sn % 98.05 (97.20–98.80) 94.10 (92.90–96.80) - 100 96.05 (95.00–97.50)

Sp % 100 100 - 55.60 (26.70–81.80) 100

Kappa 0.25 (0.09–0.44) 0.07 (0.06–0.18) - 0.71 (0.42–0.90) 0.16 (0.15–0.25)

Minimap2

Sn % 97.95 (96.70–98.70) 93.70 (92.70–96.80)
99.80 (99.50–

99.90)
- 95.80 (94.90–97.50)

Sp % 100 100 100 - 100

Kappa 0.20 (0.09–0.42) 0.05 (0.02–0.07) 0.71 (0.42–0.90) - 0.13 (0.12–0.26)

Segemehl

Sn % 100 98.00 (97.30–99.20) 100 100 -

Sp % 60.70 (34.10–80.80) 100
9.35 (8.70–

14.90)
7.40 (6.50–15.60) -

Kappa 0.74 (0.50–0.89) 0.77 (0.69–0.87) 0.16 (0.15–0.25) 0.13 (0.12–0.26) -

The Sn, Sp, and Kappa values are presented as median with minimum and maximum values.

TABLE 5 Overview of the sensitivity (Sn), specificity (Sp), and Kappa agreement differences between pairs of aligners for the unique tRNA-derived 
sRNAs in OMV from A. fischeri.

Aligner Parameter BBmap Bowtie2 BWA Minimap2 Segemehl

BBmap

Sn % - 93.50 (90.80–95.90)
90.35 (85.10–

92.40)
96.20 (87.10–100) 82.55 (72.50–90.10)

Sp % - 100 100 100 100

Kappa - 0.53 (0.00–0.72) 0.10 (0.00–0.68) 0.74 (0.37–1.00) 0

Bowtie2
Sn %

100 -
96.40 (92.70–

100)
100 90.45 (77.50–93.80)

Sp % 40.00 (5.90–60.00) - 100 61.90 (50.00–80.00) 100

Kappa 0.53 (0.00–0.72) - 0.61 (0.00–1.00) 0.74 (0.64–0.88) 0.00 (0.00–0.22)

BWA

Sn % 100 100 - 100 92.35 (80.00–97.50)

Sp % 13.70 (7.60–57.10) 46.45 (2.90–100) - 31.10 (16.70–75.00) 100

Kappa 0.10 (0.00–0.68) 0.61 (0.00–1.00) - 0.44 (0.26–0.84) 0.00 (0.00–0.47)

Minimap2

Sn % 100 95.45 (92.70–98.70)
95.25 (87.50–

98.70)
- 87.00 (78.80–92.60)

Sp % 61.90 (25.00–100) 100 100 - 100

Kappa 0.74 (0.37–1.00) 0.74 (0.64–0.88) 0.44 (0.26–0.84) - 0.00 (0.00–0.37)

Segemehl

Sn % 100 100 100 100 -

Sp % 17.45 (9.90–27.50) 10.70 (6.20–22.50)
9.60 (2.50–

33.30)
13.75 (7.40–25.00) -

Kappa 0 0.00 (0.00–0.22) 0.00 (0.00–0.47) 0.00 (0.00–0.37) -

The Sn, Sp, and Kappa values are presented as median with minimum and maximum values.
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generated by each aligner affected the recognition of the biotype of 
the OMV sRNAs.

Looking at the overall results of all aligners, BBmap showed the 
best basic metrics when considering alignment and assignment rates 
and one of the two fastest computational times. However, its’ MAPQ 
was the third best, it showed the third highest number of 
homopolimeric indels and its general error rate was the highest. In 
addition, BBmap assigned more reads to chromosome I  than to 
chromosome II compared to all other aligners. Bowtie2 showed the 
second and third best basic metrics, also its MAPQ was the fourth best 
and it required more computational time – the fourth best compared 
to the others. Its mean coverage per chromosome II was statistically 
significantly higher in comparison to Segemehl and BBmap. On the 
other hand, BWA showed the third best basic metric, the highest 
percentage of homopolimeric indels, but also the best mean MAPQ, 
a short computational time (the second best) and the mean coverage 
of the chromosome II was as high as for Bowtie2. Minimap2 showed 
the fourth best basic metric, but also one of the two fastest 
computational times, the second best mean MAPQ and the third 
highest number of homopolimeric indels, as well as the same high 
mean coverage of chromosome II as Bowtie2 and BWA. Segemehl 
required the longest computational time and achieved the lowest 
mean MAPQ. It also had the lowest number of homopolimeric indels 
and while it had the second best assignment rate, it also had the lowest 
assignment rate. Its mean coverage of chromosome II was significantly 
lower than that of Bowtie2, BWA and Minimap2, but also significantly 
higher than that of BBmap.

The observed differences in alignment and assignment rates, 
coverage, mean MAPQ, mismatches and indels between the five 
aligners were to be  expected considering that each alignment 
algorithm has its’ specific MAPQ ranges as well as rewards and 
penalties for matches and mismatches depending on the scoring 
matrix used. Since each aligner has specific advantages and 
disadvantages, these must be taken into account depending on the 
characteristics of the input dataset. A similar and expected conclusion 
was reached in another report (Donato et  al., 2021), in which 17 
aligners, including the five aligners we are interested in, were tested 
for their performance on different empirical and/or simulated human 
and mouse DNAseq and RNAseq datasets. The authors reported that 
each tool performed best under certain conditions and that the 
accuracy of the aligners varied for different RNA-Seq data. The overall 
scores assigned by the authors for empirical RNAseq data analysis 
performance for five aligners we are interested in were (in decreasing 
order): the highest for Segemehl and BWA-MEM, followed by BBmap 
and Minimap2, and finally Bowtie2. Since the organisms from which 
the datasets and reference genomes were derived were eukaryotic and 
of different length and complexity than the ones we  tested, 
extrapolation would not be very trustworthy. However, since we lack 
benchmarking information for different aligners used to map different 
sRNA-seq reads on bacterial reference genomes, we could only refer 
to these data, although we  are aware of all the limitations of 
such extrapolation.

While the issue of multimapping has been independently 
addressed on several occasions (Johnson et  al., 2016; Bermúdez-
Barrientos et al., 2020) unmapped and multimapped reads are usually 
not analyzed in detail in benchmark studies, but only their overall 
percentage is considered. In our study, the overall percentages of 
unmapped and multimapped reads were similar for each aligner, with 

a generally low percentage of unmapped reads and a high percentage 
of multimapped reads across all five aligners. In both categories, there 
were overrepresented sequences and kmers associated with each 
aligner, consistent with differences in the algorithms and scoring 
matrices of each aligner. Nevertheless, all five aligners shared a certain 
portion of overrepresented sequences and kmers in the unmapped 
and multimapped reads of the six samples. Among these 
overrepresented sequences there were no obvious patterns in terms of 
homopolymers or dinucleotide or trinucleotide repeats.

As expected, these alignment differences influenced the 
assignment of biotypes to OMV sRNAs. The assignment of reads to 
rRNA features was ambiguous/multiple for each aligner (in the 
numbers reported in the biotype-related results section), with all 
aligners giving the same final result when assigning multimapped 
reads to rRNA features except BBmap, which did not assign 3–6 5S 
rRNA-derived sRNAs in six samples compared to the other aligners. 
In contrast to the repetitive 5S rRNA genomic regions, the assignment 
of reads to tRNA features, which are as repetitive as rRNAs in the 
A. fischeri genome, was performed differently by each aligner. They 
agreed to some extent, but again, BBmap did not assign as many tRNA 
features as the other aligners. While BWA and Bowtie2 had an equally 
low number of multimapped tRNAs features as BBmap, Minimap2 
assigned a higher number and Segemehl assigned the highest number 
across all six samples. The recognition of different tRNA-derived 
sRNAs was affected by these differences in each aligner 
(Supplementary Table S1), i.e., a certain part of reads in the six samples 
was assigned to the genomic feature tRNA-Phe (VF_T0013) by all 
aligners except BBmap, which assigned these reads to the other copies 
of tRNA-Phe, but not to this specific one. However, the greatest 
differences were observed in the assignment of reads to protein-
encoding features (which have no copies in the A. fischeri genome). 
The lowest number of multimapped protein-encoding features was 
found in BWA (which ranked fourth in the number of distinct mRNA-
derived sRNAs) and the highest in Segemehl (which ranked second in 
the number of distinct mRNA-derived sRNAs).

Considering all these results for the overall evaluation of the five 
aligners with their default settings, Segemehl should be avoided for 
this type of analysis, as it has the longest computational time, the 
highest CPU usage (data not shown) and the highest multimapping, 
especially with respect to tRNA and protein-coding features. Also, it 
showed extremely low agreement level for tRNAs with any of four 
other aligners (Kappa 0). The remaining four aligners showed overall 
good metrics and the pros and cons based on their overall performance 
were not entirely decisive in either case when tested with the A. fischeri 
genome and this particular OMV sRNAs dataset. Therefore, in this 
case it would be  necessary to intersect the results of at least two 
(preferably three) differently performing aligners in order to extract 
the overlapping result for the downstream analysis. However, the 
differences obtained should not be  discarded lightly, but should 
be carefully considered in the biological context of the dataset and the 
experiment as a whole, suggesting that the intersect-then-combine 
approach is the best choice for such analysis.

Of the remaining four aligners, Bowtie2 had the longest 
computational time, its MAPQ was the lowest and it showed extremely 
low agreement level with BWA and Minimap2 (Kappa <0.1 for both), 
which is why we  excluded it. Considering all parameters, of the 
remaining three aligners, BBmap performed differently from the other 
two: BWA and Minimap2, which performed more similarly to each 
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other than to BBmap. If we were to select more different pairs, BBmap 
should be  intersected with one of these two other aligners. Since 
MAPQ is not always the best criterion (Wilton and Szalay, 2022) and 
a higher general error rate may be acceptable given the high editability 
of sRNAs, considering the number of individual biotypes assigned by 
each of the three aligners (as it is lower for BBmap than for the other 
aligners) and the number of multimapped reads per biotype, we would 
recommend intersecting BBmap (short computing time, lower rRNA 
and tRNA biotypes, medium number of pairwise differences in reads 
assigned/multimapped to protein-encoding, tRNA and rRNA 
features) with Minimap2 (short computing time, larger number of 
identified biotypes, lower number of pairwise differences in reads 
assigned/multimapped to protein-encoding, tRNA and rRNA features, 
more balanced coverage of chromosome II than by BBmap). If we had 
to select more similar aligners to improve the detection of overlapping 
alignments, we would recommend BWA and Minimap2 as they are 
more balanced compared to each other. However, since we  are 
interested in increasing the overall sensitivity of OMV sRNAs 
detection, while reducing the number of falsely detected OMV sRNAs, 
we recommend using the intersection of Minimap2, BWA and BBmap 
and then combining the obtained results as 
(Minimap2⋂BWA + Minimap2⋂BBmap) or even better 
(Minimap2⋂BWA + Minimap2⋂BBmap+ BWA⋂BBmap), in order 

to reduce the loss of recognition of existing, biologically important 
OMV-associated sRNAs.

In summary, all five aligners tested in this particular analysis had 
specific advantages and disadvantages that need to be considered in 
future studies depending on the characteristics of the input OMV 
sRNAs dataset and the bacterial reference genome. Until we learn 
more about the effects of the dataset and reference genome on aligner 
performance, we recommend overlapping the results of at least two, 
preferably three, aligners to analyse bacterial OMV-associated sRNAs. 
Using the intersect-then-combine approach with three aligners would 
increase sensitivity and reduce the number of false positives, thereby 
improving the recognition of different sRNA biotypes. Given the use 
of the intersect-then-combine approach, false positives can be defined 
as alignments supported by only one aligner, and in this particular 
case the number of sRNAs detected by only one aligner. For example, 
as shown in Figure 3, this approach could exclude 45–80 false-positive 
mRNA-derived sRNAs and 2–7 false-positive tRNA-derived sRNAs 
from downstream analysis. For bacterial reference genomes with two 
circular chromosomes of different lengths and one circular plasmid, 
characterized by specific repetitive structures and containing copies 
of sequences with rRNA- and tRNA-related features and no copies of 
sequences with protein-encoding features (similar to A. fischeri 
reference genome) and for OMV-associated sRNAs datasets derived 

FIGURE 3

Venn diagram depicting the contribution of the intersect-then-combine approach with three aligners: BBmap, BWA and Minimap2. The diagram 
represents the number of unique mRNA-derived sRNAs (A) and tRNA-derived sRNAs (B) detected by all three aligners, by a pair of aligners and by a 
single aligner.
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from such genomes, when using aligners with their default settings, 
we  recommend avoiding Segemehl and using the intersect-then-
combine approach with Minimap2, BWA and BBmap, to improve the 
identification of both overlapping and differently processed sRNA 
data for downstream analysis. Since we tested all these aligners with 
their default parameters, the results should improve even further if 
you tune the parameters of the selected aligners to the dataset (i.e., for 
BBmap reduce the allowed mismatches number, for Segemehl adjust 
the parameters for the allowed differences and the E-value, etc.). There 
are already many papers dealing with changing the default parameters 
of the five aligners, which can be  helpful in narrowing down the 
options for testing with a particular dataset. However, even after 
adjusting the parameters for each tool to the analyzed dataset, taking 
into account the differences in their algorithms, the intersect-then-
combine approach is still recommended, as it improves the sensitivity 
and specificity of sRNA detection. Nevertheless, in this paper, 
we  intentionally tested the tools only with their basic default 
parameters, as this is often the case when biologists analyse NGS data. 
When looking at default settings of the aligners, besides the differences 
in performing global or local alignments, the number of allowed 
mismatches and the different penalization of mismatches/gaps, the 
default insert size of pair-end reads and/or intron size as well as the 
number of retained primary and secondary alignments were probably 
the main differences between the five aligners that could affect their 
results for the tested dataset.

Although the functions of the above-mentioned biotypes of 
sRNAs in A. fischeri are still unknown (except for some sRNAs from 
the ‘other’ class, which are reported to be essential for bioluminescent 
symbiosis with the squid Euprymna scolopes, carbohydrate 
metabolism, quorum regulation, etc.), general knowledge about the 
functions of mRNA-, tRNA- and rRNA-derived sRNAs differentially 
packaged in bacterial OMVs is growing. There is evidence that the 
composition of sRNAs in OMVs of Pseudomonas aeruginosa changes 
when exposed to external stress, including tRNA-Met-derived sRNA, 
which is involved in reducing the host immune response (Koeppen 
et al., 2016) or that Ile-tRF-5X in OMVs of Escherichia coli regulates 
host cell gene expression and proliferation (Diallo et  al., 2022). 
Considering that these and other similar reports provide only a 
glimpse of the much broader functions of sRNAs that remain to 
be discovered, and that the composition of sRNAs packaged in OMVs 
can vary depending on the environment/interactions, the biological 
importance of distinct sRNA biotypes becomes clear, emphasizing the 
need to be  able to detect them all. Since the detection of 
OMV-associated sRNAs depends on their alignment to the reference 
genome, given the variety of available aligners, it is important not to 
choose the aligner arbitrarily, but to consider which aligner or 
combination of aligners is best suited for the dataset/reference genome 
in question based on its performance results. Such an approach would 
help to improve reference genome alignment-based detection of 
existing, biologically important OMV-associated sRNAs.
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