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The microbiota within the guts of insects plays beneficial roles for their hosts, such 
as facilitating digestion and extracting energy from their diet. The African palm 
weevil (APW) lives within and feeds on the high lignin-containing trunk of palm 
trees; therefore, their guts could harbour a large community of lignin-degrading 
microbes. In this study, we aimed to explore the bacterial community within the gut 
of the APW larvae, specifically with respect to the potential for lignin degradation in 
various gut segments as a first step to determining the viability of mining bacterial 
lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to 
biofuels and biomaterials. Bacterial metagenomic DNA was extracted from the 
foregut, midgut, and hindgut of larvae of the APW, and the V3–V4 hypervariable 
region of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. 
The generated data were analysed and taxonomically classified to identify the 
different bacterial phylotypes within the gut community cumulatively and per 
gut segment. We  then determined the presence, diversity, and abundance of 
bacteria associated with lignin degradation within each larval gut compartment 
as a basis for suggesting the gut segment(s) where lignin degradation occurs 
the most. All sequences were classified and belonged to the bacterial kingdom. 
Firmicutes (54.3%) and Proteobacteria (42.5%) were the most dominant phyla 
within the gut, followed distantly by Bacteroidota (1.7%) and Actinobacteriota 
(1.4%). Enterococcus, Levilactobacillus, Lactococcus, Shimwellia, Megasphaera, 
Klebsiella, Pectinatus, Salmonella, Lelliotia, and Enterobacter constituted the most 
abundant genera found across all gut segments. The foregut and midgut had 
many similar genera, whilst the hindgut appeared unique. Overall, 29.5% of total 
gut bacteria comprising 21 genera were lignin degraders found predominantly 
in the Firmicutes and Proteobacteria phyla (56.8 and 39.5%, respectively), then 
moderately in Actinobacteriota (2.5%) and Bacteroidota (1.1%). The most abundant 
ligninolytic genera were Levilactobacillus (46.4%), Klebsiella (22.9%), Enterobacter 
(10.7%), Lactiplantibacillus (5.9%), Citrobacter (2.2%), Corynebacterium (1.8%), 
Paucilactobacillus (1.8%), Serratia (1.5%), Bacteroides (1.1%), and Leucobacter 
(1.0%) found in different amounts in different gut compartments. The foregut 
had the most diverse and highest abundance of lignin-degrading phylotypes, 
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and we present reasons that point to the foregut as the main location for the 
depolymerization of lignin in the APW larval gut.

KEYWORDS

African palm weevil, lignin-degrading, 16S rRNA, bacterial community, lignocellulose, 
foregut, midgut, hindgut

1 Introduction

Beneficial associations between insects and their gut microbial 
inhabitants, especially concerning the host’s nutrition, can be exploited 
for biotechnological applications (Harrison et al., 2021; Rajagopal, 
2009; Chukwuma et al., 2021). Wood-feeding insects are known to 
be able to digest and utilise plant biomass by the synergistic association 
they enjoy with the microorganisms that inhabit their gut (Ali et al., 
2019; Chew et al., 2018; Scully et al., 2013; Chauhan, 2020; Kougias 
et al., 2018). Recently, much attention has been given to understanding 
the composition of the inhabitant microbes and how they are naturally 
adapted to facilitate these bioconversion processes (Prasad et al., 2018; 
Ransom-Jones et al., 2017).

Molecular techniques such as PCR and high-throughput 
sequencing have facilitated the studies of microbial communities 
without depending on the ability to culture individual members of the 
community, as the optimum conditions for growing different species 
of microbes vary or are yet undetermined for most species (Lazarevic 
et al., 2016; Stewart, 2012). Structural survey methods of studying 
microbiomes aim to identify the taxonomic profiles of the study 
environments concerning the types of microorganisms present 
(diversity) and their amounts (abundance or richness), from which 
functional capability can be predicted if desired (Kunath et al., 2017; 
Knight et al., 2018).

There is a plethora of studies that have investigated insect gut 
bacterial compositions using the 16S rRNA amplicon sequencing 
technique and have primarily identified Proteobacteria, Firmicutes, 
Actinobacteria, and Bacteroidota as the predominant bacterial phyla 
in insect guts, amongst many other species and environment-specific 
findings (Prasad et al., 2018; Scully et al., 2013; Do et al., 2014; Ali 
et al., 2019; Bozorov et al., 2019). The V3–V4 hypervariable region of 
the 16S rRNA gene has been targeted in many published sequencing 
studies of phylogenetic and taxonomic classification of insect gut 
microbiomes (Ben Guerrero et al., 2016; Lazarevic et al., 2016; García-
López et al., 2020; Lluch et al., 2015; Chew et al., 2018). Some of these 
studies have also pointed out the fact that the gut microbiome of 
insects is non-static and influenced by factors such as environment 
(Yun et al., 2014), host phylogeny (Franzini et al., 2016; Mohammed 
et al., 2018), developmental stage and season (Valzano et al., 2012; Jia 
et al., 2013), nutrition and diet (Montagna et al., 2015; Muhammad 
et al., 2017; Ben Guerrero et al., 2016), gut physiology and conditions 
for pH, temperature, and oxygen availability (Egert et al., 2003; Chew 
et al., 2018). Regardless, there are core members of the community 
that are only mildly influenced by such factors that may persist, 
thereby defining the most fundamental functions performed by the 
microbiome (Pal and Karmakar, 2018; Reich et al., 2018; Franzini 
et al., 2016; Ben Guerrero et al., 2016).

Research on bacteria capable of lignin degradation has only 
recently gained much attention, as most studies of microbial lignin 
degradation have centred on fungi (Bugg et al., 2011a). The ability to 

directly degrade and modify lignin has been shown in several bacterial 
phyla such as Proteobacteria, some Firmicutes, and Actinobacteria, the 
majority of which were obtained from the guts of ruminants, termites, 
and other wood-feeding insects (Bugg et al., 2011b; Huang et al., 2012; 
Arumugam et al., 2014; Bugg and Rahmanpour, 2015; Kassim et al., 
2016; Janusz et  al., 2017). Other bacteria identified and shown to 
possess lignin-degrading or modifying abilities from several other 
research outcomes have been compiled and are presented in Table 1.

A list of different lignin-associated bacterial genera (grouped 
according to phyla) identified through a literature search of 
published articles.

Despite the increase in research on gut microbial communities, 
studies about how these communities are organised within each gut 
compartment using culture-independent methods are not readily 
available, as most gut bacterial diversity studies have been about the 
whole gut communities or are taxa-specific. This presents a need for 
broader and systematic identification of the diversity in each segment 
of the gut of these insects to provide a wider description of the 
microbial community and relate the contribution of members of the 
community in each gut segment to the overall host’s metabolism, 
adaptability, and survival (Engel and Moran, 2013; Poelchau 
et al., 2016).

Industrial-scale bioprocessing of lignocellulosic biomass as viable 
substitutes to fossil-based sources is plagued by a lack of efficient 
pre-treatment and lignin valorization strategies that align with the 
global outcry for green and sustainable processes to minimise 
environmental damage and their climate change consequences. In 
biorefineries, substituting currently used chemical and thermophysical 
methods of biomass pre-treatment with biological enzyme-based 
methods will go a long way in alleviating costs and slowing down 
climate change. Given this, researchers have prioritised exploring 
natural biomass-utilising systems such as the guts of wood-feeding 
insects to maximise the chances of isolating the most efficient candidate 
enzymes of microbial origin, which serve to facilitate the breakdown 
of the host’s lignocellulose-rich diet for potential application in 
industrial bioconversion of lignocellulose to biobased products as 
alternatives to chemical methods (Olsson, 2016; Brown and Chang, 
2014). Detailed studies surrounding the enzymology of ligninolytic 
enzymes are being intensified, and several classes of enzymes 
potentially possessing ligninolytic activity have been identified from 
lignin-degrading fungi and bacteria (Fisher and Fong, 2014).

The African palm weevil (Rhynchophorus phoenicis) belongs to the 
Curculionidae family of beetles (Coleoptera). It is an important pest 
affecting mostly oil palm trees in Nigeria, Cameroon, and other 
subtropical African countries where it is found. Other host plants of 
this insect include sugar cane, coconut, raffia palm, and the sago palm 
(Omotoso and Adedire, 2007; Mba et al., 2017). The weevil lives their 
entire life cycle within the trunk of palm trees, feeding on the palm 
tissue, which has been reported to have high lignin content (Al-Zuhair 
et al., 2015; Fadele et al., 2017; Ameh et al., 2016; Nasser et al., 2016; 
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TABLE 1 Lignin-degrading bacterial genera identified from literature reports.

Phyla Genus Species/strain References

Protobacteria

Pseudomonas Strain Q18 Yang et al. (2018)

Fluorescens Rahmanpour and Bugg (2015)

Putida Xu et al. (2018)

Burkholderia sp. H1 Yang et al. (2018)

Strain ISTR5 (R5) Morya et al. (2019)

Klebsiella Pneumoniae Xu et al. (2018), Gaur et al. (2018), and Yadav and Chandra (2015)

Aerogenes TL3 Tu et al. (2024)

Xanthomonas NA Jiménez et al. (2016)

Ochrobactrum Tritici Xu et al. (2018)

sp. Rashid and Bugg (2021)

Acinetobacter Johnsonii LN2; Iwoffi LN4 Xiong et al. (2020)

Enterobacter Lignolyticus SCF1 DeAngelis et al. (2013)

Cancerogenus Özer et al. (2019)

Ludwigii Chen et al. (2018)

Citrobacter Sedlakii, farmeri Özer et al. (2019)

Freundii (FJ581026) and sp. (FJ581023) Chandra and Bharagava (2013)

Serratia sp. JHT01, liquefaciens PT01 Tian et al. (2016)

Quinivorans AORB19 Ali et al. (2024)

sp. AXJ-M An et al. (2023)

Proteamaculans Ali et al. (2022)

Escherichia O157 Asp143 Liu et al. (2017)

Sphingobium Lignivorans sp. nov. Allemann et al. (2023)

Sphingomonas Paucimobilis SYK-6 Masai et al. (2007)

Comamonas sp. B-9 Chen et al. (2012)

Serinivorans Sethupathy et al. (2023)

Testosteroni FJ17 Wang et al. (2022)

Pantoea Ananatis Shi et al. (2015)

Pandorea sp. ISTKB Kumar et al. (2017b)

Delftia sp. JD2 Morel et al. (2016)

Cupriavidus Basilensis Shi et al. (2013)

Actinobacteria

Streptomyces Viridosporus Ramachandra et al. (1988) and Crawford et al. (1983)

sp. S6 Riyadi et al. (2020)

Rhodococcus Jostii RHA1 Ahmad et al. (2011)

Pyridinivorans CCZU-B16 Chong et al. (2018)

Azotobacter sp. HM12 Morii et al. (1995)

Nocardia, sp. DSM 1069 Eggeling and Sahm (1980)

Albiluteola sp. nov. Shan et al. (2022)

Corynebacterium Glutamicum Merkens et al. (2005)

Mycobacterium sp. strain CG-2 Häggblom et al. (1988)

Saccharomonospora Viridis DSM 43017 Yu et al. (2014)

Thermomonospora Mesophila McCarthy et al. (1986) and Godden et al. (1992)

Microbacterium sp. Taylor et al. (2012) and Tian et al. (2014)

Leucobacter Chauhan (2020)

(Continued)
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Bensah et al., 2015), and the larval stage of development is the most 
destructive stage of this insect (Bamidele et al., 2013; Harris et al., 2015; 
Angzzas et al., 2016; Omotoso, 2013). Despite this lignin content, the 
APW overcomes the lignin barrier as it excavates and burrows deeply 
into the interior of the trunk of healthy trees, leading to their eventual 
destruction. In such a sense, the weevils most likely benefit from the 
synergistic relationship with their gut microbiota that enables them to 
degrade lignin (Geib et al., 2008), hence our interest in profiling the 
bacteria inhabiting the gut of the insect with respect to the potential 
for lignin degradation. Thus, these insect guts could be reservoirs for 
novel lignocellulose/lignin-degrading enzymes that could be explored 
for increased efficiency of industrial plant biomass bioconversion 
processes into energy and material products. To the best of our 
knowledge, there has not been any comprehensive investigation or 
exploration of the gut microbiota of Rhynchophorus phoenicis. 
Therefore, in this study, we present the first attempt at exploring the 
bacterial community within the gut of the APW larvae, specifically 
with respect to the potential for lignin degradation as a first step to 
determining the viability of mining bacterial lignin-degrading enzymes.

2 Methods

2.1 Field collection of APW larvae

Actively feeding larvae of the African palm weevil (R. phoenicis) 
were collected from different freshly felled palm tree trunks at the 
Ejekimomi forest reserves of Amukpe village in Sapele, Delta state, 
Nigeria (5°52′29.9″N 5°42′14.3″E) in 2019 (Figure 1).

Figure 1 is a map of the Ejekimomi forest reserve area in Amukpe 
village, Sapele town, in Delta State, Nigeria, where African palm 
weevil larvae were collected. R. phoenicis larvae were identified based 
on their morphological characteristics. The larvae were washed in 
sterile water to remove dirt and chopped tree particles; surface 
sterilisation was conducted using 70% ethanol and 10% bleach, and 
later, it was rinsed a second time in distilled water (Hammer et al., 
2015; Mohammed et  al., 2018). Larvae were packaged in sterile 
containers in the laboratory-prepared and sterilised NAP buffer 
(Camacho-Sanchez et al., 2013). The samples were stored at 4°C until 
dissection and DNA extraction (see Supplementary Data 2.0).

2.1.1 Ethics statement
Ethical clearance is unnecessary for work on insects (Franzini 

et al., 2016). Also, Rhynchophorus phoenicis has not been listed as 
protected or endangered in national or regional laws. However, ethical 
approval was obtained to undertake this research due to the Nagoya 
protocol which emphasises the need for agreement and benefit sharing 

when accessing genetic materials from a different country as enshrined 
in the provisions of the biodiversity convention (Ajai, 1997; Omotoso, 
2013). The sample collection was done in open and unprotected 
forests with the agreement and support of the local community.

2.2 Dissection and bacterial DNA extraction 
from larval guts of APW

Stored larvae were removed from the NAP buffer and dried in a 
Petri dish. Ten randomly selected larvae were cut open from the 
mouth to the end of the abdomen using a sterile scalpel and forceps, 
and the whole guts were aseptically removed separately. Each whole 
gut was further sectioned into “Foregut,” “Midgut,” and “Hindgut” 
based on the description of the boundaries of each gut segment 
(Omotoso, 2013). Gut tissue pieces from the same gut segments were 
collected in one tube each. The tissues in each tube were cut into 
smaller pieces, homogenised, centrifuged, and collected supernatant. 
The supernatant collected was split into two, making two technical 
replicates per gut segment sample, and bacterial DNA was extracted 
from these using the QIAamp DNA microbiome kit from Qiagen, 
UK (Cat. No. 51704), according to the manufacturer’s instructions. 
A negative extraction control, which contained no DNA, was 
prepared and processed alongside the gut segment samples. Twenty-
five microliters (25 μL) of bacterial DNA were eluted from each 
QIAamp mini column into 1.5 mL Eppendorf tubes. The 
concentration and purity of the eluted DNA samples were measured 
using a Nanodrop spectrophotometer (Thermo Fisher, 
United Kingdom).

2.3 Library preparation and sequencing

DNA samples from the different gut segments (foregut, midgut, 
and hindgut samples), extraction control (control sample), and 
ZymoBIOMICS microbial community standard (ZYMO research, 
United States), which contains a well-defined bacterial composition 
ideal for the validation of microbiomic workflows (standard sample), 
were sent to Macrogen, Inc. (NGS), Seoul, Republic of Korea, for 
library preparation and sequencing. The V3–V4 region of the 16S 
rRNA gene was amplified using the primers 337F/805R (F337: 
5′-GACTCCTACGGGAGGCWGCAG-3′ and 805R: 5′-GACTACCA 
GGGTATCTAATCC-3′). Sequencing libraries were prepared using 
the Herculase II Fusion DNA Polymerase Nextera XT Index Kit V2 
(Illumina) according to the protocols in the Illumina 16S metagenomic 
sequencing library preparation guide (Part #15044223 Rev. B). The 
libraries were purified, quality validated, diluted to 6 nm, and pooled. 

Phyla Genus Species/strain References

Firmicutes

Bacillus Aryabhattai BY5 Xiong et al. (2020)

Subtilis Yadav and Chandra (2015)

Ligniniphilus L1 Zhu et al. (2017)

Bacteroidota

Bacteroides Taylor et al. (2012)

Vogesella sp. Woo et al. (2017)

TABLE 1 (Continued)
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Paired-end sequencing (2 × 300 cycles) was carried out on an Illumina 
MiSeq device (Illumina Inc., San Diego, CA, United States) according 
to the manufacturer’s specifications.

2.4 Data processing and analysis

The data file containing forward and reverse reads for each 
sample was imported into R-studio software version 4.1.0 (R core 
team 2020) and was processed following guides from the DADA2 
pipeline tutorial 1.16 (Callahan et  al., 2016) with slight 
modifications to suit our reads and desired outcome. Data 
pre-processing involved quality profiling, trimming, and filtering 
raw data to eliminate read duplicates, low-quality reads, adapters, 

and barcode sequences. Paired reads that passed quality processing 
were denoised and merged, and amplicon sequence variants 
(ASVs) with corresponding frequencies for each sample were 
generated (Callahan et al., 2016). Taxonomy was assigned to each 
ASV using the AssignTaxonomy function to genus level using the 
Silva_nr99_v138 training set database (Glöckner et al., 2017) for 
bacterial 16S rRNA as the reference because taxonomic 
assignments at species level do not yield satisfactory resolution 
with amplicon sequencing in most cases (Callahan et al., 2016).

The taxonomy assigned ASVs were processed using the R package 
phyloseq version 1.36.0 (McMurdie and Holmes, 2013). Each sample 
was identified as a “True” sample (standard, foregut, midgut, and 
hindgut) or a “Negative” sample (control sample). To ensure no 
contamination by external sources was present, the automated 

FIGURE 1

Map showing the location of Ejekimomi forest reserve area in Amukpe village of Sapele town, in Delta state Nigeria where African palm weevil larvae 
were collected.
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prevalence-based strategy in the R package decontam version 1.12.0 
(Davis et  al., 2018) was used with the phyloseq object. ASVs 
corresponding to sequences identified as mitochondria and 
chloroplast sequences were removed, and all ASVs identified to 
belong to the same genus were merged. The different ASVs per gut 
segment were visualised in KronaTools version 2.8.1 (Ondov 
et al., 2011).

To assess the accuracy of the sequencing and taxonomic 
identification procedure, a separate phyloseq object was created 
containing only the mock bacterial community sample. This was 
analysed by examining ASV counts and comparing their observed 
relative proportions to the expected theoretical proportions of species 
declared in the ZymoBIOMICS microbial community DNA standard 
product literature (ZymoBIOMICS™ Microbial Community DNA 
Standard instruction manual, ver1.1.5). This information was 
represented as a bar chart using Microsoft Excel. A comparison 
between the observed and expected taxa was made using a chi-square 
test in R version 4.4.1.

Bacterial genera with <10 ASV counts of cumulative abundances 
(total abundance from all gut segments) were filtered out, and only 
those with >10 counts were used for further analysis. The most 
abundant bacterial phyla and genera identified in the APW gut were 
presented on a pie chart plotted in Microsoft Excel. Using Microsoft 
PowerPoint, a Venn diagram was created to show taxa shared between 
the different gut segments.

To evaluate potential differences in the microbial composition 
amongst the different gut segments, a non-metric multidimensional 
scaling (NMDS) plot using Bray–Curtis dissimilarity was 
constructed considering the number of counts. Then, permutational 
multivariate analyses of variance (PERMANOVA; Anderson, 2001) 
were performed to assess differences in the microbial composition 
amongst the gut segments. The maximum number of iterations was 
set to 1,000 in all analyses. Additionally, a Kruskal–Wallis test was 
performed to evaluate potential differences in the microbial 
diversity amongst the different gut segments when considering the 
Shannon and inverse Simpson indexes. Shannon index was 
calculated using the natural logarithm. In case there were 
significant differences between gut segments, to see which pairs of 
segments showed significant differences, Holm–Bonferroni-
corrected Dunn tests were performed. All these statistical 
approaches were carried out at an alpha level of 0.05 and were 
performed in R version 4.4.1 using the vegan version 2.6-6.1 
(Oksanen et al., 2024), FSA version 0.9.5 (Ogle et al., 2023), ggplot2 

version 3.5.1 (Wickham, 2016), and gridExtra version 2.3 
(Auguie, 2017).

All lignin-degrading bacterial genera identified within our 
samples were selected based on the current knowledge (Table 1), and 
their relative abundances by genus and gut segment were plotted using 
stacked column charts.

3 Results

3.1 Summary of raw amplicon sequence 
data statistics

A summary of the raw data generated following the sequencing of 
the 16S libraries on a 2 × 300 bp Illumina platform indicated a 
successful run with each sample having a high total number of paired 
end reads (except for the negative extraction control) and an average 
GC content of 54%. Additionally, 91% of the total reads sequenced had 
Phred quality scores higher than 20, whilst 82% had Phred quality 
scores of 30, suggesting that our dataset is very good quality data 
(Andrews, 2010; Table 2).

3.2 Analysis of negative control sample 
(decontamination)

The duplicate negative control samples “Control” underwent all 
amplification, library preparation, sequencing, and bioinformatic 
analysis steps as the gut samples and were analysed for external 
contaminants using the R package decontam (Lazarevic et al., 2016). 
The output returned a “False” result with respect to the assumption 
that contaminating taxa are more likely to be present in the negative 
“control” sample compared to true samples. This observation, 
therefore, means that the “contaminant” taxa identified in the control 
samples are more present in the true samples than in the control. The 
negative control contained 42 ASVs, which were all present in the true 
samples and had a total abundance corresponding to just 
approximately 1.7% of the total taxa abundance found in the true 
samples. Only Enterococcus, Lactococcus, Acinetobacter, and 
Bacteroides were present at >0.1% each. All the other bacteria each had 
much lower values (<0.1%). Notwithstanding, these taxa were not 
removed from the true samples as contaminants as they are expected 
in the true samples and their abundances in the control sample are far 

TABLE 2 Summary of the 16S rRNA sequencing data statistics.

S/No. Sample ID Total reads 
bases (bp)

Total reads GC (%) AT (%) Q20 (%) Q30 (%)

1 Control 11,468,100 38,100 54.235 45.77 91.722 83.379

2 Standard 112,710,052 374,452 53.888 46.11 91.686 83.206

3 Foregut1 165,148,466 548,666 54.300 45.70 91.372 82.707

4 Foregut2 156,689,764 520,564 54.982 45.02 91.244 82.423

5 Midgut1 145,899,516 484,716 54.812 45.19 91.098 82.325

6 Midgut2 136,404,772 453,172 54.341 45.66 91.190 82.516

7 Hindgut1 119,979,202 398,602 54.719 45.28 91.797 83.499

8 Hindgut2 119,740,208 397,808 54.729 45.27 91.430 82.780
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lower than what was observed for each of these taxa in the 
true samples.

3.3 Analysis of mock microbial community 
standard

The mock microbial community DNA standard made up of 
eight bacterial strains with various theoretical compositions for 
each strain was sequenced and analysed alongside the other larval 
gut and negative extraction control samples. This sample served 
as a positive control for ascertaining the fidelity of the 16S rRNA 
amplicon sequencing process and the performance of the data 
analysis pipeline used. No significant differences existed between 
the bacterial composition in the “observed” standard sample and 
the “expected” theoretical values (chi-square test: p = 0.2303; 
Figure 2).

3.4 Taxonomic profile of APW larval gut 
bacteria

3.4.1 Total bacterial diversity in the APW larval gut 
showing percentage abundances by phyla and 
genera

All taxa identified (100%) belonged to the kingdom Bacteria. In 
all, 165 genera spanning 7 phyla (Firmicutes, Proteobacteria, 
Actinobacteriota, Bacteroidota, Campylobacteria, Desulfobacterota, and 
Verrucomicrobiota) were identified. The dominant phyla with 
individual genera having a sequence abundance of 10 counts and 
above were Firmicutes (54.3% of total ASV abundance), Proteobacteria 
(42.5%), Bacteroidota (1.7%), and Actinobacteriota (1.4%) (Figure 3A). 
Enterococcus, Levilactobacillus, Lactococcus, Shimwellia, Megasphaera, 
Klebsiella, Pectinatus, Salmonella, Lelliotia, and Enterobacter were the 
most dominant genera, listed in decreasing order of abundance 
(Figure 3B), but approximately 16.4% of the ASVs were not resolved 
to the genus level. The ASV table (>10 average counts) generated can 
be seen in Supplementary Data 3.0.

3.4.2 Genus-level bacterial diversity and 
percentage abundances in different gut 
segments of APW larva

3.4.2.1 Taxonomic profile per gut segment
The taxonomic profile and classification of bacteria identified in 

the foregut, midgut, and hindgut segments of the APW gut are 
shown in Figure 4. In each gut segment, a large percentage of the 
bacteria (foregut; 12%, midgut; 14%, and hindgut; 19%) were not 
resolved to specific bacterial genera. Enterococcus, Lactococcus, 
Shimwellia, Lelliotia, Klebsiella, Enterobacter, Bacteroides, Serratia, 
Salmonella, and Citrobacter were the genera found across all gut 
segments that were deemed to represent the core bacterial 
microbiota. The foregut and midgut shared lots of similar genera that 
were completely absent in the hindgut (Megasphaera, Pectinatus, 
Levilactobacillus, Paucilactobacillus, Secundilactobacillus, 
Leuconostoc, Salmonella, Pectinatus, Cronobacter, and Atopobium). 
The hindgut appeared to be  unique, containing Erysipelothrix, 
Morganella, Gemmobacter, Paracoccus, Providencia, Leminorella, 
Yokenella, and Rhizobium exclusively, having only Leucobacter in 
common with the foregut and Ligilactobacillus with the midgut 
(Figure 5).

3.4.2.2 Comparative analysis of bacterial composition 
across the APW gut segments

The dissimilarity between identified bacterial communities from 
each gut segment was calculated using the Bray–Curtis dissimilarity 
method, which is based on phylotype abundances and is shown in 
multidimensional space on a non-metric multidimensional scaling 
(NMDS) plot (Figure 6). Although the hindgut samples were more 
clearly separated from those of midgut and foregut and the points 
representing the same gut segment were closer to each other and 
separated from those representing other gut segments, there were no 
significant differences (PERMANOVA: p = 0.06667). This result might 
indicate that the midgut and foregut microbial communities are more 
similar. In contrast, the hindgut community is distinctively different, 
but due to the low variability amongst gut segments, there were no 
huge differences amongst them.
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FIGURE 2

Stacked bar chart showing percentage abundances of bacterial strains expected within the mock microbial DNA community standard from theoretical 
data and actual observed bacterial genera identified following sequencing and analysis of the positive control “standard” sample.
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FIGURE 3

(A) Each section of the pie chart, having a unique colour, represents a bacterial phylum. The size of each section is indicative of the percentage 
abundance of the phylum. (B) All bacterial genera are represented in one colour (blue) on the bar chart with the length of the bars indicating the 
percentage abundance of each genus. To optimise the view, only genera with  0.1% abundances are shown individually on the bar chart, genera with 
<0.1% abundance are combined into “Others”. “Unclassified” represents the abundance of ASV counts that were not successfully resolved to genus level.
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FIGURE 4

Krona plots showing the taxonomic classification of bacteria within the gut segments. Each circle represents a taxonomic level growing outwards from 
“Kingdom” to “genus”. Each phylum is represented by a specific colour and the different taxa at different levels within the phylum are represented by varying 
shades of the colour assigned to the phylum. The different genera and their percentage abundances identified can be seen in the outermost layer of the circles.
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3.4.2.3 Evaluation of the microbial diversity within each 
APW gut segment

The species diversity was estimated using both the Shannon and 
inverse Simpson diversity indices (Figure  7). Whilst the Shannon 
index considers the richness component and rare cover of species 
present in the different gut segments, the inverse Simpson index 
emphasises the evenness component and, thus, the dominant cover 
species. Consequently, the Hindgut had the highest Shannon diversity 
index and the lowest inverse Simpson index. However, the foregut 
showed the lowest Shannon index, but the midgut showed the highest 
inverse Simpson index. Despite all these observations, there were no 
significant differences in the microbial diversity amongst the segments 
(Kruskal–Wallis test: p = 0.2765).

3.5 Diversity and relative abundance of all 
identified lignin-degrading bacteria in the 
different gut segments of APW larvae

A total of 21 bacterial genera reported to have lignin-degrading 
ability from several literature (Table  1) were identified across the 
different gut segments of the African palm weevil microbiome. They 
represented a total of 21.49% of all identified genera within the gut. 
Firmicutes constituted 56.79 and 39.56% of the lignin degraders were 
from the Proteobacteria phylum, whilst only 2.5 and 1.13% were from 
the Actinobacteriota and Bacteroidota phylum, respectively. 
Levilactobacillus (46.4%), Klebsiella (22.9%), Enterobacter (10.7%), 
Lactiplantibacillus (5.9%), Citrobacter (2.2%), Corynebacterium 

(1.8%), Paucilactobacillus (1.8%), Serratia (1.5%), Bacteroides (1.1%), 
and Leucobacter (1.0%) were the most dominant lignin-degrading 
genera in the gut cumulatively in the listed order (Figure 8).

The foregut had 20 out of the 21 identified lignin-degrading 
genera (except Norcardiodes), adding up to a total abundance of 
55.5%. The midgut followed closely, also having 20 of the identified 
genera (except Parabacteroides) and a total abundance of 32.9%. The 
hindgut had the least number of identified bacterial taxa (only 18 
genera, with Lactiplantibacillus, Levilactobacillus, and Sphingobium 
absent) and the least total abundance of 11.5%. To facilitate 
comparison, we calculated the percentage abundance of each bacterial 
genera in each gut segment as a fraction of the total abundance of 
lignin-degrading taxa identified. The three gut segments shared 18 
similar taxa in varying abundances, with the foregut having the 
highest abundance of each taxon in most cases. Overall, the foregut 
had the most diverse and abundant lignin-degrading genera, followed 
by the midgut, and the hindgut had the least.

4 Discussion

The quest to find enzymes capable of biological degradation of 
lignin as an alternative to chemical and physical methods of 
lignocellulose breakdown has resulted in research efforts geared 
towards bioprospecting these enzymes from environments where 
lignin degradation is known to occur naturally, such as in the guts of 
wood-feeding insects (Fisher and Fong, 2014; Ali et  al., 2019). 
Recently, research on mining the microbiota of insects for genes that 

FIGURE 5

Venn diagram that presenting a visualization of the bacterial taxa found uniquely in different gut segments and those shared between the different gut 
segments. Only the most abundant genera with abundance ≥0.1% were used to produce the diagram for a more meaningful analysis.
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code for enzymes and bioactive compounds has greatly increased and 
is mainly being carried out via culture-independent methods (Steele 
et al., 2009; Hammer et al., 2015; Harnpicharnchai et al., 2007; Quince 
et al., 2017).

The DNA extracted from pooled gut tissues of preserved larvae 
had low concentration, and due to the COVID-19 lockdown, which 
could not allow us to return to the field (Nigeria) to collect more 
samples, we  could only prepare duplicate samples from each gut 

segment pool. This posed a challenge to the attainment of at least 3 
technical replicates to facilitate statistical analysis. However, being 
sequencing data that were subjected to quality control and filtering, 
the impact of using only two technical replicates is minimised, 
especially as the sequencing data statistics were of good quality 
(Table 2).

It is not just enough to have good quality data; it is also critical to 
assess that the sequencing did not introduce bias that will misrepresent 

FIGURE 6

Each dot on the graph represents a particular sample and each gut segment is represented by a different colour and enclosed in a sphere to denote a 
specific community.

FIGURE 7

The boxes denote interquartile ranges (IQR) between the first and third quartiles (Q1-Q3) and the horizontal line inside the boxes defines the median. 
The whiskers which extend from Q1 and Q3 represent the lowest and highest points within 1.5-fold IQR respectively.
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the true composition of the microbial community after analysis, hence 
the need for controls and standards (Lazarevic et al., 2016; Reich et al., 
2018). The negative control sample had only bacteria, which were also 
present in the true samples and are associated with insect guts (Egert 
et al., 2003; Janusz et al., 2017; Ceballos et al., 2017). This observation 
implies that there was no external or unexpected contamination by 
any foreign or exogenous bacteria. It is recommended that microbial 
taxa found in the control sample that correspond to genuine or 
biologically expected microbiota of interest should not be removed 
from valid samples except where they occur in higher relative 
abundances compared to the samples (Reich et al., 2018; Lazarevic 
et al., 2016).

Analysis of the mock microbial community DNA standard also 
found all the bacterial strains as expected, with only a few additional 
strains in meagre amounts of approximately 0.4% (Figure 2). Although 
the expected percentage abundances for the bacterial components in 
the community standard were slightly overrepresented as with 
Bacillus, Staphylococcus, Lactobacillus, Escherichia, and Pseudomonas 
or underrepresented as with Salmonella, Enterococcus, and Listeria. 
Overall, the discrepancies are minimal and validate our sequencing 
and bioinformatic analysis pipeline. The identified discrepancies could 
be because of primer and hypervariable region choice, PCR conditions, 
library preparation, sequencing, and data pre-processing, as well as 
several other variables known to introduce bias in 16S rRNA 
sequencing. The impact of variables cannot be eliminated but can only 
be minimised (Lluch et al., 2015; Jovel et al., 2016).

Microbiome studies of host-associated gut communities have 
identified four bacterial phyla (Proteobacteria, Actinobacteria, 
Firmicutes, and Bacteroidota) that predominantly colonise the guts of 
insects and most animals (Le, 2021; Batista-García et  al., 2016; 
Colman et al., 2012; Engel and Moran, 2013; Franzini et al., 2016; 
Huang et al., 2012; Fisher and Fong, 2014). Several factors such as diet 
and nutrition, host taxonomy, developmental stage and habitat, 
seasons, gut morphology, and physicochemical conditions have been 
shown to affect the structure of the microbiota in most insect guts, and 
these findings have reported host phylogeny as being the most 
influential factor, with diet contributing significantly, especially in 
lignocellulose-feeding insects (Colman et al., 2012; Yun et al., 2014; 
Chew et al., 2018; Franzini et al., 2016; Huang et al., 2012; Jia et al., 
2013; Tsegaye et al., 2019). Our results agree with preliminary findings 
of insect gut-associated bacterial communities, with the detection of 
the four mentioned phyla being predominant in the APW gut 
(Figure 3A) and similarity in taxa compared to other Rhynchophorus 
species (Valzano et al., 2012; Jia et al., 2013; Tagliavia et al., 2014; 
Kassim et al., 2016; Muhammad et al., 2017; Liao et al., 2020).

A large-scale cross-taxa analysis of insect-associated bacterial 
diversity and communities based on 137 insect specimens representing 
39 species using 16S rRNA sequencing reported that, on average, most 
insect bacterial communities were not diverse, containing less than 8 
phylotypes, and were dominated mainly by a single phylotype 
belonging to the phyla Proteobacteria or Firmicutes (Jones et al., 2013). 
However, they excluded phylotypes with less than 1% of the bacterial 
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Stacked columns showing plots of relative abundances of individual lignin degrading bacteria identified in the Foregut, Midgut and Hindgut of the APW 
larvae as a percentage of the total gut bacterial abundance per gut segment. Each column represents a specific bacterial genus and is made up of 
colour coded regions (one colour for each of the gut segments), the size of which is proportional to the relative abundance of that genus in the 
different gut segments.
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community in each sample, which must have eliminated many taxa 
with low abundance, thereby presenting a community with low 
diversity. Another large-scale deep sequencing effort, based on 305 
individual insects belonging to 218 species, reported that the gut of 
insects harbours a diverse collection of bacteria (Yun et al., 2014). 
We identified a total of 165 bacterial genera out of which only 78, 
which had an abundance of 10 or more counts, were used for further 
analyses and gut microbiota description (Figure 3B). The situation 
explained above calls for caution when comparing findings across 
different studies, as subtle variations in methods and analysis 
parameters (e.g., the threshold for filtering low abundance data) if not 
carefully considered may lead to wrong conclusions (Knight et al., 
2018; Thomas et al., 2012; Quince et al., 2017).

The most dominant genera were mostly aerobes and facultative 
anaerobes from the Firmicutes (Enterococcus, Levilactobacillus, 
Lactococcus, Megasphaera, and Pectinatus) and Proteobacteria phyla 
(Shimwellia, Klebsiella, Salmonella, Lelliotia, and Enterobacter). 
Investigations to detect the effect of different developmental stages on 
the gut microbiota of the red palm weevil (Rhynchophorus 
ferrugineus), a sister species to the APW (R. phoenicis), using 
non-culture-dependent 16S rRNA amplicon sequencing of the V4 
hypervariable region also detected similar bacterial taxa, including 
Enterobacter, Citrobacter, Serratia, Klebsiella, Lactococcus, 
Entomoplasma, and Erysipelothrix, though in varying abundances 
(Muhammad et  al., 2017). Similarly, Liao et  al. (2020) identified 
Enterobacter, Lactococcus, and Erysepelothrix as dominant genera in 
the midgut of R. ferrugineus. These observations might indicate that 
the bacterial community has a strong phylogenetic signal, i.e., bacterial 
community structures are more similar amongst closely related insect 
species than in less related ones (Jones et al., 2013). The red palm 
weevil gut has also been reported to have a stable gut microbiota 
across all developmental stages, with differences owing more to 
nutrition than host taxonomy (Muhammad et al., 2017). The detection 
of similar abundant taxa or what could be called a “core microbiome” 
from our results studying the larval stage and those of studies in larval, 
pupal, and adult stages of Rhynchophorus species are in tandem with 
this report. There have been several other studies into the microbiota 
of the red palm weevil, being the most investigated species of the 
Rhynchophorus weevils, but the sequencing methods, experimental 
design, parameters used, and focus of these studies may not allow for 
an accurate comparison of total gut bacterial profile with our results 
(Le, 2021; Tagliavia et al., 2014; Montagna et al., 2015; Jia et al., 2013; 
Angzzas et al., 2016). To the best of our knowledge, this is the first 
attempt at profiling the microbiome of Rhynchophorus phoenicis, and 
there is no published record of gut microbiota studies of other 
Rhynchophorus relatives such as R. cruentatus, R. palmarum, and 
R. vulneratus.

All the gut segments of the APW larvae shared an appreciable 
number of core taxa, whilst the foregut and midgut particularly had 
more taxa in common, hence exhibiting greater similarity in 
community structure compared to the hindgut, which was more 
compositionally unique (Figures 4, 5). Alpha diversity estimation of 
the different gut segments using the Shannon diversity and inverse 
Simpson indices visualised by box plots (Figure 6) shows that the 
hindgut harboured more diverse bacterial taxa, followed by the 
midgut and then the foregut (the higher the Shannon index, the 
higher the diversity), corroborating the findings presented in Figure 5. 
However, taxa distribution within the foregut was more even than in 

the hindgut, with the most uneven distribution found in the midgut 
(the wider the size of the box, i.e., the interquartile range, the less even 
the distribution) (Liu et  al., 2017; Li et  al., 2018). Although the 
statistics do not present any significant differences, probably due to 
having only two technical replicates, the visual representation from 
Figure 5 and the alpha diversity analyses above support this assertion. 
These observations support the submission made by other researchers 
that the difference in morphology (shape, size) and physicochemical 
conditions (oxygen, temperature, pH, and mineral elements) within 
each gut compartment affects the structure of the microbial 
community that exists in it (Engel and Moran, 2013; Valzano et al., 
2012; Egert et al., 2003; Chew et al., 2018).

In the absence of an existing database of lignin-degrading bacteria 
to our knowledge, we compiled information from many pieces of 
literature stemming from research where bacteria have been 
implicated or tentatively confirmed to be  associated with the 
decomposition of any part of the lignin molecule (Table 1). We used 
that list as a reference document, and any bacteria on that list that is 
identified within the gut of the APW was considered as lignin-
degrading bacteria. The lignin degraders constituted 29.5% of the total 
taxa identified within the larval gut and were drawn from the phyla 
Firmicutes predominantly (56.8%), Proteobacteria (39.5%), 
Actinobacteriota (2.5%), and Bacteroidota (1.1%). The dominance of 
lignin-degrading bacteria belonging to the Proteobacteria and 
Firmicutes phyla has been consistently reported in all previous 
research we  have accessed on best-characterised lignin-degrading 
bacteria along with other phyla such as Bacteriodota and 
Actinobacteria (see a detailed list of sources in Table 1).

The distribution of the 21 lignin degradation-associated bacterial 
genera (Klebsiella, Enterobacter, Citrobacter, Corynebacterium, 
Serratia, Bacteroides, Leucobacter, Acinetobacter, Ochrobactrum, 
Microbacterium, Sphingobium, Novosphingobium, Thermomonas, 
Sphingomonas, Delftia, and Pseudomonas) across the different gut 
segments and their relative abundance per segment is presented in 
Figure 8.

The physical and chemical characteristics of the major 
components of lignocellulose and the physicochemical conditions 
such as pH and oxygen availability within the insect’s gut are the major 
determining factors responsible for the distribution pattern of the 
lignocellulose-degrading machinery in insects (Sun and Zhou, 2011; 
Yun et  al., 2014). In a detailed morphological and histological 
description of the APW digestive tract, it was reported to have a 
foregut, midgut, and hindgut. The foregut is the largest gut segment 
made up of the buccal cavity, oesophagus, crop, and proventriculus, 
which are all adapted for intake, mechanical grinding, storage, and 
onward passage of food to the midgut. The midgut and hindgut are 
structurally and functionally adapted for the digestion of food, 
assimilation of nutrients, and excretion of wastes (Omotoso, 2013). 
The same alimentary tract structure was reported for R. ferrugineus by 
Harris et al. (2015) in a similar study of the morphology and histology 
of the RPW larval gut.

Different segments of the gut have unique characteristics, which 
make them susceptible to colonisation by different types of bacteria 
(Engel and Moran, 2013). The microbiome within a gut compartment 
is affected by morphology, which varies as insects metamorphose from 
one developmental stage to the next in most insect orders. The size and 
shape of the gut additionally influence the availability of oxygen due 
to the partial pressure of oxygen from the external environment, 
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which in turn determines the metabolism of the inhabitant bacteria 
(Yun et al., 2014). For effective utilisation of lignocellulose by wood-
feeding insects for energy, depolymerization of lignin must occur first 
to grant access to hydrolytic enzymes to release the stored-up energy 
in the carbohydrate polymers, cellulose and hemicellulose (Sun and 
Zhou, 2011; Kumar et al., 2017a; Silva et al., 2018). Lignin degradation 
is an aerobic oxidation process requiring oxidative enzymes such as 
peroxidases, oxidases, and laccases; hence, it is believed that these 
reactions are most likely to occur in the foregut, being the anterior part 
of the gut closest to the external environment where oxygen supply is 
highest (Chew et  al., 2018; Sun and Zhou, 2011). In contrast, the 
midgut and hindgut have been reported as the sites for cellulose and 
hemicellulose degradation (Egert et al., 2003; Sun and Zhou, 2011; 
Chew et al., 2018; Yun et al., 2014). These fermentative processes occur 
by anaerobic hydrolysis; thus, it is reasonable to expect the degradation 
machinery to be domiciled in the interior, anaerobic compartments of 
the gut that are farther away from oxygen supply.

The presence almost exclusively of aerobic and facultatively 
anaerobic bacteria (except Bacteroides alone, which is anaerobic) 
within the gut of APW and the specific abundance distribution of 
lignin-degrading bacteria within each gut compartment demonstrates 
the adaptability of the APW larvae to digesting its diet and suggests 
where lignin degradation most likely occurs (Khiyami and Alyamani, 
2008). Olsson (2016) has reported that the gut of mammals houses 
more obligate and facultative anaerobes, whilst insect guts have a 
prevalence of aerobes and facultative anaerobes and a large variety of 
lignin-associated enzymes.

From our results, the foregut of APW larvae possessed the most 
diverse and highest percentage abundance of lignin-degrading 
phylotypes compared to the midgut and hindgut. The presence of the 
proventriculus as part of the foregut of the APW’s digestive tract shows 
their adaptation to their food source (lignocellulosic palm tissues) and 
explains their ability to offer some sort of mechanical pre-treatment to 
the lignin in their diet as a first step towards extracting energy from 
the polysaccharides that occur in the later parts of the gut following a 
logical order. A similar investigation of bacterial community structure 
in the foregut, midgut, and hindgut of the wood-feeding termite 
bulbitermes sp. by Chew et al. (2018) suggested that lignin degradation 
was most probably held in the foregut due to the significantly higher 
relative abundance of the lignin-degrading bacteria, Actinomycetales, 
in the foregut compared to the other segments. They further justified 
their assertion following predictive functional profiling where they 
found energy and co-factor metabolism predominantly occurring in 
the hindgut, whereas oxidative xenobiotic degradation reactions 
(which are related to lignin degradation reactions) occurred mostly in 
the foregut. Overall, our results, supported by the studies of Chew 
et al. (2018), and the several other pieces of literature cited above, seem 
to rationalise the foregut of the APW larvae as being the site for lignin 
degradation prior to cellulose and hemicellulose degradation in the 
other gut compartments.

5 Conclusion

Our study, which represents the first known metaprofiling effort of 
the bacteria colonising the gut of the African palm weevil, R. phoenicis, 
to date, has revealed great similarity in bacterial community structure 

with those identified in most insects, specifically with the bacterial 
microbiota of the phylogenetically related red palm weevil, 
Rhynchophorus ferrugineus. An appreciable number of lignin-degrading 
bacteria within the larval gut suggests an immense potential for the 
discovery of lignin-degrading genes and enzymes. Furthermore, lignin 
degradation in the African palm weevil is believed to be domiciled in 
its foregut due to the presence of a proventriculus that serves to 
mechanically decrease the structural complexity of lignocellulose as a 
first step towards degradation and the greatest abundance of mostly 
aerobic and facultatively anaerobic bacteria capable of oxidatively 
decomposing lignin predominating the foregut. Our findings point 
towards the gut of the African palm weevil being a reservoir that 
harbours a consortium of bacteria capable of lignin degradation/
modification from which lignin-degrading genes and enzymes can 
be harvested.
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