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Fungi possess well-developed secondary metabolism pathways that are worthy 
of in-depth exploration. The One Strain Many Compounds (OSMAC) strategy 
is a useful method for exploring chemically diverse secondary metabolites. In 
this study, continued chemical investigations of the marine red algae-derived 
endophytic fungus Penicillium oxalicum 2021CDF-3 cultured in PDB media 
yielded six structurally diverse indole derivatives, including two new prenylated 
indole alkaloids asperinamide B (1) and peniochroloid B (5), as well as four 
related derivatives (compounds 2–4 and 6). The chemical structures of these 
compounds, including the absolute configurations of 1 and 5, were determined 
by extensive analyses of HRESIMS, 1D and 2D NMR spectroscopic data, and 
TDDFT-ECD calculations. Compound 1 was found to possess an unusual 
3-pyrrolidone dimethylbenzopyran fused to the bicyclo[2.2.2]diazaoctane 
moiety, which was rare in previously reported prenylated indole alkaloids. In 
vitro cytotoxic experiments against four human tumor cell lines (HeLa, HepG2, 
FADU, and A549) indicated that 1 strongly inhibited the FADU cell line, with an 
IC50 value of 0.43  ±  0.03  μM. This study suggested that the new prenylated indole 
alkaloid 1 is a potential lead compound for anti-FADU drugs.
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1 Introduction

Secondary metabolism in filamentous fungi is well-developed (Gerke and Braus, 2014). 
These organisms are prolific producers of structurally diverse secondary metabolites that 
exhibit various promising biological properties (Zhang et al., 2019; Li et al., 2021). In the study 
of natural products, many useful methods, including genetic and cultivation-based strategies, 
have been developed to activate silent or cryptic secondary metabolites (Yuan et al., 2020a; 
Pinedo-Rivilla et  al., 2022). Among them, the One Strain Many Compounds (OSMAC) 
approach, which is conceptualized as a single strain that can produce different metabolites 
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when cultured under different conditions, is among the most effective 
tools for regulating microbial secondary metabolism (Romano et al., 
2018; Ying et al., 2018).

Indole alkaloids have a bicyclic structure that consists of a 
six-membered benzene ring fused to a five-membered nitrogen-
containing pyrole ring (Hu et al., 2021; Umer et al., 2022). Indole 
alkaloids are among the most important secondary metabolites for 
drug developments (Zhang et al., 2020). Prenylated indole alkaloids 
with a bicyclo[2.2.2]diazaoctane ring system are well known for their 
chemical, biosynthetic, and biological interests (Zhao et al., 2023). 
Structurally, prenylated indole alkaloids contain a bicyclo[2.2.2]
diazaoctane framework and densely functionalized indole-derived 
subunits. These alkaloids represent a large and highly structurally 
diverse group of secondary metabolites that exhibit numerous potent 
pharmaceutical properties (Zhang et al., 2019). It has been reported 
that prenylated indole alkaloids possess anticancer, antimalarial, 
antimicrobial, anti-inflammatory, anti-diabetic, and immune-
regulatory activities (Zhang et al., 2019; Zhao et al., 2023).

The filamentous fungus Penicillium oxalicum is a patented 
biocontrol and industrial producing strain that is used to prepare 
biological pesticides and degrading enzymes (Tian et  al., 2018). 
Compared with those of other species in the Penicillium genus (Zhang 
et al., 2020), the secondary metabolites of P. oxalicum have not been 
extensively studied, and only a limited family of metabolites, such as 
phenalenone derivatives (Qi et al., 2023), dihydrothiophene-condensed 
chromones (Sun et al., 2012), decaturin alkaloids (Wang et al., 2013), 
and phenolic enamides and meroterpenoids (Li et al., 2015), has been 
reported. The fungus P. oxalicum 2021CDF-3 used in this study was 
previously isolated from the inner tissue of the marine red alga 
Rhodomela confervoides. HPLC files of crude extracts of this fungus 
cultured in both solid rice medium and liquid PDB medium showed a 
rich diversity (Figure 1), suggesting this fungus can produce abundant 
secondary metabolites. Chemical investigation of this fungal strain on 
solid rice media yielded ten structurally diverse polyketides, including 
two new polyketides, oxalichroman A (7) and oxalihexane A (8), with 
strong inhibitory effects on the PATU8988T cell line, as well as eight 
known compounds, 6,7-dihydroxy-3-methoxy-3-methylphthalide (9), 
chrysoalide B (10), rubralide C (11), cis-(3RS,4SR)-3,4-dihydro-3,4,8-
trihydroxynaphthalen-1(2H)-one (12), 2,5-dimethyl-7-
hydroxychromone (13), (7R)-(hydroxy(phenyl)methyl)-4H-pyran-
4-one (14), 6-benzyl-4-oxo-1,4-dihydropyridine-3-carboxamide (15), 
and carbonarone A (16) (Weng et  al., 2022). Using the OSMAC 
approach (Figure 1), the fungal endophyte P. oxalicum 2021CDF-3 was 
cultivated in PDB media. As a result, six additional indole derivatives, 
including two new prenylated indole alkaloids asperinamide B (1) and 
peniochroloid B (5), and four related derivatives (compounds 2–4 and 
6) (Figure  2), were isolated and identified. Based on extensive 
spectroscopic analysis via HRESIMS, NMR, and TDDFT-ECD 
calculations, the chemical structures were successfully determined, 
including the absolute configurations of compounds 1 and 5. 
Structurally, compounds 1 and 2 are identified as possessing a 
6/6/5/6/6/6/5 heptacyclic scaffold fused with bicyclo[2.2.2]diazaoctane 
and substituted piperidine. In all of the previously reported prenylated 
indole alkaloids, the indole-derived unit and the bicyclo[2.2.2]
diazaoctane moiety are usually linked through C-2 and C-3 (e.g., 
malbrancheamide, notoamide R, penicimutamide D, and taichunamide 
A) or linked to form a spiro system at C-2 (e.g., brevianamide A) or C-3 
(e.g., versicolamide B and paraherquamide A). The newly-discovered 

1 was characterized to possess a 6/6/5/6/6/6/5 heptacyclic scaffold 
containing the unusual 3-pyrrolidone dimethylbenzopyran fused to the 
bicyclo[2.2.2]diazaoctane moiety, hitherto unknown among this kind 
of compounds. Compounds 3 and 4, containing a spiroindoxyl and 
spirooxindole moiety, respectively, represent spiro systems in these 
prenylated indole alkaloids. Compounds 5 and 6 are characterized as 
indole derivatives substituted by an isopentene group at C-7. Moreover, 
cytotoxic effects on the HeLa, HepG2, FADU, and A549 cell lines were 
also evaluated. The results indicated that 1 strongly inhibited the 
growth of the FADU cell line. Herein, we  describe the isolation, 
structural determination, and cytotoxic effects of new compounds 
1 and 5.

2 Materials and methods

2.1 General experimental procedures

Optical rotations were measured with a JASCO P-1020 digital 
polarimeter (Tokyo, Japan) in MeOH. UV spectra were obtained with 
a Lambda 35 UV/Vis spectrophotometer (Perkin Elmer, Waltham, 
USA). 1H and 13C NMR data were acquired with an Agilent DD2 
spectrometer (500 MHz for 1H and 125 MHz for 13C) (Santa Clara, CA, 
United  States). Chemical shifts (δ) are referenced using residual 
deuterium reagent signals as an internal standard. The 1D NMR 
assignments were confirmed by the following 1H-1H COSY, HSQC, 
and HMBC experiments. HRESIMS spectra were taken with a 
scientific LTQ Orbitrap XL spectrometer (Thermo Scientific, 
Waltham, United  States). Preparative HPLC separations were 
conducted with an Agilent 1,260 system. Commercial silica gel 
(200–300 mesh, Qingdao Marine Chemical Factory, Qingdao, China), 
octadecylsilyl reversed-phase gel (30–50 μm, YMC Co., Ltd., Japan), 
and Sephadex LH-20 (GE Healthcare, United States) were purchased 
and subjected to column chromatography.

2.2 Isolation and identification of P. 
Oxalicum 2021CDF-3

The fungus P. oxalicum 2021CDF-3 used in this study was 
previously isolated from the inner tissue of the marine red alga 
R. confervoides and was obtained from Lianyungang, Jiangsu, China. 
The internal transcribed spacer sequence of 2021CDF-3 displayed 
99% identity to that of the reported P. oxalicum species. This sequence 
has been submitted to the GenBank database with no. OP349593. This 
fungus was preserved at the School of Food and Pharmacy, Zhejiang 
Ocean University.

2.3 Fermentation, extraction, and isolation

Fermentation: Previously, the fungal strain P. oxalicum 2021CDF-3 
was fermented on solid rice media, which yielded ten structurally 
diverse polyketides (Weng et  al., 2022). To explore the metabolic 
potential of this strain, the OSMAC approach was used to cultivate this 
fungus in PDB medium. Mycelia of P. oxalicum 2021CDF-3 grown on 
PDA media (Solarbio Life Sciences Co., Ltd., Beijing, China) were 
inoculated into a 1 L Erlenmeyer flask containing 300 mL of PDB 
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media (Solarbio Life Sciences Co., Ltd.). Afterwards, the flask was 
incubated at 28°C at 200 rpm for five days. The whole culture medium 
was then transferred into 100 × 1 L Erlenmeyer flasks containing PDB 
medium. Finally, all flasks were fermented statically at 28°C for 30 days.

Extraction: All the culture materials (both the broth and the 
media) were extracted with EtOAc for three times (each with 30 L 
EtOAc) at room temperature. A total of 100 L organic solution was 
obtained. Then, the entire organic solution was concentrated under 

FIGURE 1

HPLC profile of crude extracts of P. oxalicum 2021CDF-3 in different cultural conditions.

FIGURE 2

Structures of the isolated compounds 1–6.
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reduced pressure (−0.1 Mpa) to afford 28.0 g of the EtOAc crude 
extract. The yield of the EtOAc crude extract was 0.28 g/L.

Isolation: The obtained EtOAc crude extract was partitioned 
through silica gel VLC and eluted with increasing gradient elution 
(petroleum ether/EtOAc, from 20:1 to 1:1, v/v, and then CH2Cl2/
MeOH, from 20:1 to 5:1, v/v) to generate eight fractions (A1 − A8). 
Fraction A5 (1.2 g), which was eluted with petroleum ether/EtOAc 1:1, 
was separated by an octadecylsilyl reversed-phase silica gel using a 
stepwise gradient elution of MeOH/H2O (from 10 to 100%, v/v) to 
yield five subfractions (A5.1 − A5.5). Subfraction A5.3, eluted with 
40% MeOH/H2O, was separated by preparative TLC (CH2Cl2/acetone 
10:1, v/v) to give compound 1 (5.6 mg). Subfraction A5.4, eluted with 
50% MeOH/H2O, was separated by preparative HPLC (MeOH/H2O 
65%) to afford compounds 3 (tR = 16.2 min, 2.5 mg) and 4 
(tR = 12.5 min, 4.9 mg). Subfraction A5.5, eluted with 60% MeOH/H2O, 
was separated by Sephadex LH-20 (15 mm × 800 mm, MeOH as 
elution solvent) to afford compound 2 (1.9 mg). Fraction A6 (2.0 g), 
which was eluted with CH2Cl2/MeOH 20:1, was separated by silica gel 

column chromatography (20 mm × 800 mm, loaded with 200–300 
mesh silica gel, CH2Cl2/MeOH as elution solvent, from 30,1 to 10,1, 
v/v) to yield compounds 5 (4.4 mg) and 6 (3.8 mg).

Asperinamide B (1): colorless oil; [α]20
D + 16.2 (c 0.20, MeOH); 

UV (MeOH) λmax (log ε) 231 (4.26), 262 (4.27), 390 (3.53); IR (KBr) 
νmax 3,418, 2,940, 2,348, 1,694, 1,594, 1,388, 1,083 cm−1; 1H and 13C 
NMR data (measured in CD3OD) (see Table  1); HRESIMS m/z 
494.2262 [M + H]+ (calcd for C27H32N3O6, 494.2291).

Peniochroloid B (5): colorless oil; [α]20
D + 115.7 (c 0.05, MeOH); 

UV (MeOH) λmax (log ε) 214 (3.79), 258 (1.44), 296 (1.35); IR (KBr) 
νmax 3,380, 2,942, 2,831, 1720, 1,454, 1,032, 738 cm−1; 1H and 13C NMR 
data (measured in DMSO-d6) (see Table 1); HRESIMS m/z 336.1458 
[M − H]− (calcd for C17H22NO6, 336.1447).

2.4 Computational section

The computational details are shown in Supplementary material.

TABLE 1 NMR spectroscopic data for compounds 1 and 5 (1H at 500  MHz and 13C at 125  MHz).

Position Compound 1a Position Compound 5b

δH (mult, J in Hz) δC, type δH (mult, J in Hz) δC, type

2 93.4, C 1-NH 10.34 (br s) -

3 197.7, C 2 178.5, C

4 7.33, d (8.4) 124.7, CH 3 74.0, C

5 6.34, d (8.4) 109.4, CH 4 7.15 (m, overlap) 122.3, CH

6 163.2, C 5 6.95 (m) 122.2, CH

7 105.0, C 6 7.14 (m, overlap) 127.6, CH

8 156.5, C 7 128.9, C

9 114.5, C 8 139.9, C

10 6.28, s 73.6, CH 9 132.2, C

11 60.7, C 10 41.0, C

12 168.9, C 11 3.61 (dd, 8.6, 2.3) 79.6, CH

14 3.45, m

3.35, m

43.6, CH2 12 3.19 (dd, 16.9, 7.7)

2.88 (dd, 11.0, 8.6)

63.6, CH2

15 2.05, m; 1.92, m 24.0, CH2 13 1.38 (s) 27.3, CH3

16 2.67, m; 1.89, m 28.5, CH2 14 1.19 (s) 25.8, CH3

17 67.2, C 15 2.19 (m); 2.08 (m) 36.8, CH2

18 173.5, C 16 3.95 (m); 3.73 (m) 60.1, CH2

20 a: 2.09, m; b: 1.87, m 28.5, CH2 18 170.6, C

21 3.07, dd (10.4, 6.0) 41.2, CH 19 1.83 (s) 20.9, CH3

22 40.5, C

23 0.59, s 14.3, CH3

24 1.18, s 19.2, CH3

25 7.00, d (9.9) 118.4, CH

26 5.77, d (9.9) 127.5, CH

27 76.5, C

28 1.54, s 26.9, CH3

29 1.48, s 24.9, CH3

30 3.15, s 50.6, CH3

aMeasured in CD3OD; bMeasured in DMSO-d6.
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2.5 Cytotoxic assay

The cytotoxicity of isolated compounds 1–6 was determined in 
vitro against HeLa, HepG2, FADU, and A549 cells by the CCK8 
colorimetric method (Yuan et al., 2020b). Doxorubicin was used as a 
positive control.

3 Results and discussion

3.1 Structural elucidation

The EtOAc crude extracts of P. oxalicum 2021CDF-3 were initially 
chromatographed on a silica gel column, and then fractionated by gel 
chromatography on Sephadex LH-20 to yield the following 
compounds 1 and 5.

Asperinamide B (1) was isolated as a colorless oil (MeOH) and 
was found to possess the molecular formula of C27H32N3O6 according 
to its HRESIMS data (m/z 494.2262 [M + H]+, calcd for C27H32N3O6, 
494.2291). The 1H and 13C NMR data of 1 (Table 1) revealed similar 
functional groups to those of asperinamide A (2) (Zhao et al., 2023), 
including three carbonyls [δC 197.7 (C-3), 168.9 (C-12), and 173.5 
(C-18)], nine quaternary carbons, six methines [including four sp2 at 
δH/C 7.33 (d, J = 8.4 Hz, H-4)/124.7 (C-4), 6.34 (d, J = 8.4 Hz, 
H-5)/109.4 (C-5), 7.00 (d, J = 9.9 Hz, H-25)/118.4 (C-25), and 5.77 (d, 
J = 9.9 Hz, H-26)/127.5 (C-26), and an oxygenated sp3 at δH/C 6.28 (s, 
H-10)/73.6 (C-10)], four methylenes [δC 43.6 (C-14), 24.0 (C-15), 
28.5 (C-16), and 28.5 (C-20)], and five methyl groups [including one 
methoxy group at δH/C 3.15 (s, H3-30)/50.6 (C-30)]. The NMR data as 
well as the functional groups of 1 were closely related to those of 2, 
indicating that compound 1 was a prenylated indole alkaloid 
possessing a bicyclo[2.2.2]diazaoctane skeleton. Two carbonyls 
resonated at δC 168.9 (C-12) and 173.5 (C-18) and two related 
nitrogenated quaternary carbons resonated at δC 60.7 (C-11) and 67.2 
(C-17) convinced this deduction (Kato et  al., 2007). Moreover, 
1H − 1H COSY correlations between H2-20 and H-21, between H2-14, 
H2-15, and H2-16, and HMBC correlations (Figure 3) from H2-14 to 
C-12, from H2-16 to C-17 and C-18, H2-20 to C-16, and from H-21 
to C-12, led to the construction of this bicyclo[2.2.2]diazaoctane ring. 
The remaining substructure of 1 was identical to that of 2, as 
confirmed by detailed analysis of the 2D NMR (1H − 1H COSY and 

HMBC) data (Figure 3). The abovementioned spectroscopic features 
confirmed the presence of a 3-pyrrolidone dimethylbenzopyran fused 
to the bicyclo[2.2.2]diazaoctane moiety. Finally, in the HMBC 
spectrum of 1, H3-30 showed a correlation to C-2, indicating the 
location of this methoxy group at C-2 (Figure 3). The gross structure 
of 1 was therefore assigned and compound 1 was named as 
asperinamide B. Both asperinamide B (1) and asperinamide A (2) are 
identified as possessing a 6/6/5/6/6/6/5 heptacyclic scaffold fused 
with bicyclo[2.2.2]diazaoctane and substituted piperidine. The main 
difference between 1 and 2 is that 2 contains an unique pyrano[2,3-g]
indole, while 1 possesses an indoxyl moiety.

The relative configurations of 1 were determined based on its 
NOESY relationships (Figure 4). The observed NOE interactions of 
H-20a with H3-23, and of H-20b with H3-24, suggested that H-20a and 
H3-23 were oriented in the same direction, tentatively assigned as β, 
while H-20b and H3-24 were oriented in the α direction. Further, the 
NOE interactions of H-10/H-21/H3-23 indicated that H-10 and H-21 
were β-oriented. Similarly, NOE interactions of H3-30 with H3-24 
suggested that H3-30 was α-oriented. By comparing the chemical 
shifts with those of compound 2, the chemical shifts from C-11 to 
C-21 were very close, indicating a shared relative configuration. In 
summary, the relative configuration of compound 1 was determined 
as 2S*, 10S*, 11R*, 17S*, 21S*. The absolute configurations of 1 were 
initially determined by comparing its ECD spectrum with those of 
previously known compounds. Previous studies revealed that the 
arrestive Cotton effect at 200–250 nm caused by an n-π* transition of 
the amide bond was responsible for the bicyclo[2.2.2]diazaoctane 
framework (Kato et al., 2007). The ECD spectrum of 1 displayed a 
positive Cotton effect at 230 nm, which was similar to that of 
notoamides (Kato et al., 2007). Therefore, the absolute stereochemistry 
of 1 was deduced to be 2S,10S,11R,17S,21S. Meanwhile, compound 1 
was also subjected to TDDFT-ECD calculations at the CAM-B3LYP/6-
311G(d) level. As expected, the good agreement of the high-energy 
ECD transitions (Figure 5) allowed the determination of the absolute 
configuration of 1. The positive CE at ~230 nm was ascribed to the 
electron transition from MO131 (HOMO) to MO133 (LUMO +1). 
The positive CE at ~330 nm was caused by the electron transition from 
MO131 (HOMO) to MO132 (LUMO) (Figure  6). This approach 
solidified the determination of the stereochemistry and highlighted 
the role of ECD spectroscopy and TDDFT calculations in the 
structural analysis of complex molecules.

FIGURE 3

Important 1H-1H COSY and HMBC correlations of 1 and 5.
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Peniochroloid B (5) was isolated as a colorless oil (MeOH). Its 
molecular formula was assigned as C17H23NO6 according to the 
primary HRESIMS peak generated at m/z 336.1458 [M − H]− (calcd 
for C17H22NO6, 336.1447). The UV peaks at 214, 258, and 296 nm 
indicated the presence of an indolinone subunit, which was identical 
to that previously reported for the compound sclerotiamide (Whyte 
et al., 1996). The 1H NMR data of 5 (Table 1) showed three aromatic 
methines at δH 7.15 (m, H-4), 6.95 (m, H-5), and 7.14 (m, H-6), one 
oxygenated methine at δH 3.61 (dd, J = 8.6, 2.3 Hz, H-11), two 
oxygenated methylenes at δH 3.19 (dd, J = 16.9, 7.7 Hz, H-12α), 2.88 
(dd, J = 11.0, 8.6 Hz, H-12β), 3.95 (m, H-16α), and 3.73 (m, H-16β), 
and three methyl groups at δH 1.38 (s, H3-13), 1.19 (s, H3-14), and 
1.83 (s, H3-19). The 13C NMR spectra of 5 revealed two ester/amide 
carbonyls at δC 178.5 (C-2) and 170.6 (C-18), four methines including 
three aromatic at δC 122.3 (C-4), 122.2 (C-5), and 127.6 (C-6), and 
one oxygenated at δC 79.6 (C-11), three methylenes including two 
oxygenated at δC 63.6 (C-12) and 60.1 (C-16), three methyls, and five 

quaternary carbons. Analysis of the UV and NMR data led to the 
identification of an indolinone framework. The relevant 1H and 13C 
NMR data (Table 1) for 5 are consistent with those for peniochroloid 
A (6) (Liu et al., 2023). The presence of an isopentene group was 
determined by the COSY correlation between H-11 (δH 3.61, dd, 
J = 8.6 and 2.3 Hz) and H2-12 (δH 3.19, dd, J = 16.9 and 7.7 Hz; 2.88, 
dd, J = 11.0 and 8.6 Hz) and correlative HMBC correlations from 
H-11 to C-13/C-14 and from H3-13 to C-7 (Figure 3), as is found in 
peniochroloid A. The COSY correlation of the methylene protons at 
δH 2.19 and 2.08 (H2-15) with oxygenated methylene protons at δH 
3.95 and 3.73 (H2-16), together with additional HMBC correlations 
observed from H2-15 to C-2, C-3, and C-9, indicated that both 
oxygenated quaternary carbon C-3 and OCH2CH2-unit methylene 
C-15 were linked. The remaining methyl proton signal at δH 1.83 (H3-
19) correlated with the ester carbonyl C-18, requiring the connection 
of H3-19 with C-18 to form the acetyl group and completing the 
assignment of the planar structure of 5, as shown in Figure 2.

Mosher’s method is considered as a useful tool to determine the 
absolute configuration of C-11 in compound 5. However, hampered 
by a deficiency in sample quantity, compound 5 was unable to 
undergo Mosher’s experiment. The structures of compounds 5 and 6 
were closely similar. In their biosynthetic pathways, the segment from 
C-10 to C-14 was derived from a prenyl group attached to C-7. 
Compound 6, a known compound, exhibited an R configuration at 
C-11. A comparison of the chemical shifts for C-10 to C-14 in both 
compounds revealed their structural similarity and identical chirality 
at C-11. By carefully comparing the chemical shifts of C-11 and 
adjacent carbons, and considering that compounds 5 and 6 shared 
the same biosynthetic pathway (specifically the addition of an 
isopentenyl unit at C-7 via an isopentenyl transferase), it was inferred 
that the chirality at C-11 for both compounds should be consistent. 
The configuration at C-11 in compound 5 was supposed to be R. The 
side chains at positions C-5 and C-7, alongside the side chain at C-3, 

FIGURE 4

Key NOESY correlations of 1.

FIGURE 5

Experimental and calculated ECD spectra of 1.

https://doi.org/10.3389/fmicb.2024.1400803
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Song et al. 10.3389/fmicb.2024.1400803

Frontiers in Microbiology 07 frontiersin.org

contributed minimally to the Cotton effects observed in the ECD 
spectra. Consequently, we  simplified these side chains to methyl 
groups, yielding 3-hydroxy-3,7-dimethylindolin-2-one, featuring a 
sole chiral center at C-3. By computing the ECD spectra for both the 
3S and 3R configurations and comparing these with the experimental 
ECD spectra of compound 5, we were able to definitively ascertain 
the absolute configuration of C-3 in compound 5. Upon comparison 
with the measured spectra (Figure  7), we  concluded that the 
stereochemistry of the C-3 position was S.

In addition, four previously reported indole derivatives were 
finally characterized as asperinamide A (2) (Zhao et  al., 2023), 
amoenamide C (3) (Zhang et al., 2019), sclerotiamide (4) (Whyte 

et al., 1996), and peniochroloid A (6) (Liu et al., 2023), respectively, by 
comparison of their spectroscopic data with literatures.

3.2 Cytotoxic activity

Prenylated indole alkaloids containing the bicyclo[2.2.2]
diazaoctane framework have been reported to possess remarkable 
biological activities, including antitumor, antibacterial, anti-
inflammatory, anthelmintic, and insecticidal activities. Based on the 
same structural characteristics between asperinamide B (1) and other 
this kind of compounds, the new prenylated indole alkaloid 1 was 

FIGURE 6

Key molecular orbitals (MOs) involved in the important transitions of 1.

FIGURE 7

Experimental and calculated ECD spectra of 5.
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supposed to possess high potential biological significance. The 
cytotoxicities of compounds 1–6 against four human tumor cell lines 
(HeLa, HepG2, FADU, and A549) were measured. The cells were 
treated with compounds 1–6 at concentrations of 0.001 μM, 0.01 μM, 
0.1 μM, 1 μM, 10 μM, 50 μM, 100 μM, and 200 μM for 48 h. The 
CCK-8 assay results are shown in Table 2. Compound 1 demonstrated 
dose-dependent cytotoxicity against the human pharyngeal 
squamous cell line FADU, with an IC50 value of 0.43 ± 0.03 μM. This 
result indicated that the unusual 3-pyrrolidone moiety in 1 may play 
an important role in cytotoxic activity. Moreover, compound 6 
showed higher activity (IC50 = 15.30 ± 0.13 μM) against the A549 cell 
line than compound 5 (IC50 = 29.84 ± 0.21 μM), suggesting that the 
ester carbonyl group in 6 may enhance cytotoxic activity. Head and 
neck squamous cell carcinoma (HNSCC) is one of the six major 
malignant tumors worldwide. Hypopharyngeal squamous cell 
carcinoma (HSCC), accounting for 3 to 5% of all HNSCC cases, has 
become a current research hotspot due to its high incidence and 
mortality rates (Chen et al., 2017). Despite significant progress in the 
treatment of HSCC in recent years, the use of conventional 
chemotherapy drugs is limited by drug resistance and side effects in 
tumor drug therapy. Therefore, there is an urgent need to discover 
alternative antitumor drugs. Compound 1 showed high inhibitory 
activity against the FADU cell line, comparable to the positive control 
doxorubicin. Further pharmacological studies will provide evidences 
to reveal this compound as a potential lead compound for anti-
FADU drugs.

4 Conclusion

In summary, continued chemical investigation of the marine red 
alga-derived endophytic fungus P. oxalicum 2021CDF-3 cultured in 
PDB media yielded six structurally diverse indole derivatives, 
including two new prenylated indole alkaloids asperinamide B (1) and 
peniochroloid B (5). Compound 1 was characterized as possessing an 
unusual 3-pyrrolidone dimethylbenzopyran fused to the bicyclo[2.2.2]
diazaoctane moiety, which was rare in previously reported prenylated 
indole alkaloids. In vitro cytotoxic assays revealed that 1 strongly 
inhibited the growth of the FADU cell line, indicating that this 

compound could be a potential lead compound for anti-FADU drugs. 
This study reported a new prenylated indole alkaloid featuring a 
6/6/5/6/6/6/5 heptacyclic scaffold, which added the structural 
diversity of these kinds of compounds. In addition, the new prenylated 
indole alkaloid showed promising cytotoxic activity, which will receive 
more and more attention from natural product chemists for the 
further pharmacological and biosynthetic/synthetic interests.
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